
HIGH LEVEL ARCHITECTURE VIRTUAL ASSISTANT FRAMEWORK

Josef Brožek
 (a)

, Bhakti Stephan Onggo
 (b)

, Antonín Kavička
 (c)

(a)

Faculty of Electrical Engineering and Informatics, University of Pardubice, Czech republic
(b)

 Lancaster University Management School, University of Lancaster, United Kingdom
(c)

 Faculty of Electrical Engineering and Informatics, University of Pardubice, Czech republic

(a)

 mail@jobro.cz,
(b)

 s.onggo@lancaster.ac.uk,
(c)

 antonin.kavicka@upce.cz

ABSTRACT

High Level Architecture provides a standard for

abstraction, design, construction, development and

operation of distributed computer simulation systems.

This paper focuses on the latest version of the standard,

i.e. IEEE1516:2010. Users who are not familiar with

distributed computer programming may find it difficult

to create HLA-compliant models using a tool that

assumes some familiarities with distributed computer

programming. Hence, a tool that can help such users is

useful, especially in encouraging more people to

develop HLA-compliant models.

We have developed HLAVA Framework that

encapsulates the detailed steps of main HLA interfaces

such as the methods for creating logical processes, and

management thereof, synchronization methods, and

communication protocols - in fact, the framework is a

simulation kernel for the distributed simulation logical

process, which is compliant with (among others) the

HLA standard, but due to a simple interface has only

about 10 methods, which have done creation of

(potentially) much simpler.

Keywords: HLA, High Level Architecture, Framework,

simplification interface, distributed simulation, traffic

simulation

1. MOTIVATION

High Level Architecture (HLA) is a standard for the

creation and operation of distributed computer

simulation systems. The standard does not limit the

application domain and simulation modelling method.

Hence, HLA has been applied to domains such as

military, healthcare, supply chain and many more. HLA

has also been used to link models developed using

various simulation modelling methods such as discrete-

event and agent-based. At a lower level, the standard

specifies the method of communication between the

nodes (or federates) of a distributed simulation. The

standard sets the requirements for the actual

transmission format using XML. This enables us to link

simulation models written using different programming

languages or simulation software. It also enables us to

write a wrapper for legacy simulation models (non HLA

compliant) by converting the input-output data into an

XML format.

The openness, flexibility and many functionalities of

the standard may overwhelm novice users or users who

are not familiar with distributed computer

programming. The main contribution of this paper is to

propose a framework that helps users to develop HLA-

compliant models more easily so that they can use the

full potential of HLA with minimal effort (at the cost of

moderate restrictions which will be discussed later).

This research is partly motivated by the lack of adoption

of HLA in the Czech Republic. We hope this work may

attract more people to develop HLA-compliant models.

The remainder of this paper is organised as follows.

2. CHARACTERISTICS OF HLA

This section provides an overview of HLA. The

explanation is based on Fujimoto (2000), Kuhl,

Dahmann, Weatherly (2000) and standards

IEEE1516:2010 (2010). Readers who are familiar with

HLA may skip this section.

2.1. History of HLA

HLA was originally created for the military needs of the

United States of America Department of Defense (more

specifically, it was developed at the Defense Modeling

and Simulation Office), where there was a motivation

for linking various simulation models into a bigger and

more complex simulator. HLA, which was handed over

to the army in 1995, met all the military requirements. It

enabled the interconnection between different models

implemented in different programming languages. It

also enabled the simulation to be used in a human-in-

the-loop training exercises using the simulation models.

In 1997, the Army released the standard for public

use; HLA 1.0 standard was thus issued, which began to

be used in universities and space research. Gradually,

the standard began to be applied in the private sector

too. In 1998, HLA was included in the NATO military

simulation standard (STANAG 4603 standard, which

has since been updated). The standard was approved in

2000 (IEEE 1516). Another important milestone was a

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

46

mailto:mail@jobro.cz
mailto:s.onggo@lancaster.ac.uk
mailto::antonin.kavicka@upce.cz

major revision that was already based on real

experience, not only in the military but also in the

private sector and the university sector, taking place in

2010. HLA-Evolved (IEEE 1516:2010) was thus

created. Example of solution on Roberto, Sala-

Diakanda, Pastrana and col (2013).

2.2. Basic Terminology

2.2.1. Federation

A federation in HLA refers to an entire distributed

simulation (or a complex distributed simulation model).

There is one federation during one distributed

simulation experiment.

2.2.2. Federate

A federate is an HLA-compliant application that can

participate in a distributed simulation experiment. A

federate may be in a form of a simulation model,

software application, software agent of any type, an

input sensor or panel, a display unit, a system for

retrieving historical data, etc.

2.2.3. Objects

An object is the information to be exchanged

during a distributed simulation experiment. In HLA, an

object represents an entity with persistent states.

2.2.4. Attributes

An object has a set of attributes that are relevant to an

entity represented by the object. An attribute is basically

a data field of a defined data type. Basic data types and

attributes are defined in the Object Model Template

(OMT). We will explain OMT in Section 2.2.6.

2.2.5. Interactions

An interaction represents an event that may be of

interest to two or more federates. Similar to objects,

interactions must be pre-defined. Each interaction can

have a set of parameters. Interaction can be performed

directly through interaction classes, e.g. passing an

object to another federate etc.

Federates cannot send interactions to each other

directly, but they must make a request to RTI (runtime

infrastructure) as shown in Figure 1. We will explain

RTI in Section 2.2.7.

Figure 1: Interactions in HLA

2.2.6. Object Model Template (OMT)

Objects and their attributes as well as interactions and

their parameters need to be defined for the whole

federation based on the standard set in the OMT

(IEEE1516.2:2010). The definitions for Objects and

Interactions must be provided in a Federation Object

Model (FOM) or Simulation Object Model (SOM).

Both are XML documents and are relatively easy to

read. In practice, FOM is often built from one or more

SOMs.

2.2.7. RTI

RTI (run-time infrastructure) is a middleware that

provides communication services to all federates in a

federation. It is defined directly by the standard

(IEEE1516.3:2010), independent of the platform and

language. RTI provides APIs that can be called to

perform certain functions such as creating a federation,

creating a federate, connecting a federate to the

federation, etc. RTI needs FOM to understand the

objects and interactions that will be exchanged between

federates. Common terminology and the logic of RTI

are shown in Figure 2.

Figure 2: HLA RTI Diagram

A number of vendors have implemented RTI

products, for example Pitch RTI, MAK RTI, OpenHLA

and many more. In principle, the implementation

approach is almost the same as the one shown in Figure

3. A federate usually runs on one computing node (but

one node can be shared by multiple federates). For each

federate, we need to include the local RTI component. It

is a library that needs to be linked to the actual software

solution (federates) or to the application wrapper (for

legacy or non-compliant software). This component

actively manages communication between a federate

and a central RTI component. The central RTI

component is the busiest part in a federation
1
. It is

responsible for managing the communication within a

federation, for example, connecting a federate to a

federation, managing objects, etc.

Figure 3: RTI physical implementation

1
 However, it is necessary to note that it is possible

to create other than simply linear non-hierarchical

simulation models, which makes it possible to use a

number of central RTI components in a single

simulation.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

47

2.3. Federation Rules

HLA defines 5 rules for federations and 5 rules for

federates. These rules must be met even in a situation

where we want to declare a model to be partially HLA

compliant. In other words, compliance with all ten rules

is a necessary condition for us to refer to a simulation

model as HLA compliant.

The rules for federations are as follows:

 Federations shall have an HLA federation

object model (FOM), documented in

accordance with the HLA object model

template (OMT).

 All representation of objects in the FOM

shall be in the federates, not in the run-time

infrastructure (RTI)
2
.

 All exchange of FOM data among federates

shall occur via the RTI
3
.

 Federates shall interact with the run-time

infrastructure (RTI) in accordance with the

HLA interface specification.

 An attribute of an instance of an object

shall be owned by only one federate at any

given time. Only this federate is authorized

to modify the values of the owned element.

The rules for federates are as follows:

 Federates shall have an HLA simulation

object model (SOM), documented in

accordance with the HLA object model

template (OMT).

 Federates shall be able to update and reflect

any attributes of objects in their SOM and

send and receive SOM object interactions

externally, as specified in their SOM.

 Federates shall be able to transfer and/or

accept ownership of an attribute

dynamically during a federation execution,

as specified in their SOM.

 Federates shall be able to vary the

conditions under which they provide

updates of attributes of objects, as specified

in their SOM.

 Federates shall be able to manage local

time in coordination with the RTI

requirements (in effect, in coordination

with other federates).

2
 The consequence of this rule is the fact that the

transfer of the object from one federate to another is

performed so that federate1 requests RTI for placing its

object in federate2. RTI locks the object in federate1

before the changes and requests federate2 for placing

the new object (while passing the object itself). If the

location is in federate2, the object is removed from

federate1. If not, the object is unlocked in federate1.
3
 The consequence of this rule is that RTI can be

equipped with a software upgrade that allows you to

track all interactions and potentially current states of

most objects.

2.4. Synchronization Methods

Synchronization is provided through RTI, it is therefore

not necessary to create additional mechanisms that are

normally used in the architecture for distributed

simulation models.

The actual synchronization and its algorithms are

transparent to the user, we can simply use the services

provided. If we want a federate to be synchronized with

other federate, we can set which federate is time-

regulating and which federate is time-constrained.

Alternatively, we can run all federates in a synchronous

mode.

2.5. HLA Software Solution

Therefore, to easily understand the benefits of an own

framework, it is necessary to specify how the

application issue is dealt with.

2.5.1. General Principle

We can design a federate by creating a class that

implements (or inherits) one of the federate type classes

(for example, NullFederate). This will automatically

give the federate access to a number of RTI services

such as creating a federation or joining a federation.

Figure 4 shows the details on what happen if a

class federate is instantiated during a distributed

simulation experiment. First, a pair RTI Ambassador –

Federate ambassador will be instantiated for each

federate instance. These two components manage the

communication between a federate and an RTI. RTI

Ambassador is used by the federate to communicate

with RTI. The Federate Ambassador is used by the RTI

to call any of the callback methods defined in the

federate.

Figure 4: Functioning of local RTI

2.5.2. Federate Ambassador

Federate Ambassador is located in same place as

the instance of a running federate. It is generated by

default directly when the federate is instantiated.

Federate Ambassador allows RTI to invoke a callback

method defined in the federate. Since a federate will

have access to FOM, it allows the federate to implement

appropriate behaviour or to appropriately respond to

any callback.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

48

2.5.3. RTI Ambassador

RTI Ambassador is the implementation of a local

RTI component discussed previously in Figure 3.

During a distributed simulation experiment, each RTI

Ambassador is physically located in the same compute

node as the corresponding federate. We can use RTI

Ambassador to create a federation or to join a

federation. It also provides services to allow a federate

to communicate with the RTI (i.e., the global RTI

component). HLA provides standard for interfaces that

have to be implemented in RTI Ambassador and

Federate Ambassador which is independent of any RTI

software implementation. This standard ensures

platform independence
4
.

2.5.4. Global RTI Component

The second essential part of RTI that provides

communication between RTI ambassadors is the global

RTI component. In other words, RTI ambassadors do

not communicate directly but via a global RTI

component (i.e. the principle described in Section 2.5.3

is valid for some implementations of RTI that do not

contain a global RTI component). The global RTI

component provides forwarding to all federates that

have requested specific information such as an attribute

or an interaction. In addition to this forwarding

function, this component also provides synchronization,

monitoring, administration of the federation and many

other supporting functions.

2.6. Overview of Existing RTI software

This section provides an introduction to a number of

existing RTI software. Generally, it is possible to

characterize various implantations of RTI by specifying

whether it is an open or a closed source product;

commercial or freely available product; and then

according to the HLA standard that the RTI complies

with.

2.6.1. Pitch RTI

The commercial product of the Swedish company Pitch

Technologies (belonging to the BAE Systems Group) is

one of the most powerful variants of RTI, meeting all

the HLA standards and is developed with a lot of

utilities, more at Pitch websites (2014).

It is very easy to use. It is supplied with libraries for

Java and C++ languages (also applicable in C#). To use

it, we just need to import a relevant library and then

create a sequence of desired objects and serve a quantity

of functions.

4
 If both federates have knowledge of OMT, they are

able to exchange information with each other through

XML. This information can then be forwarded to a

federate and RTI (it is worth noting that during the

decomposition of the communication process RTI is

treated as an active software component, not only as a

communication bus - even though it may initially

appear so).

Pitch RTI also provides a trial version in which only

two federates can run. There may be other limitations

that we are not aware of. Currently, this product is used

at the University of Pardubice; the proposed software

library HLA-VA is designed for Pitch RTI (although

the job to write it for a different RTI is trivial).

2.6.2. MÄK RTI

Similar to Pitch RTI, MÄK RTI (more information at

MAK websites (2014)) is one of the most widely used

commercial RTIs. This software also comes with a trial

version in which the maximum number of federates that

can run is two. It is a very good and very powerful

product that meets the latest standards that is commonly

used in the private sector and universities. It supports

programs written in Java and C++.

2.6.3. Open HLA

Open HLA is an open source software distributed under

the Apache license more at Geeknet (2005). It is a

relatively good product for basic experimentation with

HLA.

At the time of writing, the development has stopped

(i.e. there are no new updates). The latest version does

not support all the functionalities that are required by

the standard IEEE1516:2010 (e.g. models with

optimistic synchronization methods cannot run in Open

HLA).

Open HLA launching and compiling scripts are written

with the support of the library Ant. It is therefore

necessary to have this library installed in the computer

(this fact also makes it different from other software

where there is an RTI executable .exe file).

2.6.4. CERTI

CERTI is an open source software which is distributed

under the GPL (or LGPL) license more at Free software

foundation web(2002). Its functionalities are better than

that of Open HLA; It fullu supports the HLA 1.3

standard for Java and C++. However, the support for

IEEE 1516:2000 is only partially supported and only

supports C++.

2.6.5. Other Products

There is a large amount of RTI implementations

including products of the U.S. Army and the Chinese

People's Liberation Army. Reportedly, RTIs, developed

by the Chinese public sector are very good but due to

language barriers the author was not able to get

acquainted with them. A larger, though not entirely up-

to-date, overview of individual RTIs can be found in

older resources such as Knight, Corder, Liedel (2001)

and report from The simulation interoperability

standards organization (2001). A more up-to-date

review can be found at Wikipedia (2014), as this

resource is updated relatively more regularly to provide

the most comprehensive overview of the existing

solutions.

3. HLA Virtual Assistant (HLA-VA) Framework

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

49

The main motivation for the development of the "virtual

assistant" framework is to facilitate easy access to HLA.

In this section, we will explain the design and

components of the HLA-VA framework, its benefits

and limitations.

3.1. Framework Architecture

The framework is built over the libraries that are

supplied as a standard to RTI (different RTIs from

different vendors have different control libraries). The

block diagram of the architecture is shown in Figure 5.

The benefit of the design of this framework is that it is

possible to replace the relevant control library (the

bottom layer in Figure 5) without the need to change the

upper layers. The explanation for each layer is as

follows.

3.1.1. Isolation of the RTI Library

The actual RTI library is isolated from the rest of

the code in the framework via an interface. Parts of the

RTI component that are not supplied as a standard in the

RTI library are implemented separately. In theory, this

design allows us to use an RTI from any provider
5
.

Figure 5: Block diagram of the framework

3.1.2. Logic of the Federate

This layer deals with the communication between the

global RTI component and the local federate. One of the

main role of this layer is to make the definition of the

information exchanged during distributed simulation

execution easier.

5
 We have tested our framework with MAK RTI,

open HLA and Pitch RTI. Hence, we are confident that

our framework can be used with any compliant RTI

solution.

When we write an HLA-compliant model, we often

need to deal dynamics arguments
6
. Each message

(Objects or Interactions) in HLA is strongly typed and

controlled by RTI (as specified in FOM or SOM). If we

would like a federate to react upon an incoming

message, we need to write a callback method.

The problem is solved by a framework at the program

level. Immediately after running a local instance of the

framework, it passes through FOM and SOM and

selects the interaction classes and types. Consequently,

the framework stores them in the hash table.

When a message from RTI arrives, the framework

compares its hash fingerprint with those of all message

types in the Federation (stored in the hash table) and

finds the relevant type. When we identify the type of

message, we can start reading - that is, determining the

number and type of arguments, their translation from

the stream, and select individual data components.

As the number of the existing message types compared

to the number of individual sendings is negligible, this

method is computationally efficient (the approximated

complexity of the search is smaller than the subsequent

translation of the data from the stream).

Since we have to assume that the individual Federates

can be implemented in different programming

languages, it is impossible to rely on programming

techniques, such as Reflection, and problems need to

be solved by implementation as such.

Hence, we can edit the FOM/SOM and send / receive

messages with dynamic arguments without the need to

change the code for our federate.

3.1.3. Logic of Synchronization with the Federation

This layer and layer indicated in section 3.1.4 are

responsible for time synchronization. Central

component of cooperation between both the time

synchronizations and also the part available to the user

is called Calendar of events (see section 3.1.5.).

Specifically, Logic of Synchronization with the

Federation ensures proper functioning of the time

synchronization federate (on which it runs) with the

Federation. It encapsulate self-programmed and also

standard methods specified by HLA enabling the

framework to fully control the synchronization (using

6
 Standard communications (or more precisely in the

HLA language "Interaction Objects") which takes place

within HLA, is defined in the XML format, wherein it

differs for different types of communication primarily

in the number and types of arguments (however, it is

not impossible that messages will have the same types

and the number of arguments). However, programming

languages often have a problem with coding sufficiently

general programs so that we could control incoming

communications regardless of the type and number of

arguments they have – at the same time, a successful

control requirement is also the decoding of messages by

type and passing thereof on. This problem is possible to

partially solve by using of Lambda expressions, but

they are not available in a lot of programing languages.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

50

only the knowledge of the desired synchronization

procedure.). This layer passes all the messages

(incoming and outgoing) marked as timed and solves

the outwards federate requirements for time changes. It

is the responsibility of the layer to respond to the

changes in GST to be enacted by RTI.

When conservative synchronization is used, each

federation makes a request for the local virtual time and

after all federates are ready, RTI orders to go to the next

lowest required LVT (this is how the easiest global

synchronization solved by the methodology with zero

look ahead works – more about conservative

synchronization with zero look ahead in Fujimoto

(2000)). It should be noted that, as standard, the

information about the transition to LVT is sent only to

those federates that have requested it. The logic of time

synchronization of federations is thus responsible not

only for forwarding the requests for shifting the time

and information about the federate being ready to shift

the time, but it also monitors time changes taking place

in other federates. In addition, if the mode with look

ahead is activated, it provides automatic adjustment of

look ahead so that it is as advantageous as possible for

the federate and the federation.

3.1.4. Logic of Time Synchronization of the

Federate

This layer is responsible for setting up the mode of

which a federate runs, for example, real time run, run

without time synchronization (e.g., for modelling and

use of Monte Carlo simulation), standard mode (i.e.,

maximum speed run) or speed limits (e.g. for

visualization).

This layer is responsible for setting up the mode in

which a federate runs. For example, the real time run,

run synchronization free run (e.g. for modelling and use

of Monte Carlo method), standard mode (i.e. maximum

speed run) or speed limits (e.g. for visualization).

The layer consists of two major parts: the application

logic running in a standard fibre framework and the

time base running in its thread.

The time base may not be used in all the simulation

types. However, for some runs (e.g. the real time) it is

required because it is the only part that cannot be

influenced computationally and the time is the most

accurate.

The application part of the layer provides for the

synchronization of the local level - monitoring

requirements from the user (as inserted into the

Calendar of events, and if needed, passes the

requirements for the Synchronization Layer with the

Federation) serving the requirements of the Federation

(by entering them into the Calendar of events) and

provides the synchronization with independent time

base.

3.1.5. Calendar of Events

It is a standard calendar of events represented by

the priority queue that is primarily solved by secured

transactions to avoid the risk of inserting and removing

across the threads. It is the same as in a monolithic

simulator.

Due to the similarity with a monolithic simulator

and because there exists only a set of basic user

operations such as "Add Event", "Take event" and

"Cancel the scheduled event" that makes the entire

interface framework very simple.

The behaviour of the other two layers that provide

for the synchronization (see above) is transparent to the

user. Despite the simple interface, it is possible to reach

the synchronization with any time-base derived from

real time and with the Federation.

3.1.6. Interface for Calls

It creates a space for calling basic methods necessary

for simulation. These include insertion of events into

the calendar of events, change of registration in the

calendar of events, sending an object or a message to

another federate.

Messages are always defined generically to make it

possible to insert any type of object into an argument.

This object is then the return type of callback.

3.1.7. Interface for Callbacks

It contains Callbacks that must be removed. By default,

all Callbacks are implemented the design pattern

Observer, it is thus possible to connect to them any

number of classes that will process the data.

Callbacks can be viewed as events. The only difference

is in the way that leads to evocation. Callbacks are

always dependent on the call and they do not occur

unbidden.

Basic Callbacks include time change call, incoming

message call, incoming object call and information call.

3.2. Services Provided

Basic services that are provided by the framework can

thus be summarized as services of the simulation kernel,

which includes the time calendar and is able to

synchronize the local simulation by the event scanning

method.

In addition, support is included for synchronization

within distributed simulations. It is possible to forward

messages, synchronize the local virtual time with other

federates as the global virtual time of the whole

federation.

The first major consequence of the creation of the

simulation kernel is facilitation of the creation of

simulation models for developers who would opt to use

this kernel.

Moreover, it is possible to use only a few other

methods, and the whole principle of the framework

allows developers to create more federates that will

communicate with each other and synchronize their

time. Therefore, it is possible to create distributed

simulation models. At the same time, all models created

comply with the HLA standard. The consequence of

this fact is that it is possible to connect other simulators

implemented without the use of the HLA-VA

technology.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

51

3.3. Comparison of Demands of the Development

When comparing individual development

methodologies, we assume a distributed simulation

model with several federates, while creation of the

application is assumed from the very beginning.

3.3.1. Development for HLA without the

Framework

Even if we use the absolutely simplest applications

developed to comply with the HLA recommendations,

namely to operate on the simplest RTI, we need to

perform the following steps:

1. Create OMT using a specialized tool, or

using a text editor. It is created in XML.

2. Connect all the necessary libraries to the

program.

3. Create objects that will implement all

methods of the general definition Federate

(or NullFederate).

4. Create methods for connecting to the

federation, identification of federates and

other utility methods.

5. Create methods for operating each

individual interaction.

6. Create synchronization methods for the

actual simulation logic. While it is indeed

possible to use synchronization

mechanisms provided by RTI between

individual federates, it is still necessary to

create a mechanism that will ensure the

synchronization within the federate. (The

advantage of this step is again the potential

reuse of the solution, because if the internal

synchronization service is implemented

sufficiently generally, it can be used also in

other solutions).Set rules for

synchronization and solution of the actual

synchronization within a particular node.

7. Program the application of the specific

model (or logical process).

3.3.2. Development with the Framework

Since the framework has an implemented simulation

kernel, there is no need to address synchronization, and

it is designed to work as an intermediate layer between

the application logic and the federate, so the

development process changes to:

1. Create OMT specifications through the

XML editor or specialized software.

2. Connect the HLA-VA library to the

application.

3. Create the logic of own simulation model.

It is very important to find that all the steps that require

knowledge of programming associated with RTI have

thus been omitted. At the present moment, it is only the

first step that requires some knowledge of HLA

(nevertheless, this can be circumvented by using a

specialized editor). Still, the development process

(especially for a layman) becomes much easier to grasp

and implement.

It is this facilitating of the access to HLA that is

the greatest advantage of HLA-VA Framework, as it is

possible to create HLA-compliant models more quickly.

Furthermore, because the RTI library is only connected

to framework code in the form of a dynamic link

(instead of using static compilation), it is possible to use

the framework with (virtually) any RTIs.

3.4. Limitations of the Framework

3.4.1. Limitations on the Choice of Synchronization

Methods

Currently, from the user's perspective, we can choose

from several synchronization methods in the

framework. However, physical implementation is

limited to the use of RTI services in the field of

conservative synchronization, which is sufficient for the

class of tasks that the software is focused on, but it is

still a certain limitation for the programmer.

3.4.2. Limitations on the Connection to Federates

Implemented without the Framework

By default, HLA assumes that any two federates will be

able to cooperate provided that they have a relevant

operating method implemented. However, as is clear

from the preceding paragraph, if we have an existing

federate that contains methods for optimistic

synchronization, it is not possible to create a federate

through the framework that could cooperate.

In other cases, federates implemented through the

framework and without it can cooperate.

3.4.3. Limitations on the Choice of Programming

Languages

Since the actual Framework was implemented only in

the Java programming language, it enables writing more

software components only in Java, C# and C++.

Java support is implicit, and it is possible to link some

parts of the framework as libraries.

Support for C# and C++ has been tested in the

Windows environment where it was necessary to use

Wrapper for the possibility of using the Java code in

other programming languages, which can have negative

effects on the computational complexity.
7

7
 Experiments confirmed the extension of the

computational time if we compare an identical task

implemented solely in one programming language and

the same solution implemented using Wrapper and

combination of Java and C#. The computational

complexity, however, did not increase dramatically

enough to make it possible not to recommend such a

solution. In the demonstration tests, the solution through

Wrapper was useful even if we ran a distributed

interactive simulation with real-time synchronization.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

52

4. Prototype

In the early stages of the development of the

framework, basic functionalities were tested through

direct calls. Using these methodologies, validation of

the framework was performed, first in the local

environment (more federates running on one local node)

and subsequently also in a distributed way within the

local network. After basic validation tests were

completed, it was decided to build several prototypes.

4.1. Prototype: Motorway Rest Areas

The first prototype designed to test

synchronization, connection to the visualization

components and testing of the development of the

framework in various programming languages (Java, C

#) was a simple example of motorway rest areas. The

demonstration example contains three federates of two

kinds. The federate of motorway is used to generate

input streams and its logic determines in which

direction the vehicles are going and what percentage of

them is heading to an exit with a rest area; the physical

situation is shown in Figure No. 6.

Figure 6: Physical situation

The second type of the federate is a rest area, its internal

logic contains only an input from the federate of the

highway (similarly, the output is only to the federates of

the motorway, it cannot disturb objects by its own) and

it is de facto a process that only determines the time

during which a given object (in this case, a vehicle) will

be delayed. The actual design of the model, including

the dividing into individual federates can be seen in

Figure 7.

While this may be a relatively trivial demonstration

case, by using it, we managed to prove that

synchronization solved within the federation at the RTI

level (or by calling RTI services) and synchronization

solved by default by the framework are functional and

the results of their (federates) cooperation are fully in

line with expectations..

4.1.1. Testing Methodology

The actual simulation model was programed over the

framework, and also in the simulation tool Arena. The

outputs of the simulation tool Arena were then taken as

the standard.

As for the motorway federate, the selected monitored

indicators included verification of the functionality of

the generators by comparing individual input streams

and also verification of the dividing of the number of

vehicles that just pass the section and the number of

vehicles that turn off to some of the rest areas (in fact,

the number of objects that are passed to the other

federates).

As for the system of the rest areas, the selected

monitored indicators were the numbers of vehicles and

monitoring of their forwarding in time, travel time from

the turning to the rest area, up to the arrival and

stopping at the rest area (the same for departures) and

service/stop time at the rest area.

Results of the solutions within monolithic

synchronization in the commercial product Arena and

within own programming solutions over the framework

reached a high degree of conformity.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

53

Figure 7: Dividing into federates

Figure 7: Dividing into federates

4.2. Other Prototypes

For validation and verification of the framework, other

prototypes were created reflecting bulk service systems

OR queuing systems. The basic principles are, however,

very similar to the first demonstration model - they

differ only in the area of implementation.

Another suitable prototype model chosen was a multi-

storey building whose floors are connected both by a lift

and by two staircases. The model is decomposed into

three heterogeneous types of logical processes: the

operator of the floor (it is a logical process that

addresses the movement of people within the individual

floors - each floor is operated by one common LP), the

operator of vehicles (it is a logical process that

addresses the movement between the floors where the

objects are passed to the operator of the floor the

moment they reach the destination floor) and the

operator of doors (addresses the time individual people

stay in a particular door - possible to replace with less

general terms "surgery", if it was a hospital model, or

"shop" if we declared the model to be a department

store model. All doors are controlled by only one

federate. The specific type of internal doors is entrance

doors that serve as a generator).

Another area, for which it was desirable to create a

demonstration example, was the possibilities of real-

time synchronization and the possibility of interactive

interventions into the course of the simulation during its

course. Based on these requirements, a third

demonstration model was created that reflects the

operation in a railway transport system. Federates in

this model represent individual stations (these may not

be homogeneous) and a special federate (or a set

thereof), which is responsible for railway sections

between the stations. Operators of each station are

enabled to perform interactive interventions into the

control of individual signaling devices and railway

switches.

For the purpose of this model, it is necessary to say that

it is subject to a higher level of abstraction, specifically

where it deals with motion characteristics of trains

(acceleration, deceleration, driving dynamics).

Although the model is designed so that individual

characteristics have the potential for future extension so

that the system corresponds to reality as much as

possible, but currently it uses only the medium speed of

the train with an step onset of the speed and step

braking distance.

In addition to these examples, the framework is tested in

the workplace on a number of demonstration examples

ranging from communication testing of communication

protocols through an analogue of chat), modelling

without time synchronization (testing in turn-based

strategy games) and application in the context of larger,

potentially real-time simulations.

5. Conclusion

The framework makes it easier for the users to access

HLA at the cost of certain restrictions. Prototyping of

standard models is easier and faster and, moreover, the

user needs no special knowledge of the HLA

architecture.

The toll for easy access to the HLA simulations is the

limited amount of synchronization methods and some

handover protocols.

The framework does not aim to be applicable for large

and complex models that consist of high-trained teams -

those are assumed to have mastered HLA brilliantly. On

the other hand, if a team begins with HLA, or just looks

for a methodology though which they would connect

existing simulators into the distributed simulation

(without trying to specialize purely HLA), or just

experiments with simulation technologies (when

studying and teaching), this own framework is very

useful tool for them as it will help bridge the initial

problems with the implementation of distributed

simulation models.

Prospects of further development are aimed at the

implementation of optimistic synchronization methods

and application in practice.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

54

Acknowledgement

This article was created within the project Support for

Internships and Professional Activities in Innovation in

Tertiary Education at Jan Perner Transport Faculty and

Faculty of Electrical Engineering and Informatics of the

University of Pardubice, Reg. No.:

CZ.1.07/2.4.00/17.0107.

References

Free software foundation, Inc, 2002, CERTI - Summary

[Savannah]. Available from:

http://savannah.nongnu.org/projects/certi

[accessed 22 April 2014].

Fujimoto, Richard M., c2000, Parallel and distributed

simulation systems. New York; John Wiley &

Sons. ISBN 04-711-8383-0.

Geeknet, Inc., 2005, SourceForge.net: Open HLA -

Project Web Hosting - Open Source Software.

Available from: http://ohla.sourceforge.net/

[accessed 22 April 2014].

Knight, Pamela, Corder, Aaron, Liedel Ron, 2001,

Evaluation of Run Time Infrastructure (RTI)

Implementations. U.S. Army SMDS. Available

from:

https://www.scs.org/confernc/hsc/hsc02/hsc/paper

s/hsc017.pdf [accessed 15 July 2014].

Kuhl, Frederick, Dahmann, Judith, Weatherly Richard,

The institute of electrical and electronics

engineers, Inc, c2000, Upper Saddle River, NJ;

Prentice Hall PTR. ISBN 01-302-2511-8.

Pitch technologies ab, 1993, Products – Overview,

Available from:

http://www.pitch.se/products/products-overview

[accessed 22 April 2014].

Rabelo, Luis, Sala-Diakanda, Serge, Pastrana, John,

Marin, Mario, Bhide, Sayli, Joledo, Oloruntomi,

Bardina, Jorge, 2013. Simulation Modeling of

Space Missions Using the High Level Architecture.

Available from:

http://www.hindawi.com/journals/mse/2013/96748

3/ [accessed 15 July 2014].

The institute of electrical and electronics engineers, Inc,

2010, IEEE1516:2010: IEEE Standard for

Modeling and Simulation (M&S) High Level

Architecture (HLA)-Framework and Rules. New

York; IEEE. ISBN 978-0-7381-6251-5.

The institute of electrical and electronics engineers, Inc,

2010, IEEE1516:2010: IEEE Standard for

Modeling and Simulation (M&S) High Level

Architecture (HLA)-Object Model Template

(OMT) Specifications. New York; IEEE.

2010.ISBN 978-0-7381-6249-2.

The institute of electrical and electronics engineers, Inc,

2010, IEEE1516:2010: IEEE Standard for

Modeling and Simulation (M&S) High Level

Architecture (HLA)-Federate Interface

Specification. New York;IEEE. ISBN 978-0-7381-

6247-8.

The simulation interoperability standards organization,.

Independent Throughput and Latency

Benchmarking for the Evaluation of RTI

Implementations, 2001, The Simulation

Interoperability Standards Organization. Fall.

DOI: SISO-01F-SIW-033.

Vtmäk, 2014, HLA RTI – Run Time Infrastructure –

MÄK RTI. Available from:

http://www.mak.com/products/link/mak-rti.html

[accessed 22 April 2014].

Wikipedia: the free encyclopedia, 2014, Run-time

infrastructure (simulation). Available from:

http://en.wikipedia.org/wiki/Run-

time_infrastructure_%28simulation%29 [accessed

4 April 2014].

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

55

http://savannah.nongnu.org/projects/certi
http://ohla.sourceforge.net/
https://www.scs.org/confernc/hsc/hsc02/hsc/papers/hsc017.pdf
https://www.scs.org/confernc/hsc/hsc02/hsc/papers/hsc017.pdf
http://www.pitch.se/products/products-overview
http://www.hindawi.com/journals/mse/2013/967483/
http://www.hindawi.com/journals/mse/2013/967483/
http://www.mak.com/products/link/mak-rti.html
http://en.wikipedia.org/wiki/Run-time_infrastructure_%28simulation%29
http://en.wikipedia.org/wiki/Run-time_infrastructure_%28simulation%29

