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ABSTRACT 

High Level Architecture provides a standard for 

abstraction, design, construction, development and 

operation of distributed computer simulation systems. 

This paper focuses on the latest version of the standard, 

i.e. IEEE1516:2010. Users who are not familiar with 

distributed computer programming may find it difficult 

to create HLA-compliant models using a tool that 

assumes some familiarities with distributed computer 

programming. Hence, a tool that can help such users is 

useful, especially in encouraging more people to 

develop HLA-compliant models. 

We have developed HLAVA Framework that 

encapsulates the detailed steps of main HLA interfaces 

such as the methods for creating logical processes, and 

management thereof, synchronization methods, and 

communication protocols - in fact, the framework is a 

simulation kernel for the distributed simulation logical 

process, which is compliant with (among others) the 

HLA standard, but due to a simple interface has only 

about 10 methods, which have done creation of 

(potentially) much simpler. 

 

Keywords: HLA, High Level Architecture, Framework, 

simplification interface, distributed simulation, traffic 

simulation 

 

1. MOTIVATION 

High Level Architecture (HLA) is a standard for the 

creation and operation of distributed computer 

simulation systems. The standard does not limit the 

application domain and simulation modelling method. 

Hence, HLA has been applied to domains such as 

military, healthcare, supply chain and many more. HLA 

has also been used to link models developed using 

various simulation modelling methods such as discrete-

event and agent-based. At a lower level, the standard 

specifies the method of communication between the 

nodes (or federates) of a distributed simulation. The 

standard sets the requirements for the actual 

transmission format using XML. This enables us to link 

simulation models written using different programming 

languages or simulation software. It also enables us to 

write a wrapper for legacy simulation models (non HLA 

compliant) by converting the input-output data into an 

XML format. 

The openness, flexibility and many functionalities of 

the standard may overwhelm novice users or users who 

are not familiar with distributed computer 

programming. The main contribution of this paper is to 

propose a framework that helps users to develop HLA-

compliant models more easily so that they can use the 

full potential of HLA with minimal effort (at the cost of 

moderate restrictions which will be discussed later). 

This research is partly motivated by the lack of adoption 

of HLA in the Czech Republic. We hope this work may 

attract more people to develop HLA-compliant models. 

The remainder of this paper is organised as follows. 

 

2. CHARACTERISTICS OF HLA 

This section provides an overview of HLA. The 

explanation is based on Fujimoto (2000), Kuhl, 

Dahmann, Weatherly (2000) and standards 

IEEE1516:2010 (2010). Readers who are familiar with 

HLA may skip this section. 

 

2.1. History of HLA 

HLA was originally created for the military needs of the 

United States of America Department of Defense (more 

specifically, it was developed at the Defense Modeling 

and Simulation Office), where there was a motivation 

for linking various simulation models into a bigger and 

more complex simulator. HLA, which was handed over 

to the army in 1995, met all the military requirements. It 

enabled the interconnection between different models 

implemented in different programming languages. It 

also enabled the simulation to be used in a human-in-

the-loop training exercises using the simulation models. 

In 1997, the Army released the standard for public 

use; HLA 1.0 standard was thus issued, which began to 

be used in universities and space research. Gradually, 

the standard began to be applied in the private sector 

too. In 1998, HLA was included in the NATO military 

simulation standard (STANAG 4603 standard, which 

has since been updated). The standard was approved in 

2000 (IEEE 1516). Another important milestone was a 
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major revision that was already based on real 

experience, not only in the military but also in the 

private sector and the university sector, taking place in 

2010. HLA-Evolved (IEEE 1516:2010) was thus 

created. Example of solution on Roberto, Sala-

Diakanda, Pastrana and col (2013). 

 

2.2. Basic Terminology 

 

2.2.1. Federation 

A federation in HLA refers to an entire distributed 

simulation (or a complex distributed simulation model). 

There is one federation during one distributed 

simulation experiment. 

 

2.2.2. Federate 

A federate is an HLA-compliant application that can 

participate in a distributed simulation experiment. A 

federate may be in a form of a simulation model, 

software application, software agent of any type, an 

input sensor or panel, a display unit, a system for 

retrieving historical data, etc. 

 

2.2.3. Objects 

An object is the information to be exchanged 

during a distributed simulation experiment. In HLA, an 

object represents an entity with persistent states. 

 

2.2.4. Attributes 

An object has a set of attributes that are relevant to an 

entity represented by the object. An attribute is basically 

a data field of a defined data type. Basic data types and 

attributes are defined in the Object Model Template 

(OMT). We will explain OMT in Section 2.2.6.  

 

2.2.5. Interactions 

An interaction represents an event that may be of 

interest to two or more federates. Similar to objects, 

interactions must be pre-defined. Each interaction can 

have a set of parameters. Interaction can be performed 

directly through interaction classes, e.g. passing an 

object to another federate etc. 

Federates cannot send interactions to each other 

directly, but they must make a request to RTI (runtime 

infrastructure) as shown in Figure 1. We will explain 

RTI in Section 2.2.7. 

 

 
Figure 1: Interactions in HLA 

 

2.2.6. Object Model Template (OMT) 

Objects and their attributes as well as interactions and 

their parameters need to be defined for the whole 

federation based on the standard set in the OMT 

(IEEE1516.2:2010). The definitions for Objects and 

Interactions must be provided in a Federation Object 

Model (FOM) or Simulation Object Model (SOM). 

Both are XML documents and are relatively easy to 

read. In practice, FOM is often built from one or more 

SOMs. 

 

2.2.7. RTI 

RTI (run-time infrastructure) is a middleware that 

provides communication services to all federates in a 

federation. It is defined directly by the standard 

(IEEE1516.3:2010), independent of the platform and 

language. RTI provides APIs that can be called to 

perform certain functions such as creating a federation, 

creating a federate, connecting a federate to the 

federation, etc. RTI needs FOM to understand the 

objects and interactions that will be exchanged between 

federates. Common terminology and the logic of RTI 

are shown in Figure 2. 

 

Figure 2: HLA RTI Diagram 

 

A number of vendors have implemented RTI 

products, for example Pitch RTI, MAK RTI, OpenHLA 

and many more. In principle, the implementation 

approach is almost the same as the one shown in Figure 

3. A federate usually runs on one computing node (but 

one node can be shared by multiple federates). For each 

federate, we need to include the local RTI component. It 

is a library that needs to be linked to the actual software 

solution (federates) or to the application wrapper (for 

legacy or non-compliant software). This component 

actively manages communication between a federate 

and a central RTI component. The central RTI 

component is the busiest part in a federation
1
. It is 

responsible for managing the communication within a 

federation, for example, connecting a federate to a 

federation, managing objects, etc. 

Figure 3: RTI physical implementation 

                                                           
1
 However, it is necessary to note that it is possible 

to create other than simply linear non-hierarchical 

simulation models, which makes it possible to use a 

number of central RTI components in a single 

simulation. 
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2.3. Federation Rules 

HLA defines 5 rules for federations and 5 rules for 

federates. These rules must be met even in a situation 

where we want to declare a model to be partially HLA 

compliant. In other words, compliance with all ten rules 

is a necessary condition for us to refer to a simulation 

model as HLA compliant. 

The rules for federations are as follows: 

 Federations shall have an HLA federation 

object model (FOM), documented in 

accordance with the HLA object model 

template (OMT). 

 All representation of objects in the FOM 

shall be in the federates, not in the run-time 

infrastructure (RTI)
2
. 

 All exchange of FOM data among federates 

shall occur via the RTI
3
. 

 Federates shall interact with the run-time 

infrastructure (RTI) in accordance with the 

HLA interface specification. 

 An attribute of an instance of an object 

shall be owned by only one federate at any 

given time. Only this federate is authorized 

to modify the values of the owned element. 

 

The rules for federates are as follows: 

 Federates shall have an HLA simulation 

object model (SOM), documented in 

accordance with the HLA object model 

template (OMT). 

 Federates shall be able to update and reflect 

any attributes of objects in their SOM and 

send and receive SOM object interactions 

externally, as specified in their SOM. 

 Federates shall be able to transfer and/or 

accept ownership of an attribute 

dynamically during a federation execution, 

as specified in their SOM. 

 Federates shall be able to vary the 

conditions under which they provide 

updates of attributes of objects, as specified 

in their SOM. 

 Federates shall be able to manage local 

time in coordination with the RTI 

requirements (in effect, in coordination 

with other federates). 

                                                           
2
 The consequence of this rule is the fact that the 

transfer of the object from one federate to another is 

performed so that federate1 requests RTI for placing its 

object in federate2. RTI locks the object in federate1 

before the changes and requests federate2 for placing 

the new object (while passing the object itself). If the 

location is in federate2, the object is removed from 

federate1. If not, the object is unlocked in federate1. 
3
 The consequence of this rule is that RTI can be 

equipped with a software upgrade that allows you to 

track all interactions and potentially current states of 

most objects. 

2.4. Synchronization Methods 

Synchronization is provided through RTI, it is therefore 

not necessary to create additional mechanisms that are 

normally used in the architecture for distributed 

simulation models. 

The actual synchronization and its algorithms are 

transparent to the user, we can simply use the services 

provided. If we want a federate to be synchronized with 

other federate, we can set which federate is time-

regulating and which federate is time-constrained. 

Alternatively, we can run all federates in a synchronous 

mode. 

2.5. HLA Software Solution 

Therefore, to easily understand the benefits of an own 

framework, it is necessary to specify how the 

application issue is dealt with.  

 

2.5.1. General Principle 

We can design a federate by creating a class that 

implements (or inherits) one of the federate type classes 

(for example, NullFederate). This will automatically 

give the federate access to a number of RTI services 

such as creating a federation or joining a federation. 

Figure 4 shows the details on what happen if a 

class federate is instantiated during a distributed 

simulation experiment. First, a pair RTI Ambassador – 

Federate ambassador will be instantiated for each 

federate instance. These two components manage the 

communication between a federate and an RTI. RTI 

Ambassador is used by the federate to communicate 

with RTI. The Federate Ambassador is used by the RTI 

to call any of the callback methods defined in the 

federate. 

 

Figure 4: Functioning of local RTI 

 

2.5.2. Federate Ambassador 

Federate Ambassador is located in same place as 

the instance of a running federate. It is generated by 

default directly when the federate is instantiated. 

Federate Ambassador allows RTI to invoke a callback 

method defined in the federate. Since a federate will 

have access to FOM, it allows the federate to implement 

appropriate behaviour or to appropriately respond to 

any callback. 
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2.5.3. RTI Ambassador 

RTI Ambassador is the implementation of a local 

RTI component discussed previously in Figure 3. 

During a distributed simulation experiment, each RTI 

Ambassador is physically located in the same compute 

node as the corresponding federate. We can use RTI 

Ambassador to create a federation or to join a 

federation. It also provides services to allow a federate 

to communicate with the RTI (i.e., the global RTI 

component). HLA provides standard for interfaces that 

have to be implemented in RTI Ambassador and 

Federate Ambassador which is independent of any RTI 

software implementation. This standard ensures 

platform independence
4
. 

 

2.5.4. Global RTI Component 

The second essential part of RTI that provides 

communication between RTI ambassadors is the global 

RTI component. In other words, RTI ambassadors do 

not communicate directly but via a global RTI 

component (i.e. the principle described in Section 2.5.3 

is valid for some implementations of RTI that do not 

contain a global RTI component). The global RTI 

component provides forwarding to all federates that 

have requested specific information such as an attribute 

or an interaction. In addition to this forwarding 

function, this component also provides synchronization, 

monitoring, administration of the federation and many 

other supporting functions. 

 

2.6. Overview of Existing RTI software 

This section provides an introduction to a number of 

existing RTI software. Generally, it is possible to 

characterize various implantations of RTI by specifying 

whether it is an open or a closed source product; 

commercial or freely available product; and then 

according to the HLA standard that the RTI complies 

with. 

 

2.6.1. Pitch RTI 

The commercial product of the Swedish company Pitch 

Technologies (belonging to the BAE Systems Group) is 

one of the most powerful variants of RTI, meeting all 

the HLA standards and is developed with a lot of 

utilities, more at Pitch websites (2014). 

It is very easy to use. It is supplied with libraries for 

Java and C++ languages (also applicable in C#). To use 

it, we just need to import a relevant library and then 

create a sequence of desired objects and serve a quantity 

of functions.  

                                                           
4
 If both federates have knowledge of OMT, they are 

able to exchange information with each other through 

XML. This information can then be forwarded to a 

federate and RTI (it is worth noting that during the 

decomposition of the communication process RTI is 

treated as an active software component, not only as a 

communication bus - even though it may initially 

appear so). 

Pitch RTI also provides a trial version in which only 

two federates can run. There may be other limitations 

that we are not aware of. Currently, this product is used 

at the University of Pardubice; the proposed software 

library HLA-VA is designed for Pitch RTI (although 

the job to write it for a different RTI is trivial). 

 

2.6.2. MÄK RTI 

Similar to Pitch RTI, MÄK RTI (more information at 

MAK websites (2014)) is one of the most widely used 

commercial RTIs. This software also comes with a trial 

version in which the maximum number of federates that 

can run is two. It is a very good and very powerful 

product that meets the latest standards that is commonly 

used in the private sector and universities. It supports 

programs written in Java and C++. 

 

2.6.3. Open HLA 

Open HLA is an open source software distributed under 

the Apache license more at Geeknet (2005). It is a 

relatively good product for basic experimentation with 

HLA. 

At the time of writing, the development has stopped 

(i.e. there are no new updates). The latest version does 

not support all the functionalities that are required by 

the standard IEEE1516:2010 (e.g. models with 

optimistic synchronization methods cannot run in Open 

HLA). 

Open HLA launching and compiling scripts are written 

with the support of the library Ant. It is therefore 

necessary to have this library installed in the computer 

(this fact also makes it different from other software 

where there is an RTI executable .exe file). 

 

2.6.4. CERTI 

CERTI is an open source software which is distributed 

under the GPL (or LGPL) license more at Free software 

foundation web(2002). Its functionalities are better than 

that of Open HLA; It fullu supports the HLA 1.3 

standard for Java and C++. However, the support for 

IEEE 1516:2000 is only partially supported and only 

supports C++.  

 

2.6.5. Other Products 

There is a large amount of RTI implementations 

including products of the U.S. Army and the Chinese 

People's Liberation Army. Reportedly, RTIs, developed 

by the Chinese public sector are very good but due to 

language barriers the author was not able to get 

acquainted with them. A larger, though not entirely up-

to-date, overview of individual RTIs can be found in 

older resources such as Knight, Corder, Liedel (2001) 

and report from The simulation interoperability 

standards organization (2001). A more up-to-date 

review can be found at Wikipedia (2014), as this 

resource is updated relatively more regularly to provide 

the most comprehensive overview of the existing 

solutions.  

3. HLA Virtual Assistant (HLA-VA) Framework 
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The main motivation for the development of the "virtual 

assistant" framework is to facilitate easy access to HLA. 

In this section, we will explain the design and 

components of the HLA-VA framework, its benefits 

and limitations. 

3.1. Framework Architecture 

The framework is built over the libraries that are 

supplied as a standard to RTI (different RTIs from 

different vendors have different control libraries). The 

block diagram of the architecture is shown in Figure 5. 

The benefit of the design of this framework is that it is 

possible to replace the relevant control library (the 

bottom layer in Figure 5) without the need to change the 

upper layers. The explanation for each layer is as 

follows. 

 

3.1.1. Isolation of the RTI Library 

The actual RTI library is isolated from the rest of 

the code in the framework via an interface. Parts of the 

RTI component that are not supplied as a standard in the 

RTI library are implemented separately. In theory, this 

design allows us to use an RTI from any provider
5
. 

 

Figure 5: Block diagram of the framework 

 

3.1.2. Logic of the Federate 

This layer deals with the communication between the 

global RTI component and the local federate. One of the 

main role of this layer is to make the definition of the 

information exchanged during distributed simulation 

execution easier.  

  

                                                           
5
 We have tested our framework with MAK RTI, 

open HLA and Pitch RTI. Hence, we are confident that 

our framework can be used with any compliant RTI 

solution. 

When we write an HLA-compliant model, we often 

need to deal dynamics arguments
6
. Each message 

(Objects or Interactions) in HLA is strongly typed and 

controlled by RTI (as specified in FOM or SOM). If we 

would like a federate to react upon an incoming 

message, we need to write a callback method. 

The problem is solved by a framework at the program 

level. Immediately after running a local instance of the 

framework, it passes through FOM and SOM and 

selects the interaction classes and types. Consequently, 

the framework stores them in the hash table. 

When a message from RTI arrives, the framework 

compares its hash fingerprint with those of all message 

types in the Federation (stored in the hash table) and 

finds the relevant type. When we identify the type of 

message, we can start reading - that is, determining the 

number and type of arguments, their translation from 

the stream, and select individual data components. 

As the number of the existing message types compared 

to the number of individual sendings is negligible, this 

method is computationally efficient (the approximated 

complexity of the search is smaller than the subsequent 

translation of the data from the stream). 

Since we have to assume that the individual Federates 

can be implemented in different programming 

languages, it is impossible to rely on programming 

techniques, such as Reflection,  and problems need to 

be solved  by implementation as such. 

Hence, we can edit the FOM/SOM and send / receive 

messages with dynamic arguments without the need to 

change the code for our federate. 

 

3.1.3. Logic of Synchronization with the Federation 

This layer and layer indicated in section 3.1.4 are 

responsible for time synchronization. Central 

component of cooperation between both the time 

synchronizations and also the part available to the user 

is called Calendar of events (see section 3.1.5.). 

Specifically, Logic of Synchronization with the 

Federation ensures proper functioning of the time 

synchronization federate (on which it runs) with the 

Federation. It encapsulate self-programmed and also 

standard methods specified by HLA enabling the 

framework to fully control the synchronization (using 

                                                           
6
 Standard communications (or more precisely in the 

HLA language "Interaction Objects") which takes place 

within HLA, is defined in the XML format, wherein it 

differs for different types of communication primarily 

in the number and types of arguments (however, it is 

not impossible that messages will have the same types 

and the number of arguments). However, programming 

languages often have a problem with coding sufficiently 

general programs so that we could control incoming 

communications regardless of the type and number of 

arguments they have – at the same time, a successful 

control requirement is also the decoding of messages by 

type and passing thereof on. This problem is possible to 

partially solve by using of Lambda expressions, but 

they are not available in a lot of programing languages. 
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only the knowledge of the desired synchronization 

procedure.). This layer passes all the messages 

(incoming and outgoing) marked as timed and solves 

the outwards federate requirements for time changes. It 

is the responsibility of the layer to respond to the 

changes in GST to be enacted by RTI. 

When conservative synchronization is used, each 

federation makes a request for the local virtual time and 

after all federates are ready, RTI orders to go to the next 

lowest required LVT (this is how the easiest global 

synchronization solved by the methodology with zero 

look ahead works – more about conservative 

synchronization with zero look ahead in Fujimoto 

(2000)). It should be noted that, as standard, the 

information about the transition to LVT is sent only to 

those federates that have requested it. The logic of time 

synchronization of federations is thus responsible not 

only for forwarding the requests for shifting the time 

and information about the federate being ready to shift 

the time, but it also monitors time changes taking place 

in other federates. In addition, if the mode with look 

ahead is activated, it provides automatic adjustment of 

look ahead so that it is as advantageous as possible for 

the federate and the federation. 

 

3.1.4. Logic of Time Synchronization of the 

Federate 

This layer is responsible for setting up the mode of 

which a federate runs, for example, real time run, run 

without time synchronization (e.g., for modelling and 

use of Monte Carlo simulation), standard mode (i.e., 

maximum speed run) or speed limits (e.g. for 

visualization). 

This layer is responsible for setting up the mode in 

which a federate runs. For example, the real time run, 

run synchronization free run (e.g. for modelling and use 

of Monte Carlo method), standard mode (i.e. maximum 

speed run) or speed limits (e.g. for visualization). 

The layer consists of two major parts: the application 

logic running in a standard fibre framework and the 

time base running in its thread. 

The time base may not be used in all the simulation 

types. However, for some runs (e.g. the real time) it is 

required because it is the only part that cannot be 

influenced computationally and the time is the most 

accurate. 

The application part of the layer provides for the 

synchronization of the local level - monitoring 

requirements from the user (as inserted into the 

Calendar of events, and if needed, passes the 

requirements for the Synchronization Layer with the 

Federation) serving the requirements of the Federation 

(by entering them into the Calendar of events) and 

provides the synchronization with independent time 

base. 

 

3.1.5. Calendar of Events 

It is a standard calendar of events represented by 

the priority queue that is primarily solved by secured 

transactions to avoid the risk of inserting and removing 

across the threads. It is the same as in a monolithic 

simulator. 

Due to the similarity with a monolithic simulator 

and because there exists only a set of basic user 

operations such as "Add Event", "Take event" and 

"Cancel the scheduled event" that makes the entire 

interface framework very simple. 

The behaviour of the other two layers that provide 

for the synchronization (see above) is transparent to the 

user. Despite the simple interface, it is possible to reach 

the synchronization with any time-base derived from 

real time and with the Federation. 

 

3.1.6. Interface for Calls 

It creates a space for calling basic methods necessary 

for simulation. These include insertion of events into 

the calendar of events, change of registration in the 

calendar of events, sending an object or a message to 

another federate. 

Messages are always defined generically to make it 

possible to insert any type of object into an argument. 

This object is then the return type of callback. 

 

3.1.7. Interface for Callbacks 

It contains Callbacks that must be removed. By default, 

all Callbacks are implemented the design pattern 

Observer, it is thus possible to connect to them any 

number of classes that will process the data. 

Callbacks can be viewed as events. The only difference 

is in the way that leads to evocation. Callbacks are 

always dependent on the call and they do not occur 

unbidden. 

Basic Callbacks include time change call, incoming 

message call, incoming object call and information call.  

3.2. Services Provided 

Basic services that are provided by the framework can 

thus be summarized as services of the simulation kernel, 

which includes the time calendar and is able to 

synchronize the local simulation by the event scanning 

method. 

In addition, support is included for synchronization 

within distributed simulations. It is possible to forward 

messages, synchronize the local virtual time with other 

federates as the global virtual time of the whole 

federation. 

The first major consequence of the creation of the 

simulation kernel is facilitation of the creation of 

simulation models for developers who would opt to use 

this kernel. 

Moreover, it is possible to use only a few other 

methods, and the whole principle of the framework 

allows developers to create more federates that will 

communicate with each other and synchronize their 

time. Therefore, it is possible to create distributed 

simulation models. At the same time, all models created 

comply with the HLA standard. The consequence of 

this fact is that it is possible to connect other simulators 

implemented without the use of the HLA-VA 

technology. 
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3.3. Comparison of Demands of the Development 

When comparing individual development 

methodologies, we assume a distributed simulation 

model with several federates, while creation of the 

application is assumed from the very beginning. 

3.3.1. Development for HLA without the 

Framework 

 

Even if we use the absolutely simplest applications 

developed to comply with the HLA recommendations, 

namely to operate on the simplest RTI, we need to 

perform the following steps: 

1. Create OMT using a specialized tool, or 

using a text editor. It is created in XML. 

2. Connect all the necessary libraries to the 

program. 

3. Create objects that will implement all 

methods of the general definition Federate 

(or NullFederate). 

4. Create methods for connecting to the 

federation, identification of federates and 

other utility methods. 

5. Create methods for operating each 

individual interaction. 

6. Create synchronization methods for the 

actual simulation logic. While it is indeed 

possible to use synchronization 

mechanisms provided by RTI between 

individual federates, it is still necessary to 

create a mechanism that will ensure the 

synchronization within the federate. (The 

advantage of this step is again the potential 

reuse of the solution, because if the internal 

synchronization service is implemented 

sufficiently generally, it can be used also in 

other solutions).Set rules for 

synchronization and solution of the actual 

synchronization within a particular node. 

7. Program the application of the specific 

model (or logical process). 

 

3.3.2. Development with the Framework 

Since the framework has an implemented simulation 

kernel, there is no need to address synchronization, and 

it is designed to work as an intermediate layer between 

the application logic and the federate, so the 

development process changes to: 

 

1. Create OMT specifications through the 

XML editor or specialized software. 

2. Connect the HLA-VA library to the 

application. 

3. Create the logic of own simulation model. 

 

It is very important to find that all the steps that require 

knowledge of programming associated with RTI have 

thus been omitted. At the present moment, it is only the 

first step that requires some knowledge of HLA 

(nevertheless, this can be circumvented by using a 

specialized editor). Still, the development process 

(especially for a layman) becomes much easier to grasp 

and implement. 

 

It is this facilitating of the access to HLA that is 

the greatest advantage of HLA-VA Framework, as it is 

possible to create HLA-compliant models more quickly. 

Furthermore, because the RTI library is only connected 

to framework code in the form of a dynamic link 

(instead of using static compilation), it is possible to use 

the framework with (virtually) any RTIs. 

 

3.4. Limitations of the Framework 

 

3.4.1. Limitations on the Choice of Synchronization 

Methods 

Currently, from the user's perspective, we can choose 

from several synchronization methods in the 

framework. However, physical implementation is 

limited to the use of RTI services in the field of 

conservative synchronization, which is sufficient for the 

class of tasks that the software is focused on, but it is 

still a certain limitation for the programmer. 

 

3.4.2. Limitations on the Connection to Federates 

Implemented without the Framework 

By default, HLA assumes that any two federates will be 

able to cooperate provided that they have a relevant 

operating method implemented. However, as is clear 

from the preceding paragraph, if we have an existing 

federate that contains methods for optimistic 

synchronization, it is not possible to create a federate 

through the framework that could cooperate. 

In other cases, federates implemented through the 

framework and without it can cooperate. 

 

3.4.3. Limitations on the Choice of Programming 

Languages 

Since the actual Framework was implemented only in 

the Java programming language, it enables writing more 

software components only in Java, C# and C++. 

Java support is implicit, and it is possible to link some 

parts of the framework as libraries. 

Support for C# and C++ has been tested in the 

Windows environment where it was necessary to use 

Wrapper for the possibility of using the Java code in 

other programming languages, which can have negative 

effects on the computational complexity.
7
 

                                                           
7
 Experiments confirmed the extension of the 

computational time if we compare an identical task 

implemented solely in one programming language and 

the same solution implemented using Wrapper and 

combination of Java and C#. The computational 

complexity, however, did not increase dramatically 

enough to make it possible not to recommend such a 

solution. In the demonstration tests, the solution through 

Wrapper was useful even if we ran a distributed 

interactive simulation with real-time synchronization. 
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4. Prototype 

In the early stages of the development of the 

framework, basic functionalities were tested through 

direct calls. Using these methodologies, validation of 

the framework was performed, first in the local 

environment (more federates running on one local node) 

and subsequently also in a distributed way within the 

local network. After basic validation tests were 

completed, it was decided to build several prototypes. 

 

4.1. Prototype: Motorway Rest Areas 

The first prototype designed to test 

synchronization, connection to the visualization 

components and testing of the development of the 

framework in various programming languages (Java, C 

#) was a simple example of motorway rest areas. The 

demonstration example contains three federates of two 

kinds. The federate of motorway is used to generate 

input streams and its logic determines in which 

direction the vehicles are going and what percentage of 

them is heading to an exit with a rest area; the physical 

situation is shown in Figure No. 6. 

 

Figure 6: Physical situation 

 

The second type of the federate is a rest area, its internal 

logic contains only an input from the federate of the 

highway (similarly, the output is only to the federates of 

the motorway, it cannot disturb objects by its own) and 

it is de facto a process that only determines the time 

during which a given object (in this case, a vehicle) will 

be delayed. The actual design of the model, including 

the dividing into individual federates can be seen in 

Figure 7. 

 

While this may be a relatively trivial demonstration 

case, by using it, we managed to prove that 

synchronization solved within the federation at the RTI 

level (or by calling RTI services) and synchronization 

solved by default by the framework are functional and 

the results of their (federates) cooperation are fully in 

line with expectations.. 

 

4.1.1. Testing Methodology 

The actual simulation model was programed over the 

framework, and also in the simulation tool Arena. The 

outputs of the simulation tool Arena were then taken as 

the standard. 

As for the motorway federate, the selected monitored 

indicators included verification of the functionality of 

the generators by comparing individual input streams 

and also verification of the dividing of the number of 

vehicles that just pass the section and the number of 

vehicles that turn off to some of the rest areas (in fact, 

the number of objects that are passed to the other 

federates). 

As for the system of the rest areas, the selected 

monitored indicators were the numbers of vehicles and 

monitoring of their forwarding in time, travel time from 

the turning to the rest area, up to the arrival and 

stopping at the rest area (the same for departures) and 

service/stop time at the rest area. 

Results of the solutions within monolithic 

synchronization in the commercial product Arena and 

within own programming solutions over the framework 

reached a high degree of conformity. 
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Figure 7: Dividing into federates 

Figure 7: Dividing into federates 

4.2. Other Prototypes 

For validation and verification of the framework, other 

prototypes were created reflecting bulk service systems 

OR queuing systems. The basic principles are, however, 

very similar to the first demonstration model - they 

differ only in the area of implementation. 

Another suitable prototype model chosen was a multi-

storey building whose floors are connected both by a lift 

and by two staircases. The model is decomposed into 

three heterogeneous types of logical processes: the 

operator of the floor (it is a logical process that 

addresses the movement of people within the individual 

floors - each floor is operated by one common LP), the 

operator of vehicles (it is a logical process that 

addresses the movement between the floors where the 

objects are passed to the operator of the floor the 

moment they reach the destination floor) and the 

operator of doors (addresses the time individual people 

stay in a particular door - possible to replace with less 

general terms "surgery", if it was a hospital model, or 

"shop" if we declared the model to be a department 

store model. All doors are controlled by only one 

federate. The specific type of internal doors is entrance 

doors that serve as a generator). 

Another area, for which it was desirable to create a 

demonstration example, was the possibilities of real-

time synchronization and the possibility of interactive 

interventions into the course of the simulation during its 

course. Based on these requirements, a third 

demonstration model was created that reflects the 

operation in a railway transport system. Federates in 

this model represent individual stations (these may not 

be homogeneous) and a special federate (or a set 

thereof), which is responsible for railway sections 

between the stations. Operators of each station are 

enabled to perform interactive interventions into the 

control of individual signaling devices and railway 

switches. 

For the purpose of this model, it is necessary to say that 

it is subject to a higher level of abstraction, specifically 

where it deals with motion characteristics of trains 

(acceleration, deceleration, driving dynamics). 

Although the model is designed so that individual 

characteristics have the potential for future extension so 

that the system corresponds to reality as much as 

possible, but currently it uses only the medium speed of 

the train with an step onset of the speed and step 

braking distance. 

In addition to these examples, the framework is tested in 

the workplace on a number of demonstration examples 

ranging from communication testing of communication 

protocols through an analogue of chat), modelling 

without time synchronization (testing in turn-based 

strategy games) and application in the context of larger, 

potentially real-time simulations. 

5. Conclusion 

The framework makes it easier for the users to access 

HLA at the cost of certain restrictions. Prototyping of 

standard models is easier and faster and, moreover, the 

user needs no special knowledge of the HLA 

architecture. 

The toll for easy access to the HLA simulations is the 

limited amount of synchronization methods and some 

handover protocols. 

The framework does not aim to be applicable for large 

and complex models that consist of high-trained teams - 

those are assumed to have mastered HLA brilliantly. On 

the other hand, if a team begins with HLA, or just looks 

for a methodology though which they would connect 

existing simulators into the distributed simulation 

(without trying to specialize purely HLA), or just 

experiments with simulation technologies (when 

studying and teaching), this own framework is very 

useful tool for them as it will help bridge the initial 

problems with the implementation of distributed 

simulation models. 

Prospects of further development are aimed at the 

implementation of optimistic synchronization methods 

and application in practice. 
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