DEVS Models Design and Test using AGILE-based Methods with DEVSimPy

Timothée Ville, Laurent Capocchi, Jean-Francois Santucci

UMR SPE University of Corsica

ville@univ-corse.fr, capocchi@univ-corse.fr, santucci@univ-corse.fr

Keywords: Discrete event simulation; DEVS; behavior test;
AGILE

Abstract

Validation and test of DEVS models at the early phases of the
Design process is a crucial topic when dealing with complex
DEVS models. Based on Software Engineering test methods,
we present in this paper a new approach which integrates Ag-
ile methods in the process of the simulation in order to de-
sign and test DEVS models. We propose an implementation
in Python language based on the use of aspect programming
concept (patch, mocking objects and decorators). This imple-
mentation is performed in the framework of the DEVSimPy
environment with the definition of a plug-in dedicated to the
automatic generation and execution of test scenario. Two ped-
agogical example have been used in order to point out the
feasibility of the approach.

1. INTRODUCTION

This paper deals with validation and test of DEVS mod-
els at the early phase of the design process. DEVS (Discrete
Event System specification) is a widely used formalism in
the framework of simulation of complex systems. The val-
idation of models is traditionally a step which is relegated
at the end of the design process: once the models have been
defined and coded, experiments are conducted in order to val-
idate them using simulation. However this traditional way to
perform validation of models is often an expensive and time-
consuming activity and the resulting quality of the models
is still poor. Consequently, new approaches for coping with
these challenges are necessary. The same remarks can be for-
mulated when dealing with Software Testing. Considering
software testing, one emerging trend is stronger integration of
testing as early as possible in the design process of a program.
For that reason software engineering has proposed new de-
sign and test as Agile methods which include Test Driven De-
velopment (TDD) [Fraser et al., 2003] and Behavioral Driven
Development (BDD) [Solis and Wang, 2011] methods.

In order to go on with the analogy between modeling and
simulation and Software Engineering, one can imagine apply-
ing BDD and TDD Agile methods to the Design and Test of
DEVS models. Our main objective is to develop an approach
that is able to use different Software Testing techniques stem-
ming from Software Engineering (Agile methods to be more

Proceedings of the European Modeling and Simulation Symposium, 2014

specific) that are applied to DEVS models design in order
to improve quality assurance of the resulting DEVS models
while proposing inexpensive and no time-consuming activity.

Our approach consists in applying the BDD method for the
design of DEVS models. In order to achieve this goal, we
have carefully performed a correspondence between the BDD
method when applied to software and the BDD method which
has to be applied to DEVS models design.

The problem is to perform a BDD method when defining
DEVS models. Defining such a method in the DEVS Model-
ing and Simulation context requires the resolution of the fol-
lowing basic problems: (i) to define a semi-formal format for
the behavioral specification of the test for any atomic mod-
els involved in a DEVS model, (ii) to define how to gener-
ate parameters for a test from a specification document of
the tests of DEVS models, (iii) to define how to perform
the previously defined tests using simulations. To solve these
problems we proposed to: (i) to define a semi-formal format
from the natural specifications of FDDEVS as proposed by
B.P. Zeigler [Zeigler, 1976], (ii) to use the specificity of the
Python Language to generate a test (by means of the deco-
rator programming concept), (iii) the tests are executed by
combining software engineering programming concepts such
as decorators, patch, mocking objects in order to perform the
tests using DEVS simulations in the framework of the DE-
VSimPy [Capocchi et al., June] environment. DEVSimPy is
a collaborative general user interface implemented in Python
language allowing us to experiment new approaches inside
the DEVS formalism. To ensure this, we use DEVSimPy
plug-ins in order to be more generic.

The next part of the paper gives the background of the pa-
per: the DEVS formalism and the DEVSimPy framework are
briefly introduced before the presentation of the main notions
involved in Agile methods. In section 3. an overview of the
proposed approach is briefly presented. Section 4.1. is de-
voted to the definition of the semi-formal format chosen for
the user to write the behavioral specification of the tests as
required in a BDD method. In section 4.2. we describe how
we have been able to generate the test parameters which will
be used to validate the models. Section 4.3. presents how the
tests are performed using simulations within the DEVSimPy
framework by integrating decorators, patches and mocking
objects into DEVS models. The last part will permit to con-
clude and to give a brief overview of future work we envision.

563

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

2. BACKGROUND
2.1. DEVS Formalism and Tools

The Discrete EVent system Specification (DEVS) formal-
ism introduced by Zeigler [Zeigler, 1976] provides a means
of specifying a mathematical object called a system. Basi-
cally, a system has a time base, inputs, states, outputs, and
functions for determining next states and outputs given cur-
rent states and inputs. The DEVS formalism is a simple way
in order to characterizes how discrete-event simulation lan-
guages may specify discrete-event system parameters. It is
more than just a means of constructing simulation models. It
provides a formal representation discrete-event systems ca-
pable of mathematical manipulation just as differential equa-
tions serve this role. Furthermore by allowing an explicit sep-
aration between the modeling phase and simulation phase, the
DEVS formalism is one of the best ways to perform an simu-
lation of systems using a computer. In the DEVS formalism,
one must specify: (i) basic models from which larger ones are
built, and (ii) how these models are connected together in hi-
erarchical fashion. An atomic model allows specifying the be-
havior of a basic element of a given system. Connections be-
tween different atomic models can be performed by a coupled
model. A coupled model, tells how to couple (connect) sev-
eral component models together to form a new model. This
latter model can itself be employed as a component in a larger
coupled model, thus giving rise to hierarchical construction.
An atomic DEVS model can be considered as an automaton
with a set of states and transition functions allowing the state
change when an event occur or not. When no events occurs,
the state of the atomic model can be changed by an inter-
nal transition function called J;,;. When an external event oc-
curs, the atomic model can intercept it and change its state
by applying an external transition function called .. The
life time of a state is determined by a time advance function
called #,. Each state change can produce output message via
an output function called A. A simulator is associated with the
DEVS formalism in order to exercise instructions of coupled
model to actually generate its behavior. The architecture of a
DEVS simulation system is derived from the abstract simula-
tor concepts [Zeigler, 1976] associated with the hierarchical
and modular DEVS formalism.

Concerning the natural language specifications FDDEVS
proposed by Zeigler in [Zeigler and Sarjoughian, 2012]. FD-
DEVS gives us many advantages; in particular it offers a sup-
port for XML translation or graphic representation. Here is a
basic example of a generator DEVS model specification.
to start hold in generate for time 10!
after generate output Job!
from generate go to generate!
when in generate and receive Stop then go to

passive!
passivate in passive!

Listing 1. DEVS specification of the Generator model.

Proceedings of the European Modeling and Simulation Symposium, 2014

The Figure 4.1. show what are information are involved by
the specification of Listing 1.

start .. Aint

generate

passivate

Job

Figure 1. State automaton of model from Listing 1.

There are many tools which provide a user interface dedi-

cated to help the user to define DEVS models and to perform
simulations. A non exhaustive list can be done: PowerDEVS,
DEVSim++, DEVSJAVA, VLE, DEVSimPy, CD++Builder,
ATOM3, MS4Me, etc. Special attention will be given to DE-
VSimPy (stand for DEVS simulator in Python language)
which is a collaborative modeling and simulation (M&S)
software.
DEVSimPy (Python Simulator for DEVS models) [Capoc-
chi et al., June] is a user-friendly interface for collabo-
rative modeling and simulation of DEVS systems imple-
mented in Python language. Python is a programming lan-
guage known for its simple syntax and its capacity to al-
low modelers to implement quickly their ideas [Langtan-
gen, 2005]. The DEVSimPy project used the Python lan-
guage and provides a GUI based on PyDEVS [Bolduc and
Vangheluwe, juin 2001] API in order to facilitate both the
coupling and the re-usability of PyDEVS models. This API
is used in the excellent multi-modeling GUI software named
ATOM3 [de Lara and Vangheluwe, 2002] which allows to
use several formalisms without focusing on DEVS. DE-
VSimPy is an open source project under GPL V3 license
and its development is supported by the University of Cor-
sica Computer Science research team. It uses the wxPython
graphic library which is a wrapper of the most popular
WxWidgets C library. DEVSimPy can be downloaded at
http://code.google.com/p/devsimpy.

The main goal of this environment is to facilitate the mod-
eling of DEVS systems using the GUI dynamic libraries and
the drag and drop functionality. With DEVSimPy, models
can be stored in a dynamic library in order to be reused
and shared. The creation of dynamic libraries composed with
DEVS components is easy since the user is coached by di-
alogs and wizard during the building process. With DE-
VSimPy, complex system can be modeled by a coupling of

564

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

DEVS models and the simulation is performed in a automatic
way. Moreover, DEVSimPy allows the extension (or the over-
write) of their functionality in using special plug-ins managed
in a modular way. The user can enabled/disabled a plug-in us-
ing a simple dialog window.

2.2. Agile Test Methods

Agile methods [Cockburn, 2002] is the increasingly com-
mon practice throughout the lifecycle to develop a software
iteratively. These methods may include: the Test Driven De-
velopment (TDD) [Fraser et al., 2003] method and its exten-
sion/revision, the Behavior Driven Development (BDD) [So-
lis and Wang, 2011] method. TDD is a software development
methodology which essentially states that for each unit of
software, a software developer must: (i) define a test set for
the unit first, (ii) then implement the unit, (iii) finally ver-
ify that the implementation of the unit makes the tests suc-
ceed. BDD is a specialized version of TDD which focuses on
behavioral specification of software units. It is based on: (i)
the use of examples to describe the behavior of the applica-
tion, or code units; (ii) automating those examples to provide
quick feedback and regression testing; (iii) finally, the use of
“Mocks ” [moc] replacing the code modules which have not
yet been written.

The main steps of the BDD method can be summarized by
the following points:

1. Behavior-driven development specifies that tests of any
unit of software should be specified in terms of the de-
sired behavior of the unit; usually the desired behavior
should be specified using a semi-formal format for be-
havioral specification.

2. Then a specification document has to be read and each
scenario of the document is breaking up into meaning-
ful clauses. Each individual clause in a scenario is trans-
formed into some sort of parameter for a test.

3. The framework then executes the test for each scenario,
with the parameters from that scenario.

In this paper, we present a set of main BDD characteristics
which are used to implement the test of DEVS model.

3. PROBLEM DESCRIPTION

The context of the proposed work relates to the cycle of
software development. Traditionally software development
corresponds to a logical and intuitive approach described
in Figure 2.

The basic approach of such traditional cycle is: we code
first and then we perform the tests.

As explained in the introduction, we have developed an anal-
ogy between Software Engineering design process and DEVS

Proceedings of the European Modeling and Simulation Symposium, 2014

errors

=)

S

=

[" .

o I:> # structure @ class & functions putin context
‘@

=

w

= define, @ = implement
errors

d

o I:> # structure @ model simulate

a

Figure 2. Traditional cycle of model development.

models design process. From Software Engineering point of
view, the structure of the software is first defined, the imple-
mentation of the related classes and functions is performed
and finally the implementation is executed in order to find er-
rors (as it can be seen in the engineering part in Figure 2). The
same kind of development cycle is used for DEVS models de-
velopment: the structure of models is first defined, models are
then implemented and the obtained implementation is simu-
lated in order to find potentials errors (as it can be seen in the
DEVS part in Figure 2). If errors are raised during simula-
tion, they have to fixed one by one and verified each time by
simulation. We also can deduce numerous problems from a
validity and productivity points of view from the Figure 2:

e The models cannot be prepared for all the situations and
the predictions have a reliability decreased because of
the visible uncertainty of the produced results.

e The behavior of the developed models has big chances to
be erroneous and it will certainly be necessary to adjust
certain parameters or certain functions.

o The maintenance, the re-factorization or the evolution of
a model guaranteed not the preservation of the behavior.

e The same model implemented in various environments
is completely different. It can raise problems in the op-
tics of a standardization.

There are many manners to test a DEVS model (atomic
or coupled model). In [Li et al., 2011] the authors focus on
the validation of DEVS formalism implementation. The ap-
proach described in [Byun et al., 2009] concerns the correct-
ness of a given simulation. It proposes a framework allowing
to check all the possible paths involved in a given simula-
tion model. In [Hu et al., 2007], test agents are presented.
This paper proposes a definition of a test agent which is con-
nected to the I/O of a given model and is used to point out
the behavioral information concerning the model. The test is
performed using this information. However the proposed ap-
proach is not a generic one since test agent should be specific
to a given model. In the same idea, we have developed a DE-
VSimPy plug-in to manage an universal test agent using the
Behave Framework tool [beh, Ville, 2013]. However an im-

565

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

portant drawback was the fact that the simulation has to be
interrupted in order to manually performed the tests. In the
next sub-section we give an overview of the developed solu-
tion in order to propose an embedded mechanism allowing to
automatically take into account the test part at the beginning
phase of the design process of DEVS models.

4. PROPOSED SOLUTION

As described before, the traditional cycle for DEVS model
design raises numerous problems. The proposed approach is
sumarized in Figure 3.

tests fail

|:> #structure

@ specifications @ class & functions

Engineering

$ class & function TESTS PASS

#=define, @ = implement, $ = refactor

tests fail

@ model

DEVS

I:> # structure @ specifications

$ model TESTS PASS

Figure 3. Proposed behavior driven development cycle.

We have developed a solution by analogy with the BDD
approach defined in the Software Engineering domain. As
shown in Figure 3 (engineering part) this approach consists in
firstly define the structure of the software to be designed and
immediately after to write the test specifications. Then the de-
signer can implement and at the same time test the class and
functions of the software to be designed. The same kind of
development cycle is proposed for the design of DEVS mod-
els as it is shown on the DEVS part of Figure 3. The only
difference is that the specifications writing and the model im-
plementation are performed using a modeling and simulation
framework. The simulation engine is used in order to perform
the tests.

Implemented behavior in a DEVS model are directly
tested. This brings numerous advantages:

1. Produced code is reliable.

2. The basic elements of the DEVS model can be tested
one after the other.

3. Even if there is an evolution of the implementation of
the DEVS model, the behavior remain the same.

The previously presented approach has been implemented
in the framework of the DEVSimPy environment. The de-
sign and test process has been introduced in this Python Lan-
guage oriented simulation environment. In order to propose

Proceedings of the European Modeling and Simulation Symposium, 2014

a generic implementation we choose to define a DEVSimPy
plug-in dedicated to: (i) the automatic generation of test sce-
nario and (ii) the execution of the test scenario using the sim-
ulation kernel.

Figure 4 describes explicitly how a user is going to develop
the Design and Test proposed methodology.

User DEVSImPy Plug-in
FODEVS |
Test B.T.G
— Code

Test code

Testable code

Invalid/ peys

DEVS
Kernel

Figure 4. DEVS design and test proposed methodology.

The user has first to write the FDDEVS test specifications.
Then he has to code part of (or completely) the DEVS model
corresponding to the previously written specifications. The
DEVSimPy plug-in will allow to:

e Generate testable code from the FDDEVS specification

(own to the Behavior Test Generation).

e Integrate the testable code into the DEVS model already

defined by the user.

e Simulate the integration of the testable code and the al-

ready defined DEVS model part.
If the result of the simulation points out an invalid DEVS
model definition, the user has to rewrite the DEVS model and
again execute the plug-in.

4.1. Test Scenario Specification

Specification is an important point when dealing with a
BDD approach for DEVS formalism. It gives a manner to
describe the test patterns associated with the behavior of a
DEVS model which has to be defined and implemented. In-
stead of defining a new language we choose to select an
already defined language which allows to describe DEVS
modeling scheme under a semi-formal natural language. The
pseudo-natural language proposed by Prof. Zeigler which is
inspired from the grammar detailed in [Hong and Kim, 2006]
has been adapted in order to offer a language for specify-

566

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

ing test patterns of a future DEVS model. In order to use
this specification language, we have defined a parser for the
FDDEVS grammar with simpleparse [sim] tool helping. The
proposed grammar follows the hierarchy depicted in figure 5.

..... > Use * string

— Belong to + number

| States |

...y State_name*

T oA
NEXT_STATE*
oA

* CURRENT_STATE*
N

states_fnc

T .
passive_states - B
D

initial_states

>

hold_states

ext_trahs'mbn ini_trahsition

. outpui_fnc

INPUT_MSG*+ «

Messages «—— OUTPUT_MSG™+ Functions

Figure 5. Diagram of the specification language grammar

From this diagram the grammar shown in figure 6 can be
generate in EBNF format.

string 1= [a-zA-Z_], [a-zA-Z0-9_]*

number = [1-9], [@-9]*

states 1= states_fnc / state_name

states_fnc 1= initial_states / passive_states / hold_states
initial_states 1= c"to start ", (passive_states / hold_states)
passive_states := c"passivate in ", state_pame, " "7, "!"
hold_states = state_name, c" for time ", number,

c"hold in ",
Wy mgw

state_name string / CURRENT_STATE / NEXT_STATE

CURRENT_STATE := string

NEXT_STATE = string

messages 1= QUTPUT_MSG / INPUT_MSG

OUTPUT_MSG := (number / string)+

INPUT_MSG := (number / string)+

functions 1= (int_transition / output_fnc / ext_transition)

int_transition := ¢"from ", CURRENT_STATE, c" go to ", NEXT_STATE,
wong wpn

output_fnc 1= c"after ", state_name, c" output ", OUTPUT_MSG,
wowg mgm

T, "!

ext_transition := c"when in ", state_name, c" and receive ",

INPUT_MSG, c" go to ", NEXT_STATE, " "7, "!"

Figure 6. EBNF specification language grammar

4.2. Test Scenario Generation

The purpose of the test scenario generation is to transform
the previously specification into test scenario and integrate
them into the DEVS simulation models. In order to realize
this transformation we have defined a Behavior Test Gener-
ator engine (called BTG in the following) which is a parser.
Its goal is to transform the specification (which are expressed
using the language presented in sub-section 4.1. and named
“Spec ”in Figure 7) into an adapted test code. Figure 7 de-
scribes how the parser is used when a user has to develop the

Proceedings of the European Modeling and Simulation Symposium, 2014

code corresponding to a DEVS model (an atomic model in
this case).

Atomic model

Spec e »| Parser
(critical
Testcode W data)
Model code

Figure 7. The parser role is to transform specification into
test code.

The transformation is based on important information de-
duced from the specification and called “critical data ”. These
“critical data "are determined by the BTG and injected as test
code into the DEVS model to be implemented. Two cases
have to be considered: (1) if the DEVS model has been al-
ready coded by the user, the injection will be performed us-
ing the software engineering decorator notion [dec]; (2) if the
DEVS model has not already been implemented, the injec-
tion will be performed using the mocking objects [moc] no-
tion. The two cases are illustrated by the following two ped-
agogical examples. An example of a resulting test code cor-
responding to case 1 is given in Figure 8. In this example the
user has already written the code of an atomic DEVS model.
It corresponds to the behavior which has been specified in
Listing 1 (see sub-section 4.1.). The example highlights how
the internal transition is modified using decorators in order
to implement the test scenarios. In the presented example the
test scenario which has been injected corresponds to the be-
havior involved by the line 3 of the Listing 1 in the generator
DEVS model specification: “from generate go to generate .
This means that the injected test scenario allows to check that
the state remains the same after the execution of the internal
transition when the model is in the “generate ’state.

intTransition{generate) should do :
def dec_intTransition{intTransition):
def new_intTransition():
realStatus = intTransition._ self_ .state["status"]
if realStatus = "'generate":
status = "generate"
intTransition{)
if realStatus = status:
print "intTransition[generate] —— OK"
else:
print “"Error in intTransition function : \
status should be %s and we have %s"
%{status, realStatus)

return intTransition
return new_intTransition

Figure 8. FDDEVS to decorator example.

from generate go to generate

Figure 9 gives an example of the use of mocking objects
which corresponds to case 2.

567

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

model.extTransition(}

[RES

criticals_data = {{1, 2): 1, (2, 3): 2}
def criticalsData(*args):
return criticals_datalargs]

model.extTransition = MagickMock(name="extTransition", side_effect=criticalsData)
model.extTransition(1, 2)

el
B R 2 000~ O U

= 1
model.extTransition({2, 3)
— 2

Figure 9. Simple method patching example.

In Figure 9 we suppose that the external transition of the
DEVS model to be tested has not been already implemented.
From the specification we have been able to deduce the crit-
ical data which are expressed as follows: for inputs 1 and
2, the output should be 1 while for inputs 2 and 3, the out-
puts should be 3. The use of patches and mocking objects is
highlighted by the introduction of a MagicMock object (from
line 10 to 14 of Figure 9). The external transition (“extTransi-
tion ’function is patched with the previously mentioned Mag-
icMock object). This example points out how the behavior of
DEVS functions can be defined using mocking objects when
a DEVS model has not been totally implemented.

4.3. Test Execution

Figure 10 describes how the DEVSimPy plug-in: (i) is inte-
grated into the simulation kernel, (ii) is able to select between
the injection of decorators or patches (mocking objects).

Atomic
model

DEVSimPy

Simulator Plug-in

(0] EEREEEE TR PR PP PR R P PR

@decorator
#patch

Figure 10. Sequence diagram of the DEVSimPy plug-in.

In order to select which kind of injection has to be per-
formed during the simulation, we use an important property
of the Python programming language called dynamic intro-
spection: it is possible to know if a python object is com-
pletely implemented or not at any time of the execution of
a given python script. Figure 10 details how this property is
used in order to dynamically (during the simulation phase)
detect if an given DEVS function has been (or has not been)
already implemented. At time t0 (initialization of the simula-
tion phase), the DEVSimPy plug-in is executed:

1. It refers to the specification associated with the DEVS

Proceedings of the European Modeling and Simulation Symposium, 2014

model being implemented and tested.

2. It executes the BTG engine which allows to transform
the previous specification into decorators or patches ac-
cording to model introspection.

3. It ends by returning into the DEVSimPy simulation ker-
nel in order to go on with the simulation.

The definition of this DEVSimPy plug-in as described
above permits a user to perform design and test of DEVS
models as presented in Figure 4.

5. CONCLUSION AND PERSPECTIVES

The paper introduced an approach allowing to perform the
test of DEVS models at the very early phases of the Design.
The main idea is to apply the concepts which have been de-
fined in the Software Engineering domain in the framework of
the Agile community. We described how the BDD (Behavior
Driven Development) design and test methodology stemming
from the software engineering domain can be applied to the
design of DEVS models. We presented how we have adapted
the three main steps of the BDD methodology: (i) definition
of a semi-formal language allowing test specification using
the DEVSSpecL language, (ii) generation of the test scenar-
ios using the definition of a BTG using the notion of decora-
tors and patches, (iii) execution of the test scenario using the
concepts of dynamic introspection and mocking objects. The
resulting Design and Test DEVS approach has been validated
in the framework of the DEVSimPy environment. The three
previous steps have been integrated into a DEVSimPy plug-
in. We have validated the proposed solution on pedagogical
examples which point out the feasibility of the approach. The
future work will concentrate in the validation using the design
of a more complex DEVS models.

568

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

REFERENCES
BDD python style. https://github.com/behave/behave.

Decorators for functions and methods.
http://legacy.python.org/dev/peps/pep-0318/.
Mock - mocking and testing library.

http://www.voidspace.org.uk/python/mock/index.html.

Simpleparse a parser generator for mxtexttools v2.1.0.
http://simpleparse.sourceforge.net/.

J.-S. Bolduc and H. Vangheluwe. pythonDEVS : A model-
ing and simulation package for classical hierarchal DEVS.
In Rapport technique, MSDL, Universite de McGill, juin
2001.

J. H. Byun, C. B. Choi, and T. G. Kim. Verification of
the DEVS model implementation using aspect embedded
DEVS. In Proceedings of the 2009 Spring Simulation Mul-
ticonference, pages 151:1-151:7, San Diego, CA, USA,
2009. URL http://dl.acm.org/citation.cfm?
1d=1639809.1655380.

L. Capocchi, J. F. Santucci, B. Poggi, and C. Nicolai. DE-
VSimPy: A collaborative python software for modeling
and simulation of DEVS systems. In 20th IEEE Inter-
national Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, pages 170—175, June.
doi: 10.1109/WETICE.2011.31.

A. Cockburn. Agile Software Development. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.
ISBN 0-201-69969-9.

J. de Lara and H. Vangheluwe. @ AToM3: A tool for
multi-formalism and meta-modelling. In Proceedings of
FASE’ 02, pages 174-188, London, UK, 2002. Springer-
Verlag. ISBN 3-540-43353-8.

S. Fraser, K. Beck, B. Caputo, T. Mackinnon, J. Newkirk, and
C. Poole. Test driven development (tdd). In Proceedings
of the 4th International Conference on Extreme Program-
ming and Agile Processes in Software Engineering, XP’03,
pages 459-462, Berlin, Heidelberg, 2003. Springer- Verlag.
ISBN 3-540-40215-2. URL http://dl.acm.org/
citation.cfm?id=1763875.1763973.

K. J. Hong and T. G. Kim. Devspecl: {DEVS} spec-
ification language for modeling, simulation and analy-
sis of discrete event systems. Information and Soft-
ware Technology, 48(4):221 — 234, 2006. ISSN 0950-
5849. doi: http://dx.doi.org/10.1016/j.infsof.2005.04.
008. URL http://www.sciencedirect.com/
science/article/pii/S0950584905000650.

Proceedings of the European Modeling and Simulation Symposium, 2014

X. Hu, B. P. Zeigler, M. H. Hwang, and E. Mak. DEVS
systems-theory framework for reusable testing of I/O be-
haviors in service oriented architectures. In IRI, pages
394-399. IEEE Systems, Man, and Cybernetics Soci-
ety, 2007. URL http://dblp.uni-trier.de/db/
conf/iri/iri2007.html#HuzZHMO7.

H. P. Langtangen. Python Scripting for Computational Sci-
ence (Texts in Computational Science and Engineering).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.
ISBN 3540294155.

X. Li, H. Vangheluwe, Y. Lei, H. Song, and W. Wang.
A testing framework for devs formalism implementa-
tions. In Proceedings of the 2011 Symposium on
Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, pages 183-188, San Diego, CA,
USA, 2011. Society for Computer Simulation Inter-
national. URL http://dl.acm.org/citation.
cfm?id=2048476.2048500.

C. Solis and X. Wang. A study of the characteristics of
behaviour driven development. In Software Engineering
and Advanced Applications (SEAA), 2011 37th EUROMI-
CRO Conference on, pages 383-387, Aug 2011. doi:
10.1109/SEAA.2011.76.

T. Ville. Méthodes de tests comportementaux de modeles
devs et mise en oeuvre dans DEVSimPy. Technical report,
SPE UMR CNRS 6134, University of Corsica, June 2013.

B. Zeigler and H. S. Sarjoughian. Guide to Modeling
and Simulation of Systems of Systems. Springer, Lon-
don, 2012. ISBN 978-0-85729-864-5. doi: 10.1007/
978-0-85729-865-2.

B. P. Zeigler. Theory of Modeling and Simulation. Academic
Press, 1976.

569

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

