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ABSTRACT 

Process simulation has many applications that are closely 

related to optimization. Finding optimal steering 

parameters for the simulated processes is an activity in 

which the simulation model is often used as an evaluation 

function to an optimization procedure. Combining 

optimization and simulation has been achieved in the past 

already, however optimization procedures implemented 

in simulation software are often only black box solvers 

that are difficult to change, extend or parameterize. 

Optimization software frameworks on the other hand 

host a range of suitable algorithms, but often lack the 

ability to describe and run simulation models. Exchange 

protocols have been proposed in the past, however the 

interchange has still proven to be complex and work on 

simplification is ongoing. In this work, we want to pursue 

a different approach. We intend to integrate simulation 

capabilities into an optimization framework and thus 

want to better support applications for simulation-based 

optimization. We will describe a suitable generic 

simulation framework and its integration into 

HeuristicLab. A case study is presented as a 

demonstration of its usefulness. 

 

Keywords: simulation, optimization 

 

1. INTRODUCTION 

Work on simulation-based optimization procedures is 

ongoing and has profited a lot from the steady rise in 

available computational power. Simulation models are 

complex functions that are time consuming to run. Often 

there needs to be a warm-up phase of the model until the 

process performance has been stabilized and the 

indicators can be computed. This further lengthens the 

timespan that the model has to cover and increases the 

amount of data that has to be processed. We have 

addressed the problem of simulation-based optimization 

(Affenzeller et al. 2007), its integration into HeuristicLab 

(Wagner et al. 2014) and further developments to generic 

and extensible protocols (Beham et al. 2012) with the aim 

of supporting parallel model evaluation in order to speed 

up the optimization. In this work the aim is to introduce 

simulation capabilities into the optimization software 

environment HeuristicLab. Instead of having to connect 

the optimization software with the simulation 

environment we want to allow writing and evaluating 

models in HeuristicLab more easily, especially those that 

are tied to optimization problems. This should facilitate 

the application of simulation-based optimization for 

smaller projects, academic examples, as well as more 

complex simulation models. For this purpose we have 

added a simulation core to the HeuristicLab framework 

that supports modeling and execution of simple and 

complex simulation models.  

 

2. RELATED AND PREVIOUS WORK 

This field has been actively researched for several years 

and a number of solutions have emerged. There are many 

commercial simulation frameworks that feature 

embedded optimizers, e.g. AnyLogic or FlexSim which 

include OptQuest (Laguna and Marti 2002). There are 

optimization frameworks that must be connected with 

simulation frameworks through generic interfaces such 

as HeuristicLab or GenOpt (Wetter 2001). Finally, 

software is available which allows performing 

simulation and optimization. For instance, MATLAB 

(http://www.matlab.com) includes SimuLink and also 

provides optimization algorithms in the global 

optimization toolbox. SciLab (http://www.scilab.org) is 

an open source environment for numerical computation 

that includes the Xcos simulator and features basic 

optimization algorithms such as genetic algorithms and 

simulated annealing. ECJ is another Java-based 

optimization framework that connects well with the 
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MASON simulation framework, both having the same 

creators. Finally, a large number of optimization 

frameworks exist which feature real-valued 

optimization, multi-objective problems and include 

classical operations research problems from the domain 

of production, logistics, and supply chain. However often 

functionality for integration with simulation 

environments is missing. A review can be found in 

(Parejo et al. 2012). 

 

3. INTEGRATED SIMULATION FRAMEWORK 

One major requirement for choosing a simulation 

framework to integrate in HeuristicLab is the 

programming language. The framework has to be 

implemented in a language that can be used within the 

.Net framework. Otherwise, it is required to cross the 

language boundary by e.g. serializing to a common 

format which is precisely what was already realized in 

(Beham et al. 2012). These languages should ideally be 

native languages to the .Net Framework such as C#, F# 

or VB.Net. 

From the many existing simulation frameworks that 

seem suited for integration we chose to go with SimPy 

(Matloff 2008), more specifically the current version 

SimPy 3, available at http://pypi.python.org/pypi/simpy/. 

In evaluating the framework we found that the models 

expressed with SimPy can be short, clear, and self-

descriptive. Additionally, researchers have since created 

more specific layers to the rather slim core, e.g. ManPy 

“Manufacturing in Python” for manufacturing simulation 

(Dagkakis et al. 2013) which is developed within the EU 

FP7 funded project DREAM (http://dream-

simulation.eu/). A model’s processes can be described in 

SimPy by writing a program, however the model can be 

expressed without boilerplate code and without using a 

complex object-oriented design. As the name suggests 

the framework is written in Python and can be integrated 

in HeuristicLab via IronPython (http://ironpython .net/) 

as described in (Beham et al. 2014). However, we noted 

that some models are rather slow to execute using 

IronPython and so we created a C# port of SimPy which 

we termed Sim# and which is available on GitHub 

(https://github.com/abeham/SimSharp). An implement-

tation of an m/m/1 queuing model in Sim# is given in 

Listing 1. 

Processes in this framework are defined as .Net 

iterators, similarly to SimPy where they are described as 

Python generators. The process runs until a “yield return” 

statement is reached where it awaits the yielded event. 

After the event has been completed the process wakes up 

and continues to run until the next “yield return” 

statement or terminates. Termination of processes is also 

an event so that processes can wait on other processes. In 

the described case in Listing 1 the process is not yielded, 

thus process MM1Q does not wait on its termination. The 

environment maintains the current time as well as the 

event queue in which the events are inserted. 

The Sim# framework makes it rather easy to 

describe simple models with very few lines of code - in 

SimPy it would be even slightly less code as it does not 

require variable declaration, types or visibility 

declarations. Having to deal with statically typed 

languages creates some overhead, however as Sim# 

models are compiled they are faster to execute, 

something which is relevant for simulation-based 

optimization. 

 
static Environment env; 
static Resource server; 
static TimeSpan arrival_time = … 
static TimeSpan proc_time = ... 
static TimeSpan simulation_time = ... 
 
static IEnumerable<Event> MM1Q() { 
  while (true) { 
    yield return env.TimeoutExponential(arrival_time); 
    env.Process(Item()); 
  } 
} 
 
static IEnumerable<Event> Item() { 
  using (var s = server.Request()) { 
    yield return s; 
    yield return env.TimeoutExponential(proc_time); 
  } 
} 
 
public static void Main(string[] args) { 
  env = new Environment(randomSeed: 42); 
  server = new Resource(env, capacity: 1); 
  env.Process(MM1Q()); 
  env.Run(simulation_time); 
} 

Listing 1: Queuing model implemented with Sim#. 

 

4. SIMULATION OPTIMIZATION PROBLEM 

Writing models in code is a very natural way for 

programmers and software developers. It is also natural 

for researchers in the field of mathematical optimization 

to express fitness functions and constraints as code, such 

as e.g. a linear program expressed in CPLEX. In a similar 

sense the integration of such models in HeuristicLab and 

the task of optimizing their parameters should also 

remain simple and powerful. 

The main use of Sim# simulation models will be in 

place of an evaluation function. Instead of evaluating a 

mathematical expression for a given solution, the 

simulation model should be initialized and run. The 

performance criteria that result from the model can then 

be used to form a fitness value which should be either 

maximized or minimized by the algorithm. 

To provide such an integration we have extended 

HeuristicLab with the introduction of a programmable 

optimization problem. This problem allows the user to 

specify the configuration in terms of binary, integer, real, 

and permutation parameters that have to be optimized. 

There can be an arbitrary number of parameters, each of 

them having a name that needs to be unique for this 

configuration. Integer and real parameters are defined in 

a certain interval, and for integer parameters a step size 

can be configured for coarse discretization. Permutation 

parameters define a length for each permutation and a 

type on how it may be interpreted (absolute, relative 

directed, or relative undirected). In a second method the 
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user can then specify the evaluation function which 

receives a ParameterVector that acts as a container for 

this configuration and that allows to access the 

parameters’ values. The evaluation function also receives 

a random number generator which can be used for 

example for stochastic simulation models. 

The configuration specifies the solution space, 

while the parameter vector denotes a concrete solution 

that the algorithm has identified and should be evaluated. 

An implementation of a function minimization problem 

in form of a programmable problem is given in Listing 2. 

In the evaluation function, any kind of C# code can be 

executed, including the initialization and execution of 

simulation models which will be the main interest of this 

paper. 

 
public class Fmin : ISingleObjectiveProblemDefinition { 
  public bool IsMaximizationProblem { 
    get { return false; } 
  } 
  public Configuration GetConfiguration() { 
    return new Configuration() 
      .AddReal("r", length: 5, min: -10.0, max: 10.0); 
  } 
  public double Evaluate(IRandom random, 
                                   ParameterVector vector) { 
    var quality = 0.0; 
    quality = vector.Real("r").Select(x => x * x).Sum(); 
    return quality; 
  } 

} 

Listing 2: Implementation of a simple function 

minimization problem in form of a programmable 

problem. The parameter configuration and the evaluation 

function need to be defined. 

 

In addition to the objective function and the 

encoding, a number of manipulation operations must also 

be defined that perturb the solution. Different 

metaheuristics such as genetic algorithms require certain 

perturbation operators, e.g. crossover and mutation. 

These operators are automatically configured with 

default values and can be changed by the user. 

This configuration is not trivial however and 

demands a closer look: The problem class reacts on each 

change to the script in that it tries to compile the script, 

instantiate the class and retrieve the configuration from 

the instance. For each of the parameters defined in this 

configuration, the problem will then create a solution 

creator and lookup the relevant operators. It will 

configure the solution creators in HeuristicLab to create 

the variable with the specified name and all the operators 

to modify that variable. There are two distinct cases to 

mention: 

1. A single parameter type is chosen, e.g. only a 

vector of real values. 

2. Multiple parameter types are combined, e.g. a 

vector of real values and a binary vector. 

 

This distinction is important as in the first case the 

problem may be solved by algorithms which can handle 

the specific encoding. For a real vector, e.g. the CMAES 

implementation in HeuristicLab could be applied. In the 

second case the algorithms would need to support a 

combined encoding which is realized currently only for 

variants of genetic algorithms. 

 

5. CASE STUDY: SUPPLY CHAIN 

Supply chain management is concerned with the flow of 

goods. Along the supply chain excessive demands and 

backlog should be avoided, inventory costs and service 

times should remain low. The famous beer game 

(Hammond 1994) allows students to explore the effects 

of demand propagation in a supply chain that consists of 

4 echelons and fixed customer demand at the end of the 

chain. The demand is usually constant for a few periods, 

but raises after a while. Typically the game is played by 

students on a table where they should experience the 

bullwhip effect (Lee et al. 1997) which means that the 

orders along the chain increasingly start to fluctuate. The 

factory has to cope with order sizes that bear no relation 

to the customer demand. This in turn creates a very costly 

supply chain as inventory levels and backlogs become 

very high. In this case study, the computer will control 

the orders using the well-known (S, s) order policy (Scarf 

1993) and the parameters will be adjusted by the 

optimization algorithm. A bad setting of the parameters 

could result in high costs. 

The supply chain consists of 4 echelons which are 

the factory, the regional distributor, the wholesaler, and 

the retailer. In each stage the orders will be placed to the 

next stage. The retailer orders from the wholesaler which 

in turn orders from the distributor which again orders 

from the factory. Customers arrive at the retailer and 

attempt to buy the goods or place an order in case the 

goods are not available. An order will have to be served 

as one delivery, order splitting and partial delivery is not 

considered. 

The (S, s) order policy controls the minimum stock 

level at which an order will be placed (s), as well as the 

maximum amount of stock that should be kept (S). The 

difference between S and s basically determines the order 

size, although already placed orders and the backlog is 

taken into account. At any given time, if Stock + 

ExpectedDeliveries – BacklogOrders becomes smaller or 

equal to s a demand arises which will be placed to the 

next stage in the supply chain. 

The model, as implemented in Sim# is given in 

Listing 4. Again, an advantage of Sim# and also SimPy 

is the textual representation of models which makes it 

easy to include them together with the publications, e.g. 

in an appendix if the model is larger. 

 
class SupplyChain : SimSharp.Environment { 
  public Echelon Factory; 
  public Echelon Distributor; 
  public Echelon Wholesaler; 
  public Echelon Retailer; 
  private bool mainSeason; 
   
  public SupplyChain(DateTime start, IntegerVector sS) 
    : base(start) { 
    Factory = new Echelon(this, 15, null, 
                                      sS[3], sS[3] + sS[7]); 
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    Distributor = new Echelon(this, 15, Factory, 
                                      sS[2], sS[2] + sS[6]); 
    Wholesaler = new Echelon(this, 15, Distributor, 
                                      sS[1], sS[1] + sS[5]); 
    Retailer = new Echelon(this, 15, Wholesaler, 
                                      sS[0], sS[0] + sS[4]); 
     
    Process(Season()); 
    Process(Simulation()); 
  } 
   
  IEnumerable<Event> Simulation() { 
    for (int i = 0; i < 50; i++) { 
      Process(Round()); 
      yield return TimeoutD(1); 
    } 
  } 
   
  IEnumerable<Event> Round() { 
    var demand = mainSeason ? 9 : 5; 
    var beer = Process(Retailer.Deliver(demand)); 
    Retailer.CalculateCosts(); 
    Wholesaler.CalculateCosts(); 

    Distributor.CalculateCosts(); 
    Factory.CalculateCosts(); 
    Process(Retailer.Order()); 
    Process(Wholesaler.Order()); 
    Process(Distributor.Order()); 
    Process(Factory.Order()); 
     
    yield return beer; 
  } 
   
  IEnumerable<Event> Season() { 
    yield return TimeoutD(5); 
    mainSeason = true; 
  } 
} 
 
class Echelon { 
  SupplyChain env; 
  Echelon supplier; 
  double s, S; 
  public Container Stock; 
  public double BacklogOrders, BacklogDeliveries; 
  public double BacklogCosts, InventoryCosts; 
   
  public Echelon(SupplyChain env, double initialStock, 
Echelon supplier, double s, double S) { 
    this.env = env; 
    this.Stock = new Container(env, initial: initialStock); 
    this.supplier = supplier; 
    this.s = s; 
    this.S = S; 
  } 
   
  public IEnumerable<Event> Order() { 
    var newStock = Stock.Level + BacklogDeliveries - 
                            BacklogOrders; 
    if (newStock <= s) { 
      var d = S - newStock; 
      if (d > 0) { 
        if (supplier != null) { 
          var shipment = env.Process(supplier.Deliver(d)); 
          BacklogDeliveries += d; 
          yield return shipment; 
          var delivery = (ContainerGet)shipment.Value; 
          Stock.Put(delivery.Amount); 

        } else { // factory 
          BacklogDeliveries += d; 
          yield return env.TimeoutD(2); // produce 

          Stock.Put(d); 
        } 
      } 
      BacklogDeliveries -= d; 
    } 
  } 
   
  public IEnumerable<Event> Deliver(double amount) { 
    BacklogOrders += amount; 
    var delivery = Stock.Get(amount); 
    yield return delivery; 
    BacklogOrders -= amount; 
    yield return env.TimeoutD(2); // transport 
    env.ActiveProcess.Succeed(delivery); 
  } 
   
  public void CalculateCosts() { 
    BacklogCosts += BacklogOrders; 
    InventoryCosts += 0.5 * Stock.Level; 
  } 
} 

Listing 3: The model of the beer game supply chain 

implemented in Sim#. This is the full model description, 

the s and S parameters are given in an IntegerVector 

which is a HeuristicLab datastructure. 

 

 

6. OPTIMIZATION 

The solution to this parameterization problem can be 

described in terms of 8 integer parameters. We chose the 

first 4 items to represent s while the last 4 items denote 

𝑆 − 𝑠. This is chosen in order to avoid a constrained 

optimization problem, because obviously it must hold 

that 𝑠 ≤ 𝑆. The bounds have been chosen as [2;100] for 

the first 4 items and [0;100] for the last 4 items. As a step 

size we chose to go with 2 so that only even values would 

be evaluated. We have a set up a genetic algorithm to 

optimize these parameters using a population size of 100. 

We then proceeded to vary several of the other 

parameters of the genetic algorithm in order to identify a 

good combination. These parameters and their variations 

are shown in Table 1. Because the parameters are 

integers and some of these operators are known from the 

real-valued domain, the results are rounded to the nearest 

feasible integer (also taking step size into consideration). 

 

Table 1: Parameter variation for the genetic algorithm. 

Parameter Variation 

Elites 0, 1 

Crossover Discrete, BLX-0.75-0.25, 

Heuristic, 1-point 

Mutator Uniform, Normal (σ=2) 

Selector Roulette, 2-Tournament 

Muation rate 0.05, 0.15 

 

The total number of variations was 64 and each 

possible configuration was evaluated 10 times. The 

experiment was run on an Intel Core i7 with 4 physical 

(8 virtual) cores each running at 2.6 Ghz. Using parallel 

evaluation of the simulation models an average run of the 

GA took about 17 seconds to evaluate in which around 

100.000 simulation runs have been performed. Executing 
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the algorithm sequentially took about 45 seconds. 

Parallelizing the evaluation thus presented a nice speed 

up which HeuristicLab offers out of the box. 

We did find a strong dependence on the 

performance with respect to the crossover and mutator 

operator that is used. Over the different settings for 

Elites, Selector, and mutation rates the combination of 

BLX-a-b and Normal mutation proved most favorably. 

Figure 1 shows results from this experiment. Each 

combination of crossover and mutator is given on the x-

axis. Because normality cannot be assumed in the present 

data we used non-parametric statistical significance tests 

to further evaluate these results. The Kruskal-Wallis 

analysis of variance is a non-parametric variant of 

ANOVA which can be used if there is a significant 

difference among all tested groups. For our experiment 

we obtained a p-value of 3.01E-30, which suggests a 

significant difference in the groups. A two tailed Mann-

Whitney-U test on the best and second best combination 

results in a p-value of 0.0004 which also indicates a 

statistically significant difference. 

 

7. CONCLUSIONS 

We have shown a new and different approach of mating 

simulation and optimization in a common framework. 

The introduced optimization problem allows to define a 

more complex encoding. We have shown a simple, but 

powerful and fast simulation framework that can be used 

to describe models which are run inside an evaluation 

function. 
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