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ABSTRACT 

Vehicle routing problems represent a class of 

combinatorial optimization problems widely studied in 

the literature. Practical applications often involve a level 

of uncertainty, which complicates the decision making 

process. This paper presents two models of the multi-
compartment vehicle routing problem with stochastic 

demands (MCVRPSD). The problem consists in finding 

a minimum cost set of vehicle routes serving a set of 

customers. Each customer can require the delivery of m 

products. The products must be transported in different 

compartments due to their physical incompatibility. The 

problem is modeled as a stochastic program with 

recourse. The recourse action consists in a return to the 

depot vertex whenever the servicing vehicle cannot 

satisfy the customer’s demand for a particular product. 

In an alternative model the failure can also occur due to 
time constraints. A hybridized evolutionary algorithm is 

presented to address the problem. 

 

Keywords: vehicle routing, stochastic programming, 

metaheuristic, multiple compartments 

 

1. INTRODUCTION 

The multi-compartment vehicle routing problem 

(MCVRP) extends the classical formulation of the 

vehicle routing problem (VRP). In the VRP, a set of 

customer nodes is given. Each customer requires the 
delivery of a nonnegative quantity of a product. A 

vehicle fleet situated at a depot node is available to 

service the customers. In the classical formulation of the 

VRP, the vehicle fleet is unlimited and homogeneous, 

i.e. all vehicles have equal capacity. The solution of the 

VRP consists in determining a minimum cost set of 

vehicle routes satisfying the total demand of each 

customer. Each route is originating and ending at the 

depot node and respects the capacity of a vehicle. The 

VRP was first formulated by Dantzig and Ramser 

(1959). A survey on VRP applications and solution 

approaches can be found in e.g. Toth and Vigo (2002) 
or Golden et al. (2008). The VRP is a NP-hard problem 

since it generalizes the well-known travelling salesman 

problem. Exact algorithms are limited to instances of a 

moderate size. Hence metaheuristic algorithms have 

been proposed to address VRPs of a larger size. 

In the MCVRP, each customer can require the 

delivery of multiple products. The products have 

specific characteristics and cannot be transported 

together in one room. Each vehicle is therefore 

equipped with multiple separated compartments, each 

dedicated to transport a particular product. In the basic 
formulation of the MCVRP the vehicle fleet is again 

assumed to be unlimited and homogeneous. The 

objective is to satisfy all customer demands at minimum 

cost. Each product must be transported in the right 

vehicle compartment and the capacity of each 

compartment must be respected. Each vehicle route 

starts and ends at the depot. In the MCVRP, the 

delivery of two different products can be done in two 

separate routes. This feature is called partial split of the 

delivery. 

A typical application of the MCVRP is e.g. the 
delivery of petroleum products to petrol stations using 

tank trucks with several compartments (see e.g. Avella 

et al. (2004), Brown and Graves (1981), Brown et al. 

(1987). In this application, the demand of a customer 

for a particular petrol type is quite large and often 

saturates the whole compartment capacity. The main 

problem then consists of determining the assignment of 

requests to tank trucks, such that the available capacity 

is used optimally. The routing part of the problem is 

then relatively easy since a TSP with a small number of 

stops is solved for each truck separately. Another 
practical application is the delivery of groceries to 

convenience stores Chajakis and Guignard (2003). Each 

product requires different temperature, e.g. low and 

ambient temperature compartments must be used. 

Customers have limited inventory capacities and small 

but frequent orders are therefore preferred. Animal food 

distribution to farms is an example of the MCVRP 

addressed by El Fallahi et al. (2008). The authors 

modeled the case when the food must be transported 

separately for certain types of animals due to sanitary 

reasons. The MCVRP can also model systems of waste 

co-collection when different types of waste can be 
collected using vehicles with multiple compartments 

Muyldermans and Pang (2010).  

 Practical applications of routing problems often 

involve a level of uncertainty in the input data. Such a 

situation arises when the demand of customer is rather a 

random variable than a deterministic value. The 
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MCVRP with stochastic demands (MCVRPSD) models 

this issue. For each customer, the demand for a given 

product is a random variable with a known probability 

distribution characterized with a mean and a deviation. 

The real demand is always nonnegative and is less than 

or equal the vehicle capacity Qp. However, the exact 
demand is known only upon vehicle’s arrival to the 

customer. 

 The basic modeling approaches to stochastic 

routing problems can be classified into static or 

dynamic models. Routing decisions in dynamic models 

are performed in multiple stages and depend on prior 

demands realizations. A re-optimization action is taken 

at each stage depending on the remaining vehicle 

capacity and set of unserved customers. An example of 

a dynamic model is the Markov Decision Process 

proposed by Secomandi and Margot (2009). 

 In the static model, routing decisions remain 
unchanged. This approach is more convenient for 

difficult-to-solve problems since the problem is solved 

only once. A typical static stochastic routing model 

consists of two stages. In the first stage an a priori 

solution is calculated while in the stage the routes are 

executed. In case of a route failure, e.g. the vehicle does 

not have enough quantity of a particular product to 

satisfy the total demand of a customer, a recourse action 

is performed. The recourse action may e.g. consist in a 

return trip to the depot, refill of the vehicle 

compartments up to their capacity, and a resume trip 
back to the customer node where the failure occurred. A 

two stage stochastic programming model for the 

MCVRPSD was proposed by Mendoza et al. (2010).  

 This paper presents a two-stage stochastic 

programming model for the MCVRPSD. A solution 

based on the expected demand quantities is determined 

in the first stage.  The presented model of the problem 

considers two particular situations. In the first case the 

stochastic demand affects only the available quantity of 

a particular product to be delivered. The solution must 

be adapted so that all customers receive their demanded 

quantities. In the alternative model, the factor of time is 
additionally taken into account. The total time duration 

of a route is limited to Tmax while the unloading time si 

at customer i is a function of the unloaded quantity.  

 

2. PROBLEM MODEL 

The problem is defined on undirected graph G(V,E), 

where V={0,1,2,…,n-1} denotes the set of n nodes and 

E denotes the set of edges. The subset N = V \ {0} 

represents the customers indexed from 1 to n-1 while 

the index 0 is reserved for the depot node. Each 

customer i ϵ N can require the delivery of a nonnegative 
quantity qip of product p ϵ P. If qip = 0 the product is not 

ordered by the customer. The number of products is 

denoted m in the sequel. In the stochastic model, the 

demand of customer i for product p is a random variable 

λi,p with a known probabilistic distribution with  mean 

μi,p and standard deviation σi,p. The exact value of qip is 

therefore known only upon vehicle’s arrival to i. A 

service time sip = α∙qip is associated with the delivery of 

product p to customer i. α is a constant value 

representing the time needed to unload one unit of a 

product. A fleet K of identical vehicles based in the 

depot is available to service the customers. Each vehicle 

is equipped with m compartments. Each compartment 

has a fixed capacity Qp to accommodate product p. Each 

edge e(i,j) ∈ E  is associated with travel cost cij and 

travel time tij. Both values are assumed to be 

nonnegative and both sets of values satisfy the triangle 

inequality. The solution of the MCVRP consists in 

determining a set of vehicle routes, each route starting 

and ending at the depot, such that the demands of each 

customer are totally satisfied, the capacities of each 

vehicle are respected and the total travel cost is 

minimized. The problem is NP-hard since it extends the 

classical VRP. 

 The two stage stochastic programming model for 
the MCVRPDS was proposed in Mendoza et al. (2010). 

Let S be the planned (a priori) solution consisting of ns 

routes. Each route r ∈ S starts and ends at the depot and 

visits a sequence of customers (v1, v2,…,vl). The total 

cost of the solution in the second stage is given by the 

equation: 

 ( )  ∑  

 ∈ 

 ∑  ( ⃗ )

 ∈ 

 (1)  

where Cr is the planned cost of route r and   (  ) is the 

cost of route failure (recourse). 

Then the problem to solve in the first stage is to 

determine the set of routes S minimizing the expected 

cost: 

   ( )   ∑  

 ∈ 

 ∑    ( ⃗ ) 

 ∈ 

  (2)  

The maximum route duration constraints can be 

expressed as follows: 

    [  ( ⃗ )]   [  ( ⃗ )]

           ∈   (3)  

where Tr denotes the travel  time of the planned route r, 

Gr(  ) the time of the recourse trips and Hr(  ) the 

expected unloading time that is counted for r. 
The cost of the recourse depends on the failure 

probability Pr(vi) at customer vi and the cost c0i: 

    ( ⃗ )   ∑     
   (  )

 

   

 (4)  

 Analogically, the time of the recourse can be 

calculated as: 
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For the calculation of the failure probability Pr(vi) 

at node vi, Mendoza et al. (2010) proposed the 

following approximation scheme: 

  (  )

  ∑[∏ (           )

 

   

   

   

 ∏ (         )

 

   

]    (  ) 

(6)  

The term  (           )  expresses the 

cumulative probability that the demand for product p 

between nodes at positions j+1 and i-1 does not exceed 

the capacity Qp of the corresponding vehicle 

compartment. Hence the first product approximates the 

probability that the routes remains feasible after 

servicing customers vj+1,…,vi-1. Similarly, the second 

product approximates the probability that the route 

remains feasible after servicing customer vi. 

Finally, the expected unloading time depends on 

the unloaded quantity at each node: 

    ( ⃗ )   ∑ ∑       

 

   

 

   

 (7)  

 

3. THE MULTI-START EVOLUTIONARY 

ALGORITHM 

The evolutionary local search method (ELS) was 

originally proposed by Merz and Wolf (2007) for a 

peer-to-peer problem in telecommunications. It extends 

the classical iterated local search (ILS). A detailed 

description of the ILS can be found in Lourenço et al. 

(2003). The ILS, given an incumbent solution s, 

successively generates child solutions using a 

perturbation mechanism and a local search. At each 

iteration, s is updated with a child solution only if some 

acceptance criterion is met. The perturbation 
mechanism serves as a diversification tool while the 

local search intensifies the search in the current solution 

neighborhood. The ELS additionally generates multiple 

child solutions at one iteration. Only the best child 

solution is kept and it becomes the incumbent solution s 

only if it fulfills the acceptance criterion. 

 The multi-start feature extends the capability of 

ELS. It can be viewed as the greedy randomized 

adaptive search procedure (GRASP) in which the local 

search is implemented as the ELS. In the MS-ELS the 

search is restarted with a randomized initial solution 

each time when the algorithm is being trapped in the 

local optimum. The original idea of multi-start ELS 

(MS-ELS) is due to Prins (2009).  

 

 

 

 The MS-ELS is used to solve the first stage 

problem minimizing the expected cost E[C(S)]. The 

algorithm implementation is shown in Algorithm 1. 

First the total iterations counter tc and the non-

improving iterations counter ni are initialized with 0. 

Multiple restarts of the algorithm with a different 

incumbent solution s are ensured by the main loop 

between lines 3 – 31. The solution diversity within each 

restart is ensured with a randomized initial heuristic 
using a randomization parameter ρ denoting the number 

of admissible extensions of a partial solution at an 

iteration of the initial heuristic. The first initial solution 

is obtained with no randomization (ρ = 1). The best 

solution s* is initialized at the beginning of the first 

iteration with the initial solution. The perturbation 

parameter π of the ELS is set to its minimum value πmin. 

This parameter controls the perturbation strength and it 

is dynamically updated during the run. The ELS (lines 9 

– 30) performs at most Ne iterations. At every ELS 

iteration, Nc child solutions are generated using the 

Algorithm 1. The Multi-Start Evolutioary Local Search 

1: tc ← 0 

2: ni ← 0 

3: repeat 

4:  if tc = 0 then ρ ← 1 

5: else ρ ← ρmax 

6: s ← Randomized_Initial_Heuristic(ρ) 
7: if tc = 0 then s* ← s 

8: π ← πmin 

9: for Ne iterations do 

10:   cs* ← ∅ 
11:   Cost(cs*) ← ∞ 

12:    for Nc child solution iterations do 

13:     cs ← s 

14:      cs’ ← Perturbation(cs, π) 

15:      cs’’ ← Local_Search(cs’) 

16:      if Cost(cs’’) < Cost(cs*) then 
17:        cs* ← cs’’ 

18:      endif 

19:      tc ← tc + 1 

20:      if Cost(cs*) < Cost(s*) then 

21:        ni ← 0 

22:         s* ← cs’’ 

23:      else ni ← ni + 1 

24:      if tc ≥ Nt or ni ≥ NIt goto line 31 

25:    endfor 

26:    if Cost(cs*) < Cost(s) then 

27:        π ← πmin 

28:         s ← cs* 
29:      else π ← min(π + 1, πmax)       

30: endfor 

31: until tc ≥ Nt or ni ≥ NIt 
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perturbation mechanism and the local search. Only the 

best child solution cs* among all child solutions 

generated is kept in the memory. In case it improves 

also the global best solution s* the latter is updated with 

cs* and ni is set to 0. The algorithm can be terminated 

prematurely if one of the iterations counter attains its 
maximum limit. If cs* improves the incumbent solution 

s, it is updated with cs* and π is reset to πmin. Otherwise 

π is incremented. The algorithm stops when either tc 

reaches the number of maximum total iterations Nt or ni 

reaches the number of maximum non-improving 

iterations NIt. 

The key components of the MS-ELS are the 

randomized initial heuristic, perturbation mechanism 

and a local search mechanism. The following 

subsections provide implementation details of each 

component.   

3.1. Initial heuristic 
The initial solution is obtained with a simple 

construction heuristic. The solution is initialized with an 

empty route. Then all customers with some unsatisfied 

demand are scanned and the best insertion of a customer 

into a route is determined. If the customer cannot be 

inserted into any already existing route, the insertion 

into a new route is considered instead. The criterion for 

the insertion is the least increase of travel costs. The 

procedure terminates when the demand of all customers 

is fully satisfied. The method is randomized with a 

parameter ρ denoting the number of best insertions (in 
terms of insertion cost) determined in each iteration 

which are recorded into a list. The insertion which is 

finally performed is selected randomly from that list.  

3.2. Perturbation 

The perturbation mechanism is one of the two routines 

of ELS that modify the incumbent solution. It plays the 

role of a diversification tool in the general ELS 

framework since it performs several random operations 

on a solution. Thus it can be interpreted as a mutation 

operator used in genetic algorithms. The procedure is 

controlled with a parameter π denoting the number of 

operations to be performed. In our implementation the 
operation is a removal and relocation of a customer. 

Given a route r in the solution, π customer nodes are 

randomly selected and removed from r.  

Each of the π removed customers is then tested for 

a feasible insertion into some of the remaining routes of 

the solution. If such feasible insertion is detected, the 

customer is relocated to its new position. If not, new 

route visiting only this single customer is added to the 

solution. 

3.3. Local search 

Local search is applied to the solution modified by the 
perturbation mechanism. Its purpose is to improve the 

solution using a set of operators. It intensifies the search 

and the improved solution represents a local optimum 

within the given solution neighborhood. Together with 

the perturbation mechanism it enables the algorithm to 

explore effectively the solution space and find 

potentially good solutions. 

The implemented local search procedure relies on 

three operators: 

a) 2-opt – replaces two arcs and reorders nodes, 

b) Path Exchange – interchanges two sub-paths 
between two routes, 

c) Relocate – relocates a sequence of nodes 

within the same route or between two routes, 

d) Swap – swaps two sequences of nodes between 

two routes. 

 

Moreover, Relocate and Swap can operate with 

sequences of k consecutive nodes in a route instead of 

one single customer. The parameter k defines the size of 

the neighborhood to be explored. Starting with k = 1, 

the size is dynamically increased up to a maximum 

possible value kmax if no improvement was found with 
the current value of k. 

The operators are illustrated in Figures 1 – 6. Each 

operator replaces a certain number of arcs in the 

solution. The cancelled arcs are depicted with dashed 

lines. 2-opt in Figure 1 operates on a single route. It 

replaces a pair of arcs and reorders the intermediate 

sequence of customers. Path Exchange in Figure 2 is a 

variation of 2-opt but it operates on a pair of routes. It 

replaces one arc in each route and the order of 

customers remains preserved. Relocate can operate on a 

single route (Figure 3) or on a pair of routes (Figure 4).  
This operator replaces three arcs. Finally, Swap replaces 

four arcs either within a single route or a pair of routes. 

The operator is depicted in Figure 5 and Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relocate on a pair of routes. 

Figure 1. 2-opt exchange. 

Figure 2. Path exchange. 

Figure 3. Relocate on a single route. 
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Figure 5. Swap on a single route. 

 

 

 

 The operators are applied sequentially in the above 

given order with the first improvement strategy      i.e. 
the first detected improving move is performed. The 

search stops when no improving move can be found by 

any operator. Each move must be checked for the 

feasibility. This involves the time windows as well as 

the capacity. The time windows feasibility can be 

checked in O(1) if an information of the maximum 

feasible shift of each node visit is kept in the memory. 

However, the update of this information must be done 

for each node and requires O(n). The capacity must be 

checked for all vehicle compartments if the move 

involves two routes. It can be implemented in O(1). 
 Every insertion or removal of a customer requires 

the evaluation of the cost difference generated by the 

operation. The cost difference is composed of the part 

given by the deterministic travel cost and the part 

expressing the impact of the operation on the failure 

probability.  The second part requires the recalculation 

for each customer subsequent the operation. Even the 

approximation scheme for the evaluation of the failure 

probability given by Equation 6 is computationally 

expensive. As shown in  Mendoza et al. (2010), the 

recalculation of the failure probability requires O(mn2). 
For this reason the authors suggested to evaluate the 

recourse cost only in some cases. In the presented 

algorithm, the recourse cost is evaluated only when 

selecting the best insertions within the initial heuristic 

and the perturbation. The local search procedure relies 

only on the deterministic travel cost. 

 

4. COMPUTATIONAL EXPERIMENTS 

 

4.1. Testing environment 

Two sets of testing instances for deterministic MCVRP 

were proposed by El Fallahi et al. (2008). The authors 
derived two data sets from standard VRP instances 

available at Beasley’s OR Library 

(http://people.brunel.ac.uk/~mastjjb/jeb/). Each dataset 

is based on 20 instances. The first 14 instances (vrp1 – 

vrp14) contain 50 – 199 customers. The last six 

instances contain 76 – 484 customers.  In both datasets 

the number of products is 2. The first dataset (Set 1) is 

derived in a straightforward way: the capacity of 

compartments and customer demands is divided into 

two equal parts.  In the second dataset (Set 2), the 

demand qi1 for product 1 is generated randomly for each 
i. The demand for the second product is defined as qi2 = 

qi – qi1, where qi is the original demand of customer i. 

The capacity Q1 of the first compartment is determined 

as follows from the average demand  ̅  for the first 

product, the average demand  ̅  for the second product, 
and the vehicle capacity Q in the original VRP: Q1 = (Q 

×  ̅ )/( ̅  +  ̅ ). The capacity of the second 

compartment is given by Q2 = (Q ×  ̅ )/( ̅  +  ̅ ). 
Mendoza et al. (2010) adapted the instances for the 

stochastic MCVRP. The demands follow normal 

distribution with           for each i ∈ N and p ∈ P.  
The standard deviation is calculated as           

    . Some instances involve the distance upper limit 

implicitly. For the others the limit is     
ma  ∈    . These instances do not involve the 
service time. For the purpose of preliminary tests, 
Set 3 has been derived from Set 2. The service time is 
defined as sip = α∙qip, where α = 1. The travel time is set 

equal to the travel cost (tij = cij   e(i,j) ∈ E ) and the 

maximum time of a route is defined as Tmax = L + α∙ 

nr∙( ̅  +  ̅ ). nr denotes the maximum number of 
customers serviced in one route in the best solution of 

the original instance in Set 2.  

 

4.2. Parameters setting 

The proposed algorithm requires eight parameters to be 

set up. The parameters are summarized in Table 1. The 

determination of an appropriate set of parameters is not 
trivial and the task constitutes a particular part of 

computational experiments. Several tests of the MS-

ELS have been therefore carried out on the 14 MCVRP 

instances from Set 1. In these preliminary experiments 

the demand was considered to be deterministic. Each 

instance was solved with 41 different parameter 

configurations and each test was executed five times 

with various rand seed settings. 

Table 1: List of algorithm parameters 

Notation Description 

Nt  Maximum number of total iterations 

NIt  Maximum number of non-

improving iterations 

Ne Number of ELS iterations 

Nc Number of child solutions 

πmin Minimum value of perturbation 

parameter 

πmax Maximum value of perturbation 

parameter 

 ρmax Randomization parameter 

 kmax Maximum size of a sequence in 

local search (Relocate or Swap) 

 

 The results are shown in Table 2. Columns 2 – 9 

present the configuration values. The last two columns 

Figure 6. Swap on a pair of routes. 
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present the average gap to the best known solutions 

(BKS) of the concerned instances and the average 

running time in seconds respectively. The results are 

sorted in non-decreasing order of the average gap 

(ranging from 1.9 % to 5.3 %). The selected 

configuration is highlighted in bold. 
 

Table 2: Results of MS-ELS obtained with different 

parameter configurations 
 Nt NIt Ne Nc πmin πmax ρmax kmax Gap cpu 

1 1000 800 10 15 1 5 3 3 1.9 313.8 

2 1000 800 10 15 1 3 3 3 2.8 283.2 

3 1000 800 10 10 1 5 3 3 2.9 296.1 

4 1000 800 10 10 1 3 3 3 2.9 291.1 

5 500 500 10 10 1 3 3 5 3.0 381.4 

6 1000 500 10 15 1 3 3 3 3.0 227.3 

7 1000 500 10 10 1 5 3 3 3.0 236.2 

8 1000 500 10 15 1 5 3 3 3.0 260.3 

9 800 500 10 15 1 5 3 3 3.0 215.2 

10 800 500 10 15 1 3 3 3 3.0 225.8 

11 800 500 10 10 1 5 3 3 3.1 218.2 

12 1000 500 10 10 1 3 3 3 3.1 257.2 

13 500 200 10 10 1 3 3 5 3.3 252.4 

14 1000 300 10 10 1 5 3 3 3.3 160.5 

15 1000 300 10 15 1 5 3 3 3.3 162.2 

16 500 500 10 10 1 5 3 3 3.3 158.9 

17 500 500 10 15 1 5 3 3 3.3 152.2 

18 800 500 10 10 1 3 3 3 3.3 227.0 

19 1000 300 10 15 1 3 3 3 3.3 150.3 

20 500 500 10 10 1 3 3 4 3.3 252.9 

21 500 500 10 15 1 3 3 3 3.4 145 

22 500 200 10 10 1 3 3 4 3.6 157.6 

23 500 500 10 10 1 3 3 2 3.7 80.5 

24 500 200 10 15 1 3 3 3 3.7 101.5 

25 800 200 10 15 1 3 3 3 3.7 107.2 

26 800 200 10 15 1 5 3 3 3.7 106.6 

27 500 200 10 15 1 5 3 3 3.7 102.3 

28 200 200 10 10 1 3 3 5 3.8 153.8 

29 800 200 10 10 1 5 3 3 3.8 110.3 

30 500 200 10 10 1 5 3 3 3.8 106.9 

31 1000 300 10 10 1 3 3 3 3.9 161.0 

32 500 500 10 10 1 3 3 3 3.9 146.1 

33 200 200 10 10 1 3 3 4 4.1 101.6 

34 200 200 10 15 1 5 3 3 4.3 59.3 

35 200 200 10 15 1 3 3 3 4.3 56.9 

36 500 200 10 10 1 3 3 3 4.3 95.2 

37 800 200 10 10 1 3 3 3 4.3 104.1 

38 500 200 10 10 1 3 3 2 4.4 51.0 

39 200 200 10 10 1 5 3 3 4.6 61.9 

40 200 200 10 10 1 3 3 3 4.9 59.8 

41 200 200 10 10 1 3 3 2 5.3 33.1 

  

 The selection of parameter values was done with 

respect to the expected impact on algorithm's 

performance. Most attention was therefore given to 

parameters Nt and NIt.  Contrarily, Ne , πmin and ρmax 

were always set to the same values. Ne was fixed to 10 
and the reason was that it's impact is strongly correlated 

with Nt  and Nc . Hence varying these values provided 

similar behavior as varying the values of Ne . Regarding 

πmin, the performance did not change or it was even 

worse for slightly larger values than 1. The 

randomization parameter ρmax was set to 3, since larger 

values led to initial solutions of poor quality. Nc 

alternated between 10 and 15. Lower values than 10 led 

to worse results while values significantly larger (about 

20 or more) did not bring any positive impact. 

Moreover, it would reduce the number of restarts since 
the portion of total iterations run on the same starting 

solution would increase. The variability of tested values 

of πmax and kmax was also quite moderate for similar 

reasons. The parameter πmax was tested only with values 

3 and 5 and kmax was tested with values 3, 4, and 5. 

Larger values of πmax led to equal or worse solutions 

while larger values of kmax increased the computing time 

significantly. 

 

4.3. Computational experiments 

Preliminary computational experiments of the stochastic 

version of the proposed MS-ELS were conducted on 
instances vrp1 – vrp14 of Set 2 and Set 3. As in 

Mendoza et al. (2010), the results were obtained with a 

single of the MS-ELS and the stochastic simulation 

involved 50 000 scenarios. The algorithm was coded in 

C++ and compiled with Embarcadero RAD Studio 

2010. The tools provided by the Boost library were used 

for statistical calculations and simulations. 

The results obtained for Set 2 are summarized in 

Table 3. The table compares the performance of the 

MS-ELS to the best known solutions including the 

estimated cost of recourse over 50 000 replications 
reported in Mendoza et al. (2010). Gap is the percentage 

difference between the solution obtained with MS-ELS 

and the BKS. Computing times in the last column of the 

table are in seconds. The solutions found by our MS-

ELS are generally close to the BKSs. The gap ranges 

from 0.2 % to 3.5 %. Mendoza et al. (2010) reported the 

results for two versions of the memetic algorithm. The 

basic version much slower but it calculated most of the 

best known solutions. A faster version of their memetic 

algorithm represents uses a spare capacity strategy, 

which relies on the computation of the deterministic 

problem and leaving some spare capacity in each 
vehicle compartment. This modification of the 

algorithm does not require the costly computations of 

the recourse probability and hence it is far more 

effective compared to the stochastic version. In Table 3, 

our results are compared to the stochastic version of the 

memetic algorithm. 
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Table 3: Results of the MS-ELS on the adapted Set 2 

instances 

Instance n BKS MS-ELS Gap Time 

vrpnc1 50 568.7 569.9 0.2 123.3 

vrpnc2 75 976.3 978.3 0.2 198.4 

vrpnc3 100 891.8 894.6 0.3 645.3. 

vrpnc4 150 1187.3 1198.2 0.9 1230.5 

vrpnc5 199 1497.3 1509.5 0.8 2056.7 

vrpnc6 50 577.6 586.0 1.5 98.5 

vrpnc7 75 1000.9 1020.4 1.9 103.6 

vrpnc8 100 922.1 931.3 1.0 289.5 

vrpnc9 150 1255.8 1273.2 1.4 432.6 

vrpnc10 199 1572.5 1587.3 0.9 1027.1 

vrpnc11 120 1259.1 1302.6 3.5 1356.4 

vrpnc12 100 999.1 1011.4 1.2 823.6 

vrpnc13 120 1558.8 1564.2 0.3 567.2 

vrpnc14 100 1027.4 1036.8 0.9 431.8 

 

The second set of computational experiments was 

conducted on Set 3. The instances in this set involve the 

service time which is spent by the vehicle in the 
customer site. Recall that the service is a function of the 

unloaded quantity. The results are reported in Table 4. 

BKS is the best solution value obtained during five 

executions of the algorithm. The column MS-ELS 

reports the average value over the five runs. The gap 

ranges from 0.8 % to 4.7 %, which can be considered as 

an acceptable variance in results obtained in different 

runs of the algorithm. 

 

Table 4: Results of the MS-ELS on the adapted Set 3 

instances 

Instance n BKS MS-ELS Gap Time 

vrpnc1 50 577.1 605.5 0.8 142.9 

vrpnc2 75 1066.7 1075.8 3.9 231.0 

vrpnc3 100 932.2 937.0 4.1 684.6 

vrpnc4 150 1189.5 1241.8 3.2 729.4 

vrpnc5 199 1642.7 1648.9 2.1 1988.5 

vrpnc6 50 628.1 630.7 2.9 102.2 

vrpnc7 75 1037.7 1051.1 3.1 61.4 

vrpnc8 100 1000.2 1015.1 4.7 401.3 

vrpnc9 150 1355.3 1417.0 3.6 537.1 

vrpnc10 199 1599.0 1673.1 0.9 1020.4 

vrpnc11 120 1357.4 1367.6 3.4 495.8 

vrpnc12 100 1053.0 1097.6 1.8 787.2 

vrpnc13 120 1620.5 1680.8 1.2 463.4 

vrpnc14 100 1079.9 1091.4 0.9 394.8 

 
The experiments on Set 3 are rather preliminary. 

Detailed analysis of the impact of a stochastic service 

time will be subject of further research. The time limit 

Tmax in Set 3 was defined such that the optimal solutions 

do not differ too much from Set 2. The solution values 

obtained on Set 3 are slightly above the solutions of Set 

2.  

 

CONCLUSIONS 

This paper presents a MS-ELS algorithm for the 

MCVRP with stochastic demands. The solution 

approach is based on a two-stage stochastic 

programming formulation proposed in Mendoza et al. 
(2010). The proposed metaheuristic calculates the 

estimate of solution total cost when the demand for 

products is a random variable. The algorithm was tested 

on benchmarks from the literature. Preliminary results 

indicate that the MS-ELS is a competitive algorithm 

compared notably to the memetic algorithm proposed 

by Mendoza et al. (2010). An extension of the problem 

formulation presented in the paper involves variable 

service time depending on the unloaded quantity. This 

property influences the feasibility of the vehicle route 

due to the limit of time imposed. The next logical step 

in the problem model will be the inclusion of customer 
time windows into the model. The variable service time 

will then influence the feasibility of arrivals to customer 

sites. 
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