
MODELING THE MULTI-COMPARTMENT VEHICLE ROUTING PROBLEM WITH

STOCHASTIC DEMANDS

Jan Melechovský
(a)

(a)Department of Econometrics, University of Economics, náměstí W. Churchilla 4, 130 67 Prague 3, Czech Republic

(a)jan.melechovsky@vse.cz

ABSTRACT

Vehicle routing problems represent a class of

combinatorial optimization problems widely studied in

the literature. Practical applications often involve a level

of uncertainty, which complicates the decision making

process. This paper presents two models of the multi-
compartment vehicle routing problem with stochastic

demands (MCVRPSD). The problem consists in finding

a minimum cost set of vehicle routes serving a set of

customers. Each customer can require the delivery of m

products. The products must be transported in different

compartments due to their physical incompatibility. The

problem is modeled as a stochastic program with

recourse. The recourse action consists in a return to the

depot vertex whenever the servicing vehicle cannot

satisfy the customer’s demand for a particular product.

In an alternative model the failure can also occur due to
time constraints. A hybridized evolutionary algorithm is

presented to address the problem.

Keywords: vehicle routing, stochastic programming,

metaheuristic, multiple compartments

1. INTRODUCTION

The multi-compartment vehicle routing problem

(MCVRP) extends the classical formulation of the

vehicle routing problem (VRP). In the VRP, a set of

customer nodes is given. Each customer requires the
delivery of a nonnegative quantity of a product. A

vehicle fleet situated at a depot node is available to

service the customers. In the classical formulation of the

VRP, the vehicle fleet is unlimited and homogeneous,

i.e. all vehicles have equal capacity. The solution of the

VRP consists in determining a minimum cost set of

vehicle routes satisfying the total demand of each

customer. Each route is originating and ending at the

depot node and respects the capacity of a vehicle. The

VRP was first formulated by Dantzig and Ramser

(1959). A survey on VRP applications and solution

approaches can be found in e.g. Toth and Vigo (2002)
or Golden et al. (2008). The VRP is a NP-hard problem

since it generalizes the well-known travelling salesman

problem. Exact algorithms are limited to instances of a

moderate size. Hence metaheuristic algorithms have

been proposed to address VRPs of a larger size.

In the MCVRP, each customer can require the

delivery of multiple products. The products have

specific characteristics and cannot be transported

together in one room. Each vehicle is therefore

equipped with multiple separated compartments, each

dedicated to transport a particular product. In the basic
formulation of the MCVRP the vehicle fleet is again

assumed to be unlimited and homogeneous. The

objective is to satisfy all customer demands at minimum

cost. Each product must be transported in the right

vehicle compartment and the capacity of each

compartment must be respected. Each vehicle route

starts and ends at the depot. In the MCVRP, the

delivery of two different products can be done in two

separate routes. This feature is called partial split of the

delivery.

A typical application of the MCVRP is e.g. the
delivery of petroleum products to petrol stations using

tank trucks with several compartments (see e.g. Avella

et al. (2004), Brown and Graves (1981), Brown et al.

(1987). In this application, the demand of a customer

for a particular petrol type is quite large and often

saturates the whole compartment capacity. The main

problem then consists of determining the assignment of

requests to tank trucks, such that the available capacity

is used optimally. The routing part of the problem is

then relatively easy since a TSP with a small number of

stops is solved for each truck separately. Another
practical application is the delivery of groceries to

convenience stores Chajakis and Guignard (2003). Each

product requires different temperature, e.g. low and

ambient temperature compartments must be used.

Customers have limited inventory capacities and small

but frequent orders are therefore preferred. Animal food

distribution to farms is an example of the MCVRP

addressed by El Fallahi et al. (2008). The authors

modeled the case when the food must be transported

separately for certain types of animals due to sanitary

reasons. The MCVRP can also model systems of waste

co-collection when different types of waste can be
collected using vehicles with multiple compartments

Muyldermans and Pang (2010).

 Practical applications of routing problems often

involve a level of uncertainty in the input data. Such a

situation arises when the demand of customer is rather a

random variable than a deterministic value. The

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

410

mailto:jan.melechovsky@vse.cz

MCVRP with stochastic demands (MCVRPSD) models

this issue. For each customer, the demand for a given

product is a random variable with a known probability

distribution characterized with a mean and a deviation.

The real demand is always nonnegative and is less than

or equal the vehicle capacity Qp. However, the exact
demand is known only upon vehicle’s arrival to the

customer.

 The basic modeling approaches to stochastic

routing problems can be classified into static or

dynamic models. Routing decisions in dynamic models

are performed in multiple stages and depend on prior

demands realizations. A re-optimization action is taken

at each stage depending on the remaining vehicle

capacity and set of unserved customers. An example of

a dynamic model is the Markov Decision Process

proposed by Secomandi and Margot (2009).

 In the static model, routing decisions remain
unchanged. This approach is more convenient for

difficult-to-solve problems since the problem is solved

only once. A typical static stochastic routing model

consists of two stages. In the first stage an a priori

solution is calculated while in the stage the routes are

executed. In case of a route failure, e.g. the vehicle does

not have enough quantity of a particular product to

satisfy the total demand of a customer, a recourse action

is performed. The recourse action may e.g. consist in a

return trip to the depot, refill of the vehicle

compartments up to their capacity, and a resume trip
back to the customer node where the failure occurred. A

two stage stochastic programming model for the

MCVRPSD was proposed by Mendoza et al. (2010).

 This paper presents a two-stage stochastic

programming model for the MCVRPSD. A solution

based on the expected demand quantities is determined

in the first stage. The presented model of the problem

considers two particular situations. In the first case the

stochastic demand affects only the available quantity of

a particular product to be delivered. The solution must

be adapted so that all customers receive their demanded

quantities. In the alternative model, the factor of time is
additionally taken into account. The total time duration

of a route is limited to Tmax while the unloading time si

at customer i is a function of the unloaded quantity.

2. PROBLEM MODEL

The problem is defined on undirected graph G(V,E),

where V={0,1,2,…,n-1} denotes the set of n nodes and

E denotes the set of edges. The subset N = V \ {0}

represents the customers indexed from 1 to n-1 while

the index 0 is reserved for the depot node. Each

customer i ϵ N can require the delivery of a nonnegative
quantity qip of product p ϵ P. If qip = 0 the product is not

ordered by the customer. The number of products is

denoted m in the sequel. In the stochastic model, the

demand of customer i for product p is a random variable

λi,p with a known probabilistic distribution with mean

μi,p and standard deviation σi,p. The exact value of qip is

therefore known only upon vehicle’s arrival to i. A

service time sip = α∙qip is associated with the delivery of

product p to customer i. α is a constant value

representing the time needed to unload one unit of a

product. A fleet K of identical vehicles based in the

depot is available to service the customers. Each vehicle

is equipped with m compartments. Each compartment

has a fixed capacity Qp to accommodate product p. Each

edge e(i,j) ∈ E is associated with travel cost cij and

travel time tij. Both values are assumed to be

nonnegative and both sets of values satisfy the triangle

inequality. The solution of the MCVRP consists in

determining a set of vehicle routes, each route starting

and ending at the depot, such that the demands of each

customer are totally satisfied, the capacities of each

vehicle are respected and the total travel cost is

minimized. The problem is NP-hard since it extends the

classical VRP.

 The two stage stochastic programming model for
the MCVRPDS was proposed in Mendoza et al. (2010).

Let S be the planned (a priori) solution consisting of ns

routes. Each route r ∈ S starts and ends at the depot and

visits a sequence of customers (v1, v2,…,vl). The total

cost of the solution in the second stage is given by the

equation:

 () ∑

 ∈

 ∑ (⃗)

 ∈

 (1)

where Cr is the planned cost of route r and () is the

cost of route failure (recourse).

Then the problem to solve in the first stage is to

determine the set of routes S minimizing the expected

cost:

 () ∑

 ∈

 ∑ (⃗)

 ∈

 (2)

The maximum route duration constraints can be

expressed as follows:

 [(⃗)] [(⃗)]

 ∈ (3)

where Tr denotes the travel time of the planned route r,

Gr() the time of the recourse trips and Hr() the

expected unloading time that is counted for r.
The cost of the recourse depends on the failure

probability Pr(vi) at customer vi and the cost c0i:

 (⃗) ∑
 ()

 (4)

 Analogically, the time of the recourse can be

calculated as:

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

411

 (⃗) ∑
 ()

 (5)

For the calculation of the failure probability Pr(vi)

at node vi, Mendoza et al. (2010) proposed the

following approximation scheme:

 ()

 ∑[∏ ()

 ∏ ()

] ()

(6)

The term () expresses the

cumulative probability that the demand for product p

between nodes at positions j+1 and i-1 does not exceed

the capacity Qp of the corresponding vehicle

compartment. Hence the first product approximates the

probability that the routes remains feasible after

servicing customers vj+1,…,vi-1. Similarly, the second

product approximates the probability that the route

remains feasible after servicing customer vi.

Finally, the expected unloading time depends on

the unloaded quantity at each node:

 (⃗) ∑ ∑

 (7)

3. THE MULTI-START EVOLUTIONARY

ALGORITHM

The evolutionary local search method (ELS) was

originally proposed by Merz and Wolf (2007) for a

peer-to-peer problem in telecommunications. It extends

the classical iterated local search (ILS). A detailed

description of the ILS can be found in Lourenço et al.

(2003). The ILS, given an incumbent solution s,

successively generates child solutions using a

perturbation mechanism and a local search. At each

iteration, s is updated with a child solution only if some

acceptance criterion is met. The perturbation
mechanism serves as a diversification tool while the

local search intensifies the search in the current solution

neighborhood. The ELS additionally generates multiple

child solutions at one iteration. Only the best child

solution is kept and it becomes the incumbent solution s

only if it fulfills the acceptance criterion.

 The multi-start feature extends the capability of

ELS. It can be viewed as the greedy randomized

adaptive search procedure (GRASP) in which the local

search is implemented as the ELS. In the MS-ELS the

search is restarted with a randomized initial solution

each time when the algorithm is being trapped in the

local optimum. The original idea of multi-start ELS

(MS-ELS) is due to Prins (2009).

 The MS-ELS is used to solve the first stage

problem minimizing the expected cost E[C(S)]. The

algorithm implementation is shown in Algorithm 1.

First the total iterations counter tc and the non-

improving iterations counter ni are initialized with 0.

Multiple restarts of the algorithm with a different

incumbent solution s are ensured by the main loop

between lines 3 – 31. The solution diversity within each

restart is ensured with a randomized initial heuristic
using a randomization parameter ρ denoting the number

of admissible extensions of a partial solution at an

iteration of the initial heuristic. The first initial solution

is obtained with no randomization (ρ = 1). The best

solution s* is initialized at the beginning of the first

iteration with the initial solution. The perturbation

parameter π of the ELS is set to its minimum value πmin.

This parameter controls the perturbation strength and it

is dynamically updated during the run. The ELS (lines 9

– 30) performs at most Ne iterations. At every ELS

iteration, Nc child solutions are generated using the

Algorithm 1. The Multi-Start Evolutioary Local Search

1: tc ← 0

2: ni ← 0

3: repeat

4: if tc = 0 then ρ ← 1

5: else ρ ← ρmax

6: s ← Randomized_Initial_Heuristic(ρ)
7: if tc = 0 then s* ← s

8: π ← πmin

9: for Ne iterations do

10: cs* ← ∅
11: Cost(cs*) ← ∞

12: for Nc child solution iterations do

13: cs ← s

14: cs’ ← Perturbation(cs, π)

15: cs’’ ← Local_Search(cs’)

16: if Cost(cs’’) < Cost(cs*) then
17: cs* ← cs’’

18: endif

19: tc ← tc + 1

20: if Cost(cs*) < Cost(s*) then

21: ni ← 0

22: s* ← cs’’

23: else ni ← ni + 1

24: if tc ≥ Nt or ni ≥ NIt goto line 31

25: endfor

26: if Cost(cs*) < Cost(s) then

27: π ← πmin

28: s ← cs*
29: else π ← min(π + 1, πmax)

30: endfor

31: until tc ≥ Nt or ni ≥ NIt

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

412

perturbation mechanism and the local search. Only the

best child solution cs* among all child solutions

generated is kept in the memory. In case it improves

also the global best solution s* the latter is updated with

cs* and ni is set to 0. The algorithm can be terminated

prematurely if one of the iterations counter attains its
maximum limit. If cs* improves the incumbent solution

s, it is updated with cs* and π is reset to πmin. Otherwise

π is incremented. The algorithm stops when either tc

reaches the number of maximum total iterations Nt or ni

reaches the number of maximum non-improving

iterations NIt.

The key components of the MS-ELS are the

randomized initial heuristic, perturbation mechanism

and a local search mechanism. The following

subsections provide implementation details of each

component.

3.1. Initial heuristic
The initial solution is obtained with a simple

construction heuristic. The solution is initialized with an

empty route. Then all customers with some unsatisfied

demand are scanned and the best insertion of a customer

into a route is determined. If the customer cannot be

inserted into any already existing route, the insertion

into a new route is considered instead. The criterion for

the insertion is the least increase of travel costs. The

procedure terminates when the demand of all customers

is fully satisfied. The method is randomized with a

parameter ρ denoting the number of best insertions (in
terms of insertion cost) determined in each iteration

which are recorded into a list. The insertion which is

finally performed is selected randomly from that list.

3.2. Perturbation

The perturbation mechanism is one of the two routines

of ELS that modify the incumbent solution. It plays the

role of a diversification tool in the general ELS

framework since it performs several random operations

on a solution. Thus it can be interpreted as a mutation

operator used in genetic algorithms. The procedure is

controlled with a parameter π denoting the number of

operations to be performed. In our implementation the
operation is a removal and relocation of a customer.

Given a route r in the solution, π customer nodes are

randomly selected and removed from r.

Each of the π removed customers is then tested for

a feasible insertion into some of the remaining routes of

the solution. If such feasible insertion is detected, the

customer is relocated to its new position. If not, new

route visiting only this single customer is added to the

solution.

3.3. Local search

Local search is applied to the solution modified by the
perturbation mechanism. Its purpose is to improve the

solution using a set of operators. It intensifies the search

and the improved solution represents a local optimum

within the given solution neighborhood. Together with

the perturbation mechanism it enables the algorithm to

explore effectively the solution space and find

potentially good solutions.

The implemented local search procedure relies on

three operators:

a) 2-opt – replaces two arcs and reorders nodes,

b) Path Exchange – interchanges two sub-paths
between two routes,

c) Relocate – relocates a sequence of nodes

within the same route or between two routes,

d) Swap – swaps two sequences of nodes between

two routes.

Moreover, Relocate and Swap can operate with

sequences of k consecutive nodes in a route instead of

one single customer. The parameter k defines the size of

the neighborhood to be explored. Starting with k = 1,

the size is dynamically increased up to a maximum

possible value kmax if no improvement was found with
the current value of k.

The operators are illustrated in Figures 1 – 6. Each

operator replaces a certain number of arcs in the

solution. The cancelled arcs are depicted with dashed

lines. 2-opt in Figure 1 operates on a single route. It

replaces a pair of arcs and reorders the intermediate

sequence of customers. Path Exchange in Figure 2 is a

variation of 2-opt but it operates on a pair of routes. It

replaces one arc in each route and the order of

customers remains preserved. Relocate can operate on a

single route (Figure 3) or on a pair of routes (Figure 4).
This operator replaces three arcs. Finally, Swap replaces

four arcs either within a single route or a pair of routes.

The operator is depicted in Figure 5 and Figure 6.

Figure 4. Relocate on a pair of routes.

Figure 1. 2-opt exchange.

Figure 2. Path exchange.

Figure 3. Relocate on a single route.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

413

Figure 5. Swap on a single route.

 The operators are applied sequentially in the above

given order with the first improvement strategy i.e.
the first detected improving move is performed. The

search stops when no improving move can be found by

any operator. Each move must be checked for the

feasibility. This involves the time windows as well as

the capacity. The time windows feasibility can be

checked in O(1) if an information of the maximum

feasible shift of each node visit is kept in the memory.

However, the update of this information must be done

for each node and requires O(n). The capacity must be

checked for all vehicle compartments if the move

involves two routes. It can be implemented in O(1).
 Every insertion or removal of a customer requires

the evaluation of the cost difference generated by the

operation. The cost difference is composed of the part

given by the deterministic travel cost and the part

expressing the impact of the operation on the failure

probability. The second part requires the recalculation

for each customer subsequent the operation. Even the

approximation scheme for the evaluation of the failure

probability given by Equation 6 is computationally

expensive. As shown in Mendoza et al. (2010), the

recalculation of the failure probability requires O(mn2).
For this reason the authors suggested to evaluate the

recourse cost only in some cases. In the presented

algorithm, the recourse cost is evaluated only when

selecting the best insertions within the initial heuristic

and the perturbation. The local search procedure relies

only on the deterministic travel cost.

4. COMPUTATIONAL EXPERIMENTS

4.1. Testing environment

Two sets of testing instances for deterministic MCVRP

were proposed by El Fallahi et al. (2008). The authors
derived two data sets from standard VRP instances

available at Beasley’s OR Library

(http://people.brunel.ac.uk/~mastjjb/jeb/). Each dataset

is based on 20 instances. The first 14 instances (vrp1 –

vrp14) contain 50 – 199 customers. The last six

instances contain 76 – 484 customers. In both datasets

the number of products is 2. The first dataset (Set 1) is

derived in a straightforward way: the capacity of

compartments and customer demands is divided into

two equal parts. In the second dataset (Set 2), the

demand qi1 for product 1 is generated randomly for each
i. The demand for the second product is defined as qi2 =

qi – qi1, where qi is the original demand of customer i.

The capacity Q1 of the first compartment is determined

as follows from the average demand ̅ for the first

product, the average demand ̅ for the second product,
and the vehicle capacity Q in the original VRP: Q1 = (Q

× ̅)/(̅ + ̅). The capacity of the second

compartment is given by Q2 = (Q × ̅)/(̅ + ̅).
Mendoza et al. (2010) adapted the instances for the

stochastic MCVRP. The demands follow normal

distribution with for each i ∈ N and p ∈ P.
The standard deviation is calculated as

 . Some instances involve the distance upper limit

implicitly. For the others the limit is
ma ∈ . These instances do not involve the
service time. For the purpose of preliminary tests,
Set 3 has been derived from Set 2. The service time is
defined as sip = α∙qip, where α = 1. The travel time is set

equal to the travel cost (tij = cij e(i,j) ∈ E) and the

maximum time of a route is defined as Tmax = L + α∙

nr∙(̅ + ̅). nr denotes the maximum number of
customers serviced in one route in the best solution of

the original instance in Set 2.

4.2. Parameters setting

The proposed algorithm requires eight parameters to be

set up. The parameters are summarized in Table 1. The

determination of an appropriate set of parameters is not
trivial and the task constitutes a particular part of

computational experiments. Several tests of the MS-

ELS have been therefore carried out on the 14 MCVRP

instances from Set 1. In these preliminary experiments

the demand was considered to be deterministic. Each

instance was solved with 41 different parameter

configurations and each test was executed five times

with various rand seed settings.

Table 1: List of algorithm parameters

Notation Description

Nt Maximum number of total iterations

NIt Maximum number of non-

improving iterations

Ne Number of ELS iterations

Nc Number of child solutions

πmin Minimum value of perturbation

parameter

πmax Maximum value of perturbation

parameter

 ρmax Randomization parameter

 kmax Maximum size of a sequence in

local search (Relocate or Swap)

 The results are shown in Table 2. Columns 2 – 9

present the configuration values. The last two columns

Figure 6. Swap on a pair of routes.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

414

present the average gap to the best known solutions

(BKS) of the concerned instances and the average

running time in seconds respectively. The results are

sorted in non-decreasing order of the average gap

(ranging from 1.9 % to 5.3 %). The selected

configuration is highlighted in bold.

Table 2: Results of MS-ELS obtained with different

parameter configurations
 Nt NIt Ne Nc πmin πmax ρmax kmax Gap cpu

1 1000 800 10 15 1 5 3 3 1.9 313.8

2 1000 800 10 15 1 3 3 3 2.8 283.2

3 1000 800 10 10 1 5 3 3 2.9 296.1

4 1000 800 10 10 1 3 3 3 2.9 291.1

5 500 500 10 10 1 3 3 5 3.0 381.4

6 1000 500 10 15 1 3 3 3 3.0 227.3

7 1000 500 10 10 1 5 3 3 3.0 236.2

8 1000 500 10 15 1 5 3 3 3.0 260.3

9 800 500 10 15 1 5 3 3 3.0 215.2

10 800 500 10 15 1 3 3 3 3.0 225.8

11 800 500 10 10 1 5 3 3 3.1 218.2

12 1000 500 10 10 1 3 3 3 3.1 257.2

13 500 200 10 10 1 3 3 5 3.3 252.4

14 1000 300 10 10 1 5 3 3 3.3 160.5

15 1000 300 10 15 1 5 3 3 3.3 162.2

16 500 500 10 10 1 5 3 3 3.3 158.9

17 500 500 10 15 1 5 3 3 3.3 152.2

18 800 500 10 10 1 3 3 3 3.3 227.0

19 1000 300 10 15 1 3 3 3 3.3 150.3

20 500 500 10 10 1 3 3 4 3.3 252.9

21 500 500 10 15 1 3 3 3 3.4 145

22 500 200 10 10 1 3 3 4 3.6 157.6

23 500 500 10 10 1 3 3 2 3.7 80.5

24 500 200 10 15 1 3 3 3 3.7 101.5

25 800 200 10 15 1 3 3 3 3.7 107.2

26 800 200 10 15 1 5 3 3 3.7 106.6

27 500 200 10 15 1 5 3 3 3.7 102.3

28 200 200 10 10 1 3 3 5 3.8 153.8

29 800 200 10 10 1 5 3 3 3.8 110.3

30 500 200 10 10 1 5 3 3 3.8 106.9

31 1000 300 10 10 1 3 3 3 3.9 161.0

32 500 500 10 10 1 3 3 3 3.9 146.1

33 200 200 10 10 1 3 3 4 4.1 101.6

34 200 200 10 15 1 5 3 3 4.3 59.3

35 200 200 10 15 1 3 3 3 4.3 56.9

36 500 200 10 10 1 3 3 3 4.3 95.2

37 800 200 10 10 1 3 3 3 4.3 104.1

38 500 200 10 10 1 3 3 2 4.4 51.0

39 200 200 10 10 1 5 3 3 4.6 61.9

40 200 200 10 10 1 3 3 3 4.9 59.8

41 200 200 10 10 1 3 3 2 5.3 33.1

 The selection of parameter values was done with

respect to the expected impact on algorithm's

performance. Most attention was therefore given to

parameters Nt and NIt. Contrarily, Ne , πmin and ρmax

were always set to the same values. Ne was fixed to 10
and the reason was that it's impact is strongly correlated

with Nt and Nc . Hence varying these values provided

similar behavior as varying the values of Ne . Regarding

πmin, the performance did not change or it was even

worse for slightly larger values than 1. The

randomization parameter ρmax was set to 3, since larger

values led to initial solutions of poor quality. Nc

alternated between 10 and 15. Lower values than 10 led

to worse results while values significantly larger (about

20 or more) did not bring any positive impact.

Moreover, it would reduce the number of restarts since
the portion of total iterations run on the same starting

solution would increase. The variability of tested values

of πmax and kmax was also quite moderate for similar

reasons. The parameter πmax was tested only with values

3 and 5 and kmax was tested with values 3, 4, and 5.

Larger values of πmax led to equal or worse solutions

while larger values of kmax increased the computing time

significantly.

4.3. Computational experiments

Preliminary computational experiments of the stochastic

version of the proposed MS-ELS were conducted on
instances vrp1 – vrp14 of Set 2 and Set 3. As in

Mendoza et al. (2010), the results were obtained with a

single of the MS-ELS and the stochastic simulation

involved 50 000 scenarios. The algorithm was coded in

C++ and compiled with Embarcadero RAD Studio

2010. The tools provided by the Boost library were used

for statistical calculations and simulations.

The results obtained for Set 2 are summarized in

Table 3. The table compares the performance of the

MS-ELS to the best known solutions including the

estimated cost of recourse over 50 000 replications
reported in Mendoza et al. (2010). Gap is the percentage

difference between the solution obtained with MS-ELS

and the BKS. Computing times in the last column of the

table are in seconds. The solutions found by our MS-

ELS are generally close to the BKSs. The gap ranges

from 0.2 % to 3.5 %. Mendoza et al. (2010) reported the

results for two versions of the memetic algorithm. The

basic version much slower but it calculated most of the

best known solutions. A faster version of their memetic

algorithm represents uses a spare capacity strategy,

which relies on the computation of the deterministic

problem and leaving some spare capacity in each
vehicle compartment. This modification of the

algorithm does not require the costly computations of

the recourse probability and hence it is far more

effective compared to the stochastic version. In Table 3,

our results are compared to the stochastic version of the

memetic algorithm.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

415

Table 3: Results of the MS-ELS on the adapted Set 2

instances

Instance n BKS MS-ELS Gap Time

vrpnc1 50 568.7 569.9 0.2 123.3

vrpnc2 75 976.3 978.3 0.2 198.4

vrpnc3 100 891.8 894.6 0.3 645.3.

vrpnc4 150 1187.3 1198.2 0.9 1230.5

vrpnc5 199 1497.3 1509.5 0.8 2056.7

vrpnc6 50 577.6 586.0 1.5 98.5

vrpnc7 75 1000.9 1020.4 1.9 103.6

vrpnc8 100 922.1 931.3 1.0 289.5

vrpnc9 150 1255.8 1273.2 1.4 432.6

vrpnc10 199 1572.5 1587.3 0.9 1027.1

vrpnc11 120 1259.1 1302.6 3.5 1356.4

vrpnc12 100 999.1 1011.4 1.2 823.6

vrpnc13 120 1558.8 1564.2 0.3 567.2

vrpnc14 100 1027.4 1036.8 0.9 431.8

The second set of computational experiments was

conducted on Set 3. The instances in this set involve the

service time which is spent by the vehicle in the
customer site. Recall that the service is a function of the

unloaded quantity. The results are reported in Table 4.

BKS is the best solution value obtained during five

executions of the algorithm. The column MS-ELS

reports the average value over the five runs. The gap

ranges from 0.8 % to 4.7 %, which can be considered as

an acceptable variance in results obtained in different

runs of the algorithm.

Table 4: Results of the MS-ELS on the adapted Set 3

instances

Instance n BKS MS-ELS Gap Time

vrpnc1 50 577.1 605.5 0.8 142.9

vrpnc2 75 1066.7 1075.8 3.9 231.0

vrpnc3 100 932.2 937.0 4.1 684.6

vrpnc4 150 1189.5 1241.8 3.2 729.4

vrpnc5 199 1642.7 1648.9 2.1 1988.5

vrpnc6 50 628.1 630.7 2.9 102.2

vrpnc7 75 1037.7 1051.1 3.1 61.4

vrpnc8 100 1000.2 1015.1 4.7 401.3

vrpnc9 150 1355.3 1417.0 3.6 537.1

vrpnc10 199 1599.0 1673.1 0.9 1020.4

vrpnc11 120 1357.4 1367.6 3.4 495.8

vrpnc12 100 1053.0 1097.6 1.8 787.2

vrpnc13 120 1620.5 1680.8 1.2 463.4

vrpnc14 100 1079.9 1091.4 0.9 394.8

The experiments on Set 3 are rather preliminary.

Detailed analysis of the impact of a stochastic service

time will be subject of further research. The time limit

Tmax in Set 3 was defined such that the optimal solutions

do not differ too much from Set 2. The solution values

obtained on Set 3 are slightly above the solutions of Set

2.

CONCLUSIONS

This paper presents a MS-ELS algorithm for the

MCVRP with stochastic demands. The solution

approach is based on a two-stage stochastic

programming formulation proposed in Mendoza et al.
(2010). The proposed metaheuristic calculates the

estimate of solution total cost when the demand for

products is a random variable. The algorithm was tested

on benchmarks from the literature. Preliminary results

indicate that the MS-ELS is a competitive algorithm

compared notably to the memetic algorithm proposed

by Mendoza et al. (2010). An extension of the problem

formulation presented in the paper involves variable

service time depending on the unloaded quantity. This

property influences the feasibility of the vehicle route

due to the limit of time imposed. The next logical step

in the problem model will be the inclusion of customer
time windows into the model. The variable service time

will then influence the feasibility of arrivals to customer

sites.

ACKNOWLEDGMENTS

The research was fully supported by the Czech Science

Foundation, project reg. number P402/12/P635. This

financial support is greatly acknowledged.

REFERENCES

Avella P., Boccia M., and Sforza A., 2004. Solving a
fuel delivery problem by heuristic and exact

approaches. European Journal of Operational

Research, 152 (1), 170 – 179.

Brown G. G. and Graves G. W., 1981. Real-time

dispatch of petroleum tank trucks. Management

Science, 27 (1), 19 – 32.

Brown G. G., Ellis C. J., Graves G. W., and Ronen D.

1987. Real-time, wide area dispatch of mobil tank

trucks. Interfaces, 17 (1), 107 – 120.

Chajakis E. D. and Guignard M., 2003. Scheduling

deliveries in vehicles with multiple compartments.

Journal of Global Optimization, 26, 43 – 78.

Dantzig G. B. and Ramser J. H., 1959. The truck

dispatching problem. Management Science, 6 (1), 80–

91.

El Fallahi A., Prins C., and Wolfler Calvo R., 2008 . A

memetic algorithm and a tabu search for the multi-

compartment vehicle routing problem. Computers &

Operations Research, 35 (5), 1725 – 1741.

Golden B. L., Raghavan S. , and Wasil E. A., 2008.

editors. The Vehicle Routing Problem: Latest Advances

and New Challenges. Springer.

Lourenço H., Martin O., and Stützle T., 2003. Iterated
local search. In Frederick S. Hillier, Fred Glover, and

Gary Kochenberger, editors, Handbook of

Metaheuristics, volume 57 of International Series in

Operations Research & Management Science, pages

320–353. Springer New York.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

416

Mendoza J. E., Castanier B., Guéret C., Medaglia A. L.,

and Velasco N., 2010. A memetic algorithm for the

multi-compartment vehicle routing problem with

stochastic demands. Computers & Operations

Research, 37 (11), 1886 – 1898.

Merz P. and Wolf S., 2007. Evolutionary local search
for the super-peer selection problem and the p-hub

median problem. In T. Bartz-Beielstein et al., editors,

Lecture notes in computer science, volume 4771, pages

1 – 15. Springer Berlin/Heidelberg.

Muyldermans L. and Pang G., 2010. On the benefits of

co-collection: Experiments with a multi-compartment

vehicle routing algorithm. European Journal of

Operational Research, 206 (1), 93 – 103.

Prins C., 2009. A grasp x evolutionary local search

hybrid for the vehicle routing problem. In F.B. Pereira

and J. Tavares, editors, Bio-inspired algorithms for the

vehicle routing problem, volume 16, pages 35 – 53.
Springer Berlin/Heidelberg.

Secomandi N. and Margot F., 2009. Reoptimization

approaches for the vehicle-routing problem with

stochastic demands. Operations Research, 57 (1), 214–

230.

Toth P. and Vigo D., editors, 2002. The vehicle routing

problem. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA.

AUTHORS BIOGRAPHY

Jan Melechovsky is a researcher at University of

Economics, Prague. He got his Ph.D. degree in
Technology and Management of Transportation

Systems from Czech Technical University in Prague in

2009. His research activities are focused to optimization

problems in transportation networks.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

417

