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ABSTRACT 

 
 In this paper we describe an algorithm for 
identifying shapes of endothelial cells in images of 
human cornea. In order to analyze the quality of cornea 
samples that shall be transplanted, endothelial cells have 
to be counted and the morphology of cells has to be 
identified. 

The algorithm for shape detection presented in this 
paper is based on evolution strategies (ES): After 
several pre-processing steps an initial shape is fitted into 
the detected cells and repeatedly evaluated and mutated 
in order to create new candidates from which the best 
ones are promoted to the next generation. In the 
experimental section of this paper we analyze the 
performance of this approach for identifying cell 
morphologies in images of human cornea samples using 
different fitness functions. 
 
Keywords: structure identification, image analysis 
evolution strategies, human cornea analysis 
 
 

1. INTRODUCTION  
 
 Cornea transplantation may be the only recovery 
chance for diseases such as Fuchs’ Dystrophy, 
Keratoconus or similar disorders (Kampik and Grehn 
2002). Here the cornea of the donor is taken and fixed at 
the right position of the recipient eye with few sutures. 
The post mortem enucleation and cornea processing 
according to European Community Directives 
2004/23/EC, 2006/17/EC, and 2006/86/EC can be 
performed within 48 hours without loss of quality. To 
minimize risks of cornea transplantations, the tissue 
donation has to pass strict quality checks. Besides tests 
to exclude the possibility of HIV, hepatitis, and syphilis, 
corneas are also evaluated concerning their quality.  
 The quality of corneas can be defined by two 
criteria: the endothelial cell count and the morphology 

of consisting cells. As cornea endothelial cells are not 
able to undergo cell division and consequently cannot 
be replicated, the number of endothelial cells decreases 
over the years. Therefore, higher donor age leads to a 
reduced endothelial cell count (Loimayr et al. 2012).  
 The minimum of endothelial cell count should be 
2000 cells per mm² to be adequate for transplantation 
use (Dichtl et al. 2010). Quality determination through 
cell counting is in many tissue banks still a manual 
process. Usually, cornea endothelial cells have a 
hexagonal cell form as apparent in Figure 1.  

 The typical form of endothelial cells is lost during 
apoptosis. In this process, cells lose their original form 
and size and cannot be counted as hexagonal. The 
higher the number of cells with hexagonal shape, the 
better is the quality of a cornea and the higher is the 
possibility to be used for transplantation.  
 Thus it is not only important to identify the 
endothelial cell count, but also to analyze the shape of 
cells on the cornea that are to be used for 
transplantation. The goal of the research work presented 
in this paper is to develop an algorithm that is able to 
automatically identify the number of cells and the 
classification according to their shape. 

Figure 1: Endothelial cells of which most have 
hexagonal shapes. 

Proceedings of the European Modeling and Simulation Symposium, 2014 
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

79

mailto:lisa.obritzberger@fh-hagenberg.at
mailto:susanne.schaller@fh-hagenberg.at
mailto:viktoria.dorfer@fh-hagenberg.at
mailto:cl
mailto:si
mailto:stephan.winkler@fh-hagenberg.at
http://dict.leo.org/ende/index_de.html#/search=suture&searchLoc=0&resultOrder=basic&multiwordShowSingle=on


2. STATE OF THE ART 
 

 Currently, there are only a view tools for analyzing 
images of corneas. There is for example the Endothel 
Analysis System of the German company Rhine-Tec, 
which rather concentrates on counting the cells and 
makes it not clear how the identification of the cell 
morphology is calculated. Another software specialized 
on endothelial cell count is the NAVIS Cell Count-
Advanced Vision Information System of the German 
company Nidek Technologies, which offers also 
functionalities to identify the cells shape. Researchers 
have compared these two software tools against manual 
endothelial cell counts and their studies have shown that 
the fully automated analysis of cornea cells remains 
problematic (Hirneiss et al. 2007). 
 There are also several cell counting tools that are 
not geared towards endothelial cell count and hence not 
optimally appropriate for this purpose.  
 Due to the lack of appropriate cell counting tools, 
in many tissue banks the cell count and cell morphology 
identification is still a manual progress, for which an 
alternative shall be shown in this paper.  
 

3. DATA PRE-PROCESSING 
 
 In this section we describe the pre-processing steps 
that have been performed before applying evolution 
strategy on processed images. The following pre-
processing steps are applied: identification of sharp 
areas in images, dilation, transformation to binary 
images, and cell detection using a flood fill algorithm. 

 

3.1. Identification of Sharp Areas 
 
 Microscopy images of cornea samples are out of 
focus at the edges, which is caused by curvature of the 
cornea. In these areas a proper analysis of endothelial 
cells is not possible and would falsify the results. 
Therefore, the focused area of cornea images has to be 
detected. This is achieved by using the change of 
intensity in the images: Areas that are out of focus have 
smoother transitions than focused areas hence change of 
intensity is higher in focused areas of the image.  
 First the intensity of each pixel of the image is 
calculated by using the RGB-data of the pixel p. The 
thereby used definition can be seen in Equation 1, 
where p.R represents the red component, p.G the green 
component, and p.B the blue component of pixel p 
(Nagabhushana, 2005).   
 
 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 0.3 × 𝑝.𝑅 + 0.59 × 𝑝.𝐺 + 0.11 × 𝑝.𝐵 (1) 

 
 In the next step a radius is defined in which each 
pixel is compared to its neighbors with regard to the 
intensity value. If the difference between the maximum 
and the minimum intensity value in the neighborhood 
exceeds a pre-defined threshold, the centered pixel is 
marked as focused. 

 To identify not only sharp pixels, but also whole 
areas as focused, a second radius is defined, in which a 
minimum number of pixels that have been marked as 
sharp has to be reached. If the number of sharp pixels in 
the neighborhood is at least as high as the pre-defined 
minimum, then the pixel belongs to a focused area. An 
example for this is shown in Figure 2. 

 
3.2. Dilation for Cell Margin  
 
 In order to identify pixels belonging to a cell area 
proper cell margin has to be performed. Therefore, the 
holes between the cell membrane of endothelial cells 
have to be closed. To achieve the closing of cell 
membrane dilation is processed on the cornea cell 
image. Dilation uses a mask that causes objects to 
increase and thereby fills small holes between objects 
(Jähne 2012) as depicted in Figure 3. 

 
3.3. Transformation to Binary Images 
 
 To distinguish cell areas from cell membrane, we 
consider the different intensity levels in the images. A 
transformation to a binary image is achieved using a 
pre-defined threshold; intensity levels below the 

Figure 3: Cornea image after performing dilation. 

Figure 2: Focused area identified in a cornea 
image. 
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threshold are transformed to black representing cell 
pixels, others to white ones.  
 
3.4. Flood Fill Algorithm for Cell Separation 
 

To identify pixels that belong to the same cell a 
recursive flood fill algorithm is applied. A point within 
the cell area is selected as seed from where all 4-
connected pixels, if they are also part of the cell, are 
colored. The process is repeated recursively for each of 
the connected pixels until there is no neighboring pixel 
left that can be colored (Pachghare 2008). This leads to 
images as the one shown in in Figure 4: 

 
4. IDENTIFICATION OF ENDOTHELIAL 

CELL MORPHOLOGY IN IMAGES OF 
CORNEA SAMPLES BASED ON 
EVOLUTION STRATEGIES 

 
In this section we describe an approach for 

identifying cell forms in images using evolution 
strategies: The fitness of several created shapes is 
repeatedly evaluated and mutated in order to generate 
new solution candidates. 

The initial shapes are created with a randomly 
chosen number of corners in the range [4, 7]. This form 
is fitted into the cell and evaluated. Then, mutation is 
executed by changing the corners of the initial shape, 
followed by re-evolution; solution candidates with the 
best fitness are chosen as new parents for the next 
generation. 

 
4.1. Evolution Strategies 
 

Evolutionary algorithms are inspired by the 
Darwinian paradigm of evolution, and use the principle 
of variation and selection combined with generational 
changes (Beyer 2001). The two main types of 
evolutionary algorithms are genetic algorithms and 
evolution strategies.  

 

Evolution strategies were developed since the 
1960s, primarily by a German research community 
around Rechenberg and Schwefel at the Technical 
University of Berlin, and have been extensively studied 
in Europe (see for example (Rechenberg 1973) and 
(Schwefel 1994)).  

As one of the most representative of evolutionary 
computation ES executes the optimization process by 
applying operators in a loop. Each step of the 
algorithm's execution is known as a generation. Over 
generations main operations are applied on the solution 
candidates repeatedly until a given termination criterion 
is met. One of the termination criteria can for example 
be the reaching of a pre-defined number of generations.  

An ES works with a population of individuals 
which are also called solution candidates and are 
characterized by their parameter vector. The vector is 
used to calculate the individual’s fitness value.  

In each generation the old population is replaced 
by successful child individuals. Individuals are 
represented as real-valued vectors in which each 
position corresponds to a feature of the individual. 

In contrast to genetic algorithms, where mutation is 
mainly used for avoiding stagnation, mutation is the 
main reproduction operator in evolution strategies. In 
each generation each component of the vector is 
mutated individually, where small mutations are more 
likely than big ones.  

As the algorithm converges with increasing quality 
of the solution candidates, the mutation width δ 
(convergence rate) should be adapted. For the purpose 
of self-adaptation, the 1/5 success rule proposed by 
Rechenberg (for Details see Rechenberg 1973) is 
processed. Here the percentage of successful mutations 
s is recorded over n generations, to calculate the 
convergence rate as seen in Equation 2, whereas cd = 
0.82 and ci = 1 – 0.82.  

 

 δ(t) = 

⎩
⎪
⎨

⎪
⎧𝑐𝑑 × δ(𝑡 − 𝑛)         𝑖𝑓 𝑠 < 1

5

𝑐𝑖 × δ(𝑡 − 𝑛)         𝑖𝑓 𝑠 > 1
5

δ(𝑡 − 𝑛)                  𝑖𝑓 𝑠 = 1
5

 (2) 

 
Another possibility to create new individuals can 

be recombination where a child is created by 
recombining two solution candidates (parents). This can 
for example be processed by calculating their geometric 
average. Strategies for choosing candidates for 
recombination and recombination techniques can be 
very different. Typically, parent selection in ES is 
performed uniformly and random, with no regard to 
fitness.  

The algorithm described in this paper does not use 
recombination.  

Examples for mutation and recombination in the 
context of ESs are shown in Figure 5. 

 

Figure 4: Detected cells after performing a flood 
fill algorithm.  
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Figure 5: Exemplary solution candidates and the 

effect of genetic operations in ES (Winkler 2009). 
 
The selection of individuals for the next generation 

is a deterministic method that uses the survival of the 
fittest principle: only the best individuals remain.  

In each generation of an ES algorithm, λ children 
are produced by µ parent individuals. By selection, the 
best children are chosen and become the parents of the 
next generation. The µ best individuals are based on the 
relative ordering of fitness values. 

Basically, there are two selection strategies for 
ESs: the (µ,λ)-strategy and the (µ+λ)-strategy. We have 
focused on the (µ+λ)-strategy, which is also called plus-
selection and allows not only the λ produced children, 
but also the µ parents to be included in the pool of 
potential new parents. The best individuals of parents 
and children are chosen as the next generation’s parents.  

The main procedure steps of the execution of ES is 
summarized and graphically shown in Figure 6.  
 

 
Figure 6: Workflow of the standard evolution strategy 

(ES) algorithm (Winkler 2009). 
 
 

4.2. Cell Morphology Identification using Evolution 
Strategies 

 
Solution Candidates 
 
 A solution candidate for the ES performed to detect 
the correct cell morphologies is represented as a list of 
points which describe the corners of a shape. Figure 7 
shows an example: 

 
Initial Candidates 
 
 Initial solution candidates have a uniformly 
distributed possibility of being quadrangular, 
pentagonal, hexagonal or heptagonal. As the best fit can 
be created by using pixels that are part of the cell 
border, the cell border pixel with the minimum distance 
from the original corner of the initial solution candidate 
is calculated for each corner and assigned as the new 
corner. The so created solution candidates are the first 
individuals of the ES’ population. 

 
Mutation 
 

After calculating the fitness of each parent they are 
mutated in order to create children as new candidates 
from whom the best ones are promoted to the next 
generation. Mutation is here accomplished in two ways:  

• Mutation of points: Each corner of a parent 
solution candidate has a pre-defined 
possibility of being mutated. This mutation 
causes a small movement of the edges and 
thereby changes the shape and area of the 
original solution candidate. 

• Change of the number of points: There can 
either be a new corner added to the shape by 
mutating an existing corner and adding it as an 
additional one, or a randomly chosen corner 
can be deleted. 

 
Fitness Function 
 

The fitness function has to return a value that 
reflects how well the shape fits into the original cell 
area. To get the fitness f of a solution candidate s, the 
area of the created shape is calculated and compared 
with the area of the cell. Overlapping areas lead to 

Figure 7: Idea of fitting shapes into cells; shapes 
are defined by their corners. 
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improvement of the fitness value, whereas area that 
does not fit leads to fall off in fitness quality. Thereby 
the overlapping areas are weighted with a value ∝1 and 
points outside the shape are weighted with a value ∝2 as 
defined in Equation 3:  
  
 𝑓(𝑠) = �∑ 𝐼(𝑝)𝑝∈𝑐𝑎(𝑠) � × ∝1−  �∑ 𝐼(𝑝)𝑝∉𝑐𝑎(𝑠) � × ∝2 (3) 
 
 Where ca(s) is the area covered by the shape s. The 
aim of this approach is to maximize the values returned 
by the fitness function. The degree of reward / 
punishment depends on the grayscale intensity I of the 
pixels. In the experiments summarized in this paper ∝1 
was always greater than ∝2. 

As it is easier for shapes with a higher number of 
corners to fit the original cell, fitness has to be weighted 
by the number of corners. 

 
 

5. EXPERIMENTAL RESULTS 
 
 Several variants of this solution evaluation 
approach have been evaluated and are described in the 
following section.  
 
5.1. Using Fitness Function with Non-Weighted 

Corners 
 

Initial ES runs have been performed without 
weighting the fitness by the number of corners of a 
shape. As it is easier for shapes with higher number of 
corners to fit a cell, a non-corner weighted fitness 
function favored shapes with higher corner number 
which is shown in Figure 8.  

 
To further evaluate the quality of the results a 

manual analysis has been executed where the shape of 
the cells (originally defined by a human expert) was 

compared to the result of the algorithm. We have used 8 
images of corneas provided by the Red Cross Blood 
Transfusion Service for Upper Austria. The evaluation 
of the results of five independent identification runs per 
image (ES with 100 generations and 1 parent with 10 
offspring) are summarized in Table 1. The overall 
classification of calculated forms compared to the 
original shape classification can be seen in the 
confusion matrix shown in Table 2. 
 

 

Table 1: Average results achieved with five runs, each 
with 100 ES iterations per cell, using a fitness function 

with non-weighted corners. 
 

expected / 
identified 4 5 6 7 

 

4 0.00% 0.00% 0.00% 0.00%  
5 0.00% 0.20% 0.20% 0.00%  

6 0.41% 2.24% 2.86% 0.61%  
7 2.65% 25.10% 57.14% 8.57%  
     11.63% 

 

Table 2: Confusion matrix with average classification 
ratios for cells in 8 cornea images. Classifications 
computed in 5 independent test runs per cell are 

compared to original cell shapes classifications defined 
by a human expert. The results were achieved by using 

a fitness function with non-weighted corners. 
 

5.2. Using Fitness Function with Non-Linear 
Functions 

 
To avoid drifting to shapes with higher numbers of 

corners, tests with a weighted fitness function have been 
performed: The calculated fitness values have been 
weighted by dividing them by the number of corners, by 
the logarithm of number of corners and by the square 
root of number of corners.  

The results obtained using these functions are 
similar, they all perform better than the non-corner 
weighted fitness function; still, shapes with higher 
number of corners are favored which can be seen in 
Figure 9. Though results improved they were still not 
satisfying which can be seen in Table 3 and Table 4. 

Image Sample 
Classified correctly 

Average Standard deviation 

1 32.50% 0.07 

2 12.86% 0.03 

3 14.67% 0.03 

4 13.33% 0.05 

5 9.09% 0.00 

6 4.62% 0.04 

7 13.85% 0.08 

8 1.33% 0.03 

Mean Quality 12.78% 0.10 

Figure 8: Distribution of identified cells using the 
non-corner weighted fitness function. 
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Figure 9: Distribution of identified cells using the 
fitness function weighted by logarithm of corner 

number. 
 

Figure 10: Distribution of identified cells using 
fitness function weighted by pre-defined values. 

 

Figure 11: Improvement of fitness of shapes over 
generations for randomly selected cells. 

 

Figure 12: Identified shapes with the best fitness 
fitted into endothelial cells. 

 

 

 

Table 3: Average results achieved with five runs, each 
with 100 ES iterations per cell, with a fitness function 

weighted by logarithm of corner number. 
 

expected / 
identified 4 5 6 7 

 

4 0.00% 0.20% 0.82% 0.20%  
5 0.20% 1.63% 6.73% 0.82%  

6 1.22% 10.61% 18.57% 3.06%  
7 1.63% 15.10% 34.08% 5.10%  
     25.31% 

 

Table 4: Confusion matrix with average classification 
ratios for cells in 8 cornea images. Classifications 
computed in 5 independent test runs per cell are 

compared to original cell shapes classifications defined 
by a human expert. The results were achieved by using 

a fitness function weighted by logarithm of corner 
number. 

 
5.3. Using Fitness Function with Linear Weighting 
 

As the previous methods did not show the expected 
success, the fitness was weighted by a pre-defined value 
depending on corner numbers which are depicted in 
Table 5. This approach has led to better results with 
mainly hexagonal cell forms, which can be seen in 
Figure 10. 

 

Numbers of corners Weight 
4 1.6 
5 1.4 
6 1.2 
7 1.0 

 

Table 5: Weights for shapes depending on corners. 

 To evaluate the performance of this approach in 
more detail, the change of fitness over generations was 
observed and showed that the shapes’ fitness improves 
over time. This can be seen in Figure 11:  

The shape with the best fitness is selected to 
represent the morphology of the cell and plotted into the 
original image which is shown in Figure 12:  

 

Image Sample 
Classified correctly 

Average Standard deviation 

1 40.00% 0.21 

2 24.29% 0.10 

3 34.67% 0.16 

4 26.67% 0.13 

5 21.82% 0.08 

6 16.92% 0.03 

7 23.08% 0.05 

8 20.00% 0.11 

Mean Quality 25.93% 0.13 
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The evaluation of the results of five independent 
identification runs per image (ES with 100 generations) 
are summarized in Table 6. The overall classification of 
calculated forms compared to the original (human) 
shape classification can be seen in the confusion matrix 
shown in Table 7. 

With this approach 70.03% of the samples were 
classified correctly. By accepting an error of + / - one 
corner the number of correctly classified samples is 
even 92.80%.  

 

 

Table 6: Average results achieved with five runs, each 
with 100 ES iterations per cell, with a fitness function 

with linear weighted corners. 
 

expected / 
identified 4 5 6 7 

 

4 0.31% 0.32% 1.47% 0.30%  
5 0.60% 8.77% 7.67% 1.32%  

6 1.03% 6.86% 51.62% 3.64%  
7 0.14% 2.93% 3.68% 9.33%  
     70.03% 

 

Table 7: Confusion matrix with average classification 
ratios for cells in 8 cornea images. Classifications 
computed in 5 independent test runs per cell are 

compared to original cell shapes classifications defined 
by a human expert. The results were achieved by using 

a fitness function with linear weighted corners. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. CONCLUSION 
 
 In this paper we have described an evolutionary 
algorithm that is able to automatically identify the 
morphology of endothelial cells of human cornea in 
microscopy images. In future work this approach shall 
be included in a fully automated image analysis 
framework that is designed for biomedical research and 
production. 
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