
INTEGRATED SIMULATION AND OPTIMIZATION IN HEURISTICLAB

Andreas Beham(a, b), Gabriel Kronberger(a), Johannes Karder(a),

Michael Kommenda(a, b), Andreas Scheibenpflug(a), Stefan Wagner(a), Michael Affenzeller(a, b)

(a)) Heuristic and Evolutionary Algorithms Laboratory

School of Informatics, Communication, and Media

University of Applied Sciences Upper Austria,

Softwarepark 11, 4232 Hagenberg, Austria

(b) Johannes Kepler University Linz

Institute for Formal Models and Verification

Altenberger Straße 69, 4040 Linz, Austria

(a) andreas.beham@heuristiclab.com, gabriel.kronberger@heuristiclab.com, johannes.karder@heuristiclab.com,

michael.kommenda@heuristiclab.com, andreas.scheibenpflug@heuristiclab.com,

stefan.wagner@heuristiclab.com, michael.affenzeller@heuristiclab.com

ABSTRACT

Process simulation has many applications that are closely

related to optimization. Finding optimal steering

parameters for the simulated processes is an activity in

which the simulation model is often used as an evaluation

function to an optimization procedure. Combining

optimization and simulation has been achieved in the past

already, however optimization procedures implemented

in simulation software are often only black box solvers

that are difficult to change, extend or parameterize.

Optimization software frameworks on the other hand

host a range of suitable algorithms, but often lack the

ability to describe and run simulation models. Exchange

protocols have been proposed in the past, however the

interchange has still proven to be complex and work on

simplification is ongoing. In this work, we want to pursue

a different approach. We intend to integrate simulation

capabilities into an optimization framework and thus

want to better support applications for simulation-based

optimization. We will describe a suitable generic

simulation framework and its integration into

HeuristicLab. A case study is presented as a

demonstration of its usefulness.

Keywords: simulation, optimization

1. INTRODUCTION

Work on simulation-based optimization procedures is

ongoing and has profited a lot from the steady rise in

available computational power. Simulation models are

complex functions that are time consuming to run. Often

there needs to be a warm-up phase of the model until the

process performance has been stabilized and the

indicators can be computed. This further lengthens the

timespan that the model has to cover and increases the

amount of data that has to be processed. We have

addressed the problem of simulation-based optimization

(Affenzeller et al. 2007), its integration into HeuristicLab

(Wagner et al. 2014) and further developments to generic

and extensible protocols (Beham et al. 2012) with the aim

of supporting parallel model evaluation in order to speed

up the optimization. In this work the aim is to introduce

simulation capabilities into the optimization software

environment HeuristicLab. Instead of having to connect

the optimization software with the simulation

environment we want to allow writing and evaluating

models in HeuristicLab more easily, especially those that

are tied to optimization problems. This should facilitate

the application of simulation-based optimization for

smaller projects, academic examples, as well as more

complex simulation models. For this purpose we have

added a simulation core to the HeuristicLab framework

that supports modeling and execution of simple and

complex simulation models.

2. RELATED AND PREVIOUS WORK

This field has been actively researched for several years

and a number of solutions have emerged. There are many

commercial simulation frameworks that feature

embedded optimizers, e.g. AnyLogic or FlexSim which

include OptQuest (Laguna and Marti 2002). There are

optimization frameworks that must be connected with

simulation frameworks through generic interfaces such

as HeuristicLab or GenOpt (Wetter 2001). Finally,

software is available which allows performing

simulation and optimization. For instance, MATLAB

(http://www.matlab.com) includes SimuLink and also

provides optimization algorithms in the global

optimization toolbox. SciLab (http://www.scilab.org) is

an open source environment for numerical computation

that includes the Xcos simulator and features basic

optimization algorithms such as genetic algorithms and

simulated annealing. ECJ is another Java-based

optimization framework that connects well with the

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

418

mailto:andreas.beham@heuristiclab.com
mailto:gabriel.kronberger@heuristiclab.com
mailto:johannes.karder@heuristiclab.com
mailto:michael.kommenda@heuristiclab.com
mailto:andreas.scheibenpflug@heuristiclab.com
mailto:stefan.wagner@heuristiclab.com
mailto:michael.affenzeller@heuristiclab.com
http://www.matlab.com/
http://www.scilab.org/

MASON simulation framework, both having the same

creators. Finally, a large number of optimization

frameworks exist which feature real-valued

optimization, multi-objective problems and include

classical operations research problems from the domain

of production, logistics, and supply chain. However often

functionality for integration with simulation

environments is missing. A review can be found in

(Parejo et al. 2012).

3. INTEGRATED SIMULATION FRAMEWORK

One major requirement for choosing a simulation

framework to integrate in HeuristicLab is the

programming language. The framework has to be

implemented in a language that can be used within the

.Net framework. Otherwise, it is required to cross the

language boundary by e.g. serializing to a common

format which is precisely what was already realized in

(Beham et al. 2012). These languages should ideally be

native languages to the .Net Framework such as C#, F#

or VB.Net.

From the many existing simulation frameworks that

seem suited for integration we chose to go with SimPy

(Matloff 2008), more specifically the current version

SimPy 3, available at http://pypi.python.org/pypi/simpy/.

In evaluating the framework we found that the models

expressed with SimPy can be short, clear, and self-

descriptive. Additionally, researchers have since created

more specific layers to the rather slim core, e.g. ManPy

“Manufacturing in Python” for manufacturing simulation

(Dagkakis et al. 2013) which is developed within the EU

FP7 funded project DREAM (http://dream-

simulation.eu/). A model’s processes can be described in

SimPy by writing a program, however the model can be

expressed without boilerplate code and without using a

complex object-oriented design. As the name suggests

the framework is written in Python and can be integrated

in HeuristicLab via IronPython (http://ironpython .net/)

as described in (Beham et al. 2014). However, we noted

that some models are rather slow to execute using

IronPython and so we created a C# port of SimPy which

we termed Sim# and which is available on GitHub

(https://github.com/abeham/SimSharp). An implement-

tation of an m/m/1 queuing model in Sim# is given in

Listing 1.

Processes in this framework are defined as .Net

iterators, similarly to SimPy where they are described as

Python generators. The process runs until a “yield return”

statement is reached where it awaits the yielded event.

After the event has been completed the process wakes up

and continues to run until the next “yield return”

statement or terminates. Termination of processes is also

an event so that processes can wait on other processes. In

the described case in Listing 1 the process is not yielded,

thus process MM1Q does not wait on its termination. The

environment maintains the current time as well as the

event queue in which the events are inserted.

The Sim# framework makes it rather easy to

describe simple models with very few lines of code - in

SimPy it would be even slightly less code as it does not

require variable declaration, types or visibility

declarations. Having to deal with statically typed

languages creates some overhead, however as Sim#

models are compiled they are faster to execute,

something which is relevant for simulation-based

optimization.

static Environment env;
static Resource server;
static TimeSpan arrival_time = …
static TimeSpan proc_time = ...
static TimeSpan simulation_time = ...

static IEnumerable<Event> MM1Q() {
 while (true) {
 yield return env.TimeoutExponential(arrival_time);
 env.Process(Item());
 }
}

static IEnumerable<Event> Item() {
 using (var s = server.Request()) {
 yield return s;
 yield return env.TimeoutExponential(proc_time);
 }
}

public static void Main(string[] args) {
 env = new Environment(randomSeed: 42);
 server = new Resource(env, capacity: 1);
 env.Process(MM1Q());
 env.Run(simulation_time);
}

Listing 1: Queuing model implemented with Sim#.

4. SIMULATION OPTIMIZATION PROBLEM

Writing models in code is a very natural way for

programmers and software developers. It is also natural

for researchers in the field of mathematical optimization

to express fitness functions and constraints as code, such

as e.g. a linear program expressed in CPLEX. In a similar

sense the integration of such models in HeuristicLab and

the task of optimizing their parameters should also

remain simple and powerful.

The main use of Sim# simulation models will be in

place of an evaluation function. Instead of evaluating a

mathematical expression for a given solution, the

simulation model should be initialized and run. The

performance criteria that result from the model can then

be used to form a fitness value which should be either

maximized or minimized by the algorithm.

To provide such an integration we have extended

HeuristicLab with the introduction of a programmable

optimization problem. This problem allows the user to

specify the configuration in terms of binary, integer, real,

and permutation parameters that have to be optimized.

There can be an arbitrary number of parameters, each of

them having a name that needs to be unique for this

configuration. Integer and real parameters are defined in

a certain interval, and for integer parameters a step size

can be configured for coarse discretization. Permutation

parameters define a length for each permutation and a

type on how it may be interpreted (absolute, relative

directed, or relative undirected). In a second method the

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

419

http://pypi.python.org/pypi/simpy/
http://dream-simulation.eu/
http://dream-simulation.eu/
https://github.com/abeham/SimSharp

user can then specify the evaluation function which

receives a ParameterVector that acts as a container for

this configuration and that allows to access the

parameters’ values. The evaluation function also receives

a random number generator which can be used for

example for stochastic simulation models.

The configuration specifies the solution space,

while the parameter vector denotes a concrete solution

that the algorithm has identified and should be evaluated.

An implementation of a function minimization problem

in form of a programmable problem is given in Listing 2.

In the evaluation function, any kind of C# code can be

executed, including the initialization and execution of

simulation models which will be the main interest of this

paper.

public class Fmin : ISingleObjectiveProblemDefinition {
 public bool IsMaximizationProblem {
 get { return false; }
 }
 public Configuration GetConfiguration() {
 return new Configuration()
 .AddReal("r", length: 5, min: -10.0, max: 10.0);
 }
 public double Evaluate(IRandom random,
 ParameterVector vector) {
 var quality = 0.0;
 quality = vector.Real("r").Select(x => x * x).Sum();
 return quality;
 }

}

Listing 2: Implementation of a simple function

minimization problem in form of a programmable

problem. The parameter configuration and the evaluation

function need to be defined.

In addition to the objective function and the

encoding, a number of manipulation operations must also

be defined that perturb the solution. Different

metaheuristics such as genetic algorithms require certain

perturbation operators, e.g. crossover and mutation.

These operators are automatically configured with

default values and can be changed by the user.

This configuration is not trivial however and

demands a closer look: The problem class reacts on each

change to the script in that it tries to compile the script,

instantiate the class and retrieve the configuration from

the instance. For each of the parameters defined in this

configuration, the problem will then create a solution

creator and lookup the relevant operators. It will

configure the solution creators in HeuristicLab to create

the variable with the specified name and all the operators

to modify that variable. There are two distinct cases to

mention:

1. A single parameter type is chosen, e.g. only a

vector of real values.

2. Multiple parameter types are combined, e.g. a

vector of real values and a binary vector.

This distinction is important as in the first case the

problem may be solved by algorithms which can handle

the specific encoding. For a real vector, e.g. the CMAES

implementation in HeuristicLab could be applied. In the

second case the algorithms would need to support a

combined encoding which is realized currently only for

variants of genetic algorithms.

5. CASE STUDY: SUPPLY CHAIN

Supply chain management is concerned with the flow of

goods. Along the supply chain excessive demands and

backlog should be avoided, inventory costs and service

times should remain low. The famous beer game

(Hammond 1994) allows students to explore the effects

of demand propagation in a supply chain that consists of

4 echelons and fixed customer demand at the end of the

chain. The demand is usually constant for a few periods,

but raises after a while. Typically the game is played by

students on a table where they should experience the

bullwhip effect (Lee et al. 1997) which means that the

orders along the chain increasingly start to fluctuate. The

factory has to cope with order sizes that bear no relation

to the customer demand. This in turn creates a very costly

supply chain as inventory levels and backlogs become

very high. In this case study, the computer will control

the orders using the well-known (S, s) order policy (Scarf

1993) and the parameters will be adjusted by the

optimization algorithm. A bad setting of the parameters

could result in high costs.

The supply chain consists of 4 echelons which are

the factory, the regional distributor, the wholesaler, and

the retailer. In each stage the orders will be placed to the

next stage. The retailer orders from the wholesaler which

in turn orders from the distributor which again orders

from the factory. Customers arrive at the retailer and

attempt to buy the goods or place an order in case the

goods are not available. An order will have to be served

as one delivery, order splitting and partial delivery is not

considered.

The (S, s) order policy controls the minimum stock

level at which an order will be placed (s), as well as the

maximum amount of stock that should be kept (S). The

difference between S and s basically determines the order

size, although already placed orders and the backlog is

taken into account. At any given time, if Stock +

ExpectedDeliveries – BacklogOrders becomes smaller or

equal to s a demand arises which will be placed to the

next stage in the supply chain.

The model, as implemented in Sim# is given in

Listing 4. Again, an advantage of Sim# and also SimPy

is the textual representation of models which makes it

easy to include them together with the publications, e.g.

in an appendix if the model is larger.

class SupplyChain : SimSharp.Environment {
 public Echelon Factory;
 public Echelon Distributor;
 public Echelon Wholesaler;
 public Echelon Retailer;
 private bool mainSeason;

 public SupplyChain(DateTime start, IntegerVector sS)
 : base(start) {
 Factory = new Echelon(this, 15, null,
 sS[3], sS[3] + sS[7]);

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

420

 Distributor = new Echelon(this, 15, Factory,
 sS[2], sS[2] + sS[6]);
 Wholesaler = new Echelon(this, 15, Distributor,
 sS[1], sS[1] + sS[5]);
 Retailer = new Echelon(this, 15, Wholesaler,
 sS[0], sS[0] + sS[4]);

 Process(Season());
 Process(Simulation());
 }

 IEnumerable<Event> Simulation() {
 for (int i = 0; i < 50; i++) {
 Process(Round());
 yield return TimeoutD(1);
 }
 }

 IEnumerable<Event> Round() {
 var demand = mainSeason ? 9 : 5;
 var beer = Process(Retailer.Deliver(demand));
 Retailer.CalculateCosts();
 Wholesaler.CalculateCosts();

 Distributor.CalculateCosts();
 Factory.CalculateCosts();
 Process(Retailer.Order());
 Process(Wholesaler.Order());
 Process(Distributor.Order());
 Process(Factory.Order());

 yield return beer;
 }

 IEnumerable<Event> Season() {
 yield return TimeoutD(5);
 mainSeason = true;
 }
}

class Echelon {
 SupplyChain env;
 Echelon supplier;
 double s, S;
 public Container Stock;
 public double BacklogOrders, BacklogDeliveries;
 public double BacklogCosts, InventoryCosts;

 public Echelon(SupplyChain env, double initialStock,
Echelon supplier, double s, double S) {
 this.env = env;
 this.Stock = new Container(env, initial: initialStock);
 this.supplier = supplier;
 this.s = s;
 this.S = S;
 }

 public IEnumerable<Event> Order() {
 var newStock = Stock.Level + BacklogDeliveries -
 BacklogOrders;
 if (newStock <= s) {
 var d = S - newStock;
 if (d > 0) {
 if (supplier != null) {
 var shipment = env.Process(supplier.Deliver(d));
 BacklogDeliveries += d;
 yield return shipment;
 var delivery = (ContainerGet)shipment.Value;
 Stock.Put(delivery.Amount);

 } else { // factory
 BacklogDeliveries += d;
 yield return env.TimeoutD(2); // produce

 Stock.Put(d);
 }
 }
 BacklogDeliveries -= d;
 }
 }

 public IEnumerable<Event> Deliver(double amount) {
 BacklogOrders += amount;
 var delivery = Stock.Get(amount);
 yield return delivery;
 BacklogOrders -= amount;
 yield return env.TimeoutD(2); // transport
 env.ActiveProcess.Succeed(delivery);
 }

 public void CalculateCosts() {
 BacklogCosts += BacklogOrders;
 InventoryCosts += 0.5 * Stock.Level;
 }
}

Listing 3: The model of the beer game supply chain

implemented in Sim#. This is the full model description,

the s and S parameters are given in an IntegerVector

which is a HeuristicLab datastructure.

6. OPTIMIZATION

The solution to this parameterization problem can be

described in terms of 8 integer parameters. We chose the

first 4 items to represent s while the last 4 items denote

𝑆 − 𝑠. This is chosen in order to avoid a constrained

optimization problem, because obviously it must hold

that 𝑠 ≤ 𝑆. The bounds have been chosen as [2;100] for

the first 4 items and [0;100] for the last 4 items. As a step

size we chose to go with 2 so that only even values would

be evaluated. We have a set up a genetic algorithm to

optimize these parameters using a population size of 100.

We then proceeded to vary several of the other

parameters of the genetic algorithm in order to identify a

good combination. These parameters and their variations

are shown in Table 1. Because the parameters are

integers and some of these operators are known from the

real-valued domain, the results are rounded to the nearest

feasible integer (also taking step size into consideration).

Table 1: Parameter variation for the genetic algorithm.

Parameter Variation

Elites 0, 1

Crossover Discrete, BLX-0.75-0.25,

Heuristic, 1-point

Mutator Uniform, Normal (σ=2)

Selector Roulette, 2-Tournament

Muation rate 0.05, 0.15

The total number of variations was 64 and each

possible configuration was evaluated 10 times. The

experiment was run on an Intel Core i7 with 4 physical

(8 virtual) cores each running at 2.6 Ghz. Using parallel

evaluation of the simulation models an average run of the

GA took about 17 seconds to evaluate in which around

100.000 simulation runs have been performed. Executing

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

421

the algorithm sequentially took about 45 seconds.

Parallelizing the evaluation thus presented a nice speed

up which HeuristicLab offers out of the box.

We did find a strong dependence on the

performance with respect to the crossover and mutator

operator that is used. Over the different settings for

Elites, Selector, and mutation rates the combination of

BLX-a-b and Normal mutation proved most favorably.

Figure 1 shows results from this experiment. Each

combination of crossover and mutator is given on the x-

axis. Because normality cannot be assumed in the present

data we used non-parametric statistical significance tests

to further evaluate these results. The Kruskal-Wallis

analysis of variance is a non-parametric variant of

ANOVA which can be used if there is a significant

difference among all tested groups. For our experiment

we obtained a p-value of 3.01E-30, which suggests a

significant difference in the groups. A two tailed Mann-

Whitney-U test on the best and second best combination

results in a p-value of 0.0004 which also indicates a

statistically significant difference.

7. CONCLUSIONS

We have shown a new and different approach of mating

simulation and optimization in a common framework.

The introduced optimization problem allows to define a

more complex encoding. We have shown a simple, but

powerful and fast simulation framework that can be used

to describe models which are run inside an evaluation

function.

ACKNOWLEDGMENTS

The work described in this paper was done within the K-

Project Heuristic Optimization in Production and

Logistics (HOPL) sponsored by the Austrian Research

Promotion Agency (FFG).

REFERENCES

Affenzeller, M., Kronberger, G., Winkler, S., Ionescu,

M., Wagner, S., 2007. Heuristic Optimization

Methods for the Tuning of Input Parameters of

Simulation Models. In Proceedings of I3M 2007,

DIPTEM University of Genova, 278-283.

Affenzeller, M., Winkler, S., Wagner, S., Beham, A.,

2009. Genetic Algorithms and Genetic

Programming - Modern Concepts and Practical

Applications. Chapman & Hall/CRC. ISBN 978-

1584886297.

Beham, A., Pitzer, E., Wagner, S., Affenzeller, M.,

Altendorfer, K., Felberbauer, T., Bäck, M., 2012.

Integration of Flexible Interfaces in Optimization

Software Frameworks for Simulation-Based

Optimization. In: Companion Publication of the

2012 Genetic and Evolutionary Computation

Conference, GECCO'12 Companion, July,

Philadelphia, PA, USA, 125-132.

Beham, A., Karder J., Kronberger, G., Wagner, S.,

Kommenda, M., Scheibenpflug, S., 2014. Scripting

and Framework Integration in Heuristic

Optimization Environments. In: Companion

Publication of the 2014 Genetic and Evolutionary

Computation Conference, GECCO'14 Companion,

July, Vancouver, CA.

Dagkakis, G., Heavey, C., Robin, S., Perrin, J., 2013.

ManPy: An Open-Source Layer of DES

Manufacturing Objects Implemented in SimPy. In:

Proceedings of the 2013 8th EUROSIM Congress

on Modelling and Simulation, September, Cardiff,

Wales, UK, 357-363.

Hammond, J.H., 1994. "Beer Game, The: Board

Version." Harvard Business School Background

Note 694-104, June 1994 (revised October 1999).

Laguna, M., Marti, R., 2002. The OptQuest callable

library. In Optimization software class libraries

193-218. Springer US.

Lee, H.L., Padmanabhan, V., Whang, S., 1997. The

Bullwhip Effect in Supply Chains. Sloan

Management Review 38 (3), 93–102.

Matloff, N., 2008. Introduction to Discrete-Event

Simulation and the SimPy Language. Davis, CA.

Dept of Computer Science. University of California

at Davis. Available from:

http://heather.cs.ucdavis.edu [accessed 9 July

2014]

Parejo J. A., Ruiz-Cortés A., Lozano, S., Fernandez, P.,

2012. Metaheuristic optimization frameworks: a

Figure 1: Boxplot of different combinations of crossover and mutation operators for optimizing the order policy parameters.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

422

survey and benchmarking. Soft Computing, 16(3),

527-561.

Scarf, H., 1993. The Optimality of (S, s) Policies in the

Dynamic Inventory Problem. Optimal pricing,

inflation, and the cost of price adjustment, 49-56.

Wagner, S., Kronberger, G., Beham, A., Kommenda, M.,

Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler,

M., Winkler, S., Dorfer, V., Affenzeller, M., 2014.

Architecture and Design of the HeuristicLab

Optimization Environment. In Advanced Methods

and Applications in Computational Intelligence,

Topics in Intelligent Engineering and Informatics

Series, 197-261. Springer

Wetter, M., 2001. GenOpt - A generic optimization

program. In Proceedings of the 7th IBPSA

Conference, 601-608, August, Rio de Janeiro,

Brazil.

AUTHORS BIOGRAPHY

ANDREAS BEHAM received his Master in computer

science in 2007 from JKU Linz, Austria, and is a research

associate at the Research Center Hagenberg. His research

interests include metaheuristic methods applied to

combinatorial and simulation-based problems. He is a

member of the HeuristicLab architects team.

GABRIEL KRONBERGER received his PhD in

engineering sciences in 2010 from JKU Linz, Austria,

and is a professor at the campus Hagenberg. His research

interests include genetic programming, machine

learning, and data mining. He is a member of the

HeuristicLab architects team.

JOHANNES KARDER is pursuing his master study of

software engineering at the University of Applied

Sciences Upper Austria and is a research associate at the

Research Center Hagenberg. He is a member of the

HeuristicLab development team.

MICHAEL KOMMENDA received his Master in

bioinformatics in 2007 from the University of Applied

Sciences Upper Austria, and is a research associate at the

Research Center Hagenberg. His research interests

include genetic programming and data mining. He is a

member of the HeuristicLab architects team.

ANDREAS SCHEIBENPFLUG received his Master in

software engineering in 2011 from the University of

Applied Sciences Upper Austria, and is a research

associate at the Research Center Hagenberg. His research

interests include parallel and distributed computing. He

is a member of the HeuristicLab architects team.

STEFAN WAGNER received his PhD in technical

sciences in 2009 from the Johannes Kepler University

Linz, Austria. He is a professor at the University of

Applied Sciences Upper Austria, Campus Hagenberg.

He is the project manager and head developer of the

HeuristicLab optimization environment.

MICHAEL AFFENZELLER has published several

papers, journal articles and books dealing with

theoretical and practical aspects of evolutionary

computation, genetic algorithms, and meta-heuristics in

general. In 2001 he received his PhD in engineering

sciences and in 2004 he received his habilitation in

applied systems engineering, both from the Johannes

Kepler University of Linz, Austria. Michael Affenzeller

is professor at UAS, Campus Hagenberg.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

423

