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ABSTRACT 
 
Our objectives here are to discuss the development of a 
formal framework that exploits the advantages of the 
Discrete Event System Specification (DEVS) formalism 
and builds upon recent extensive work on verification 
combining DEVS and model checking for hybrid 
systems. The mathematical concepts within the DEVS 
formalism encompass a broad class of systems that 
includes multi-agent discrete event components 
combined with continuous components such as timed 
automata, hybrid automata, and systems described by 
constrained differential equations. Moreover, DEVS 
offers the ability, via mathematical transformations 
called system morphisms, to map a system expressed in 
a formalism suitable for analysis (e.g., timed automata 
or hybrid automata) into the DEVS formalism for the 
purpose of simulation. Conversely, it is also possible to 
go from DEVS to formalism suitable for analysis for the 
purposes of model checking, symbolic extraction of test 
cases, reachability, among other analysis tasks. We give 
an example of application of these concepts and discuss 
the open opportunities for research in model 
engineering in this direction. 

 
1. INTRODUCTION 
 
Model checking, a well-known formal verification 
method, systematically explores the state space of a 
system model to check that states satisfy specified 
behavioral properties (Baier, and Joost-Pieter, 2008) 
,Model checking methods encounter state space 
explosion in analyzing autonomous systems that require 
complex logical processes to perform complex decision 
making tasks.  Moreover, because they are limited in 
their expressive capability to restricted logics, such 
methods must typically make stringent assumptions 
about physical components and environments. These 
assumptions and idealizations greatly reduce the 
methods’ applicability to cyber-physical systems where 
the interplay of physical and computational elements is 
paramount.  Finally, cooperative multi-agent systems 
raise the state space explosion exponentially through the 
cross product of their individual state spaces.  In the 
absence of workable simulation approaches to enable 

virtual testing, the only recourse for V&V of Cyber-
physical Autonomous Cooperative (CACSoS) is to 
brute-force methods which are severely limited in the 
range of conditions they can test. 
 
A key root cause of limitations in current V&V 
approaches to CACSoS is that they are not based on a 
general dynamic systems modeling and simulation 
framework. Such a framework should be capable of 
expressing the interaction of decision logic, discrete 
events, and continuous dynamics that are the hallmarks 
of such systems.   We therefore propose that the 
Discrete Event System Specification (DEVS) 
formalism, as the computational basis for a general 
dynamic systems theory  (Zeigler, Praehofer, and Kim 
2000), provides a sound and practical foundation for 
enhancing existing V&V methods to address their 
limitations in addressing in CACSoS.   
 
The value of Modeling and Simulation in defense and 
other applications is well-known (Shaffer 2012) A 
DEVS model is a system-theoretic concept specifying 
inputs, states, outputs, similar to a state machine, 
(Mittal and Risco 2012).  Critically different however, 
is that it includes a time-advance function that enables it 
to represent discrete event systems, as well as hybrids 
with continuous components (Nutaro 2011) in a 
straightforward platform-neutral manner    (Zeigler and 
Sarjoughian 2012).  A recent thesis (Denil 2013) 
presents a multi-paradigm model-driven approach to 
design, verification and deployment of software 
intensive systems, another formulation of cyber-
physical systems. It shows that DEVS provides 
excellent features for modeling such systems. The thesis 
provides a list of properties of DEVS and their mapping 
to properties of automotive software and systems – here 
viewed as instances of CACSoS:  

 
 Concurrency: Multiple processors and 

communication links are concurrent in a CACSoS 
system. The semantics of DEVS coupled models 
supports concurrency by appropriate interleaving of 
the discrete-event behavior of individual sub-
models. 

 Time: Real-time performance is a crucial property 
of CACSoS embedded software. End-to-end 
latencies are part of the requirements for these 
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applications. The time advance function of an 
atomic DEVS model can be used to model latency. 

 Events: Event-triggered and time-triggered 
architectures use triggers in the form of either 
external events or timing events to start certain 
pieces of functionality. DEVS implements reaction 
to events using the external transition functions. 

 Priorities: Some real-time communication channels 
use priority-based and other mechanisms for 
arbitration. DEVS supports such arbitration by 
means of explicit specification of executable events 
from the set of simultaneous events. 

 Simulation of the physical parts of the system: 
DEVS is a very general formalism and is able to 
include different other formalisms. This generality 
stems from the infinite possible states that DEVS 
allows to model and the (continuous) time elapse 
between the different state transitions. The 
hierarchical coupling techniques are used to 
integrate the different formalisms using DEVS as a 
common denominator. 
 

2. BACKGROUND 
 

The Modeling and Simulation Framework (MSF) 
(Zeigler 1976) presents entities and relationships of a 
model and its simulation as background for the 

proposed work (Figure 1.) 

The MSF separates models from simulators as entities 
that can be conceptually manipulated independently and 
then combined in a relation which defines correct 
simulation. The Experimental Frame defines a 
particular experimentation process, e.g., Latin 
hypercube sampling for yielding model outcome 
measurements in accordance with specific analysis 
objectives.  Figure 1 depicts the notion of an 
Optimization Frame to supplement the MSF 
Experimental Frame, where the Optimization Frame 
directs search among the possible models for one or 
more that satisfy design space criteria, including those 
that minimize uncertainty about how well the 
implemented design will work.  Figure 1 also 

emphasizes the ability enabled by model continuity to 
transfer a simulation model from a logical-time 
simulator to a real-time simulator. In particular, DEVS 
models for autonomous control in CACSoS can be 
shifted without alteration (avoiding error-prone and 
tedious reprogramming) to interact with real 
environments in cooperative configurations after being 
verified in virtual environments (Zeigler and 
Sarjoughian 2012, Hu and Zeigler 2008.) The MSF 
underlies the DEVS Simulation Protocol which 
provides provably correct simulation execution of 
DEVS models thereby obviating time and state conflicts 
arising in simulation of multi-formalism models. There 
are numerous implementations of DEVS simulators 
(Nutaro  2011, Mittal and Risco 2012).   

3. LIMITATIONS OF V&V METHODS 
APPLIED TO CACSoS 

Linear Temporal Logic (LTL) and Computation Tree 
Logic (CTL) which are used for expressing desired 
behavior and model checking have been applied to the 
development of vehicle routing and road monitoring in 
multi-UAV systems (Karaman and Frazzoli, 2008, 
Sirigineedi, et al/, 2010). Humphrey (2013) explored 
the use of LTL, the SPIN model checker, and the 
modeling language PROMELA (Gerth 1997, Baier. and 
Joost-Pieter, 2008, Holzmann 2004), for high-level 
design and verification in UAV related applications, 
reporting some success while suggesting limitations and 
needed extensions. Table 1 shows three UAV related 
cases she discussed. 
 

Table 1. Example Applications of model 
checking to CACSoS 

Model A centralized UAV cooperator controller 
that coordinates the actions of multiple UAVs 
performing a monitoring task    

Focus of Model Checking: Assuring that All sensors are 
eventually visited.   

Sample Simplifying Assumptions Communication 
between UAVs and sensors can only occur 
when in the same location and is error free. 

 

Model A leader election protocol for a 
decentralized system of unattended ground 
sensors sending estimates of an intruder’s 
position to a UAV    

Focus of Model Checking At least one leader exists 
at every time step.   

Sample Simplifying Assumptions The sensors all use 
sampling epochs of the same length enabling a 
single time step for time advance. 

 

Model Verification of high level UAV mission 
plans for a scenario in which multiple UAVs 
must be used to safely escort an asset across a 
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road network.   

Focus of Model Checking The path travelled by the 
asset is safe, i.e., all  road segments in the path 
have been scanned by UAV.   

Sample Simplifying Assumptions UAVs and VIP were 
assumed to travel at the same speed. 

 
 
In each case, the focus of model is shown along with a 
simplifying assumption. Because they are oriented to 
verification, model checking tools tend to lack many 
functions that exist in DEVS environments and require 
abstractions that fit the tools’ operation. This forces an 
abstraction of the real system that on the one hand 
enables the modeler to better understand the model, and 
on the other hand entails numerous assumptions to 
enable the model checker to verify the focal 
requirement. Despite these drastic simplifications, state 
space explosion prevents employing more than a 
handful of UAVs and sensors. 
 
Zervoudakis et al (2013) write that “Research in model 
checking has focused on enhancing its efficiency and 
scalability thereby enabling model builders to verify 
larger, more elaborate models. Popular model checkers 
tend to support low-level modeling languages that 
require intricate models to represent even the simplest 
systems. For example, PROMELA, the language of the 
model checker SPIN, is essentially a dialect of the low-
level programming language C.  Another example is the 
modeling language used by the probabilistic model 
checker PRISM, whose lack of control structures forces 
model builders to pollute model components with 
counter variables that explicitly encode the components' 
state transitions.” These authors show that mapping of 
domain knowledge, assuming it exists in the right form, 
can be used to reduce the manual and error-prone 
encoding of state transitions at relatively low levels of 
abstraction.   Here we propose to develop such 
mappings using the domain knowledge contained 
within simulation models and their ontological 
representations within the DEVS-based Modeling and 
Simulation Framework. 
 
4. DEVS SUPPORT FOR CACSoS  
 

Cyber-physical systems are real-time hybrid systems, 
i.e., include both discrete and continuous dynamics, 
which, as earlier indicated, are well represented within 
the DEVS-based MSF. Typically such a system is 
described by a state consisting of both discrete control 
phases and continuous variables (Nutaro 2008., 
Saadawi, Wainer, and Moallemi 2012). developed a 
methodology that combines DEVS and Timed 
Automata (TA) (Bengtsson and Yi 2004. Henzinger,. 
1997, Alur 1995, Courcoubetis et a;l. 1995) to allow the 
designer to model, simulate, verify, and deploy real-
time hybrid systems. This is achieved by guaranteeing 

the correctness of the model with a methodology that 
verifies DEVS models with TA model-checking 
techniques and tools.  Under model continuity (Figure 
1) the verified DEVS models are then made executable 
on the target platform, thus eliminating the risk of 
introducing errors in the final system implementation. 
TA provides a solid theory and algorithms for model 
checking, and many existing tools implement these 
algorithms (e.g., UPPAAL). The combined DEVS/TA 
methodology deals with RTA-DEVS - a restriction of 
DEVS to Rational (a subset of real) Time Advance 
values.  For this subclass the methodology provides 
automated mappings to TA’s abstract formal system 
specification that is verifiable by decidable model 
checking. In this methodology, if UPPAAL (or other 
model checker) faces a problem of state explosion, and 
no answers can be obtained in reasonable time, the user 
can use model checking on an abstraction of the system 
while employing DEVS-based simulations to 
empirically check out properties not included in the 
formal analysis. In particular, the methodology applies 
to hybrid systems whose continuous components are 
expressed using differential equations solved using 
Quantized State System (QSS) integration. 
Concurrently, a burgeoning literature is developing on 
the use of QSS, a class of DEVS models, to efficiently 
and accurately model such systems, for example using 
multicore processors.  
While multi-agent-based simulation (ABS) is well 
established using DEVS (e.g. (Perez et al. 2010), time-
step scheduling is still used in classic ABS models (e.g., 
Repast. 2009) However, Zhang et. al.  (2014) developed 
a DEVS simulation model which is significantly more 
efficient than the Repast ABS model 350 times faster 
for 10000 agents)  while keeping high model spatial 
fidelity and the same agent cognitive capability, 
collision avoidance, and low agent-to-agent 
communication cost.   
 
Work on non-DEVS model checking for hybrid systems 
includes that based on timed automata  (Henzinger 
1997, Alur 1995, Courcoubetis et a;l. 1995), abstraction  
and simplification of systems (Chauhan et al. 2002, 
Clarke, et al. 2003, Long 1993), and statistical model 
verification (Younes et  al. 2006).  
 
5. INTEGRATING DEVS AND NON-DEVS 

VERIFICATION METHODS 
 

As discussed earlier, several DEVS methodologies have 
been developed which incorporate non-DEVS 
verification methods (Zeigler and Sarjoughian 2012, Hu 
X. and Zeigler 2008.)  These methodologies attempt to 
employ DEVS to enable loosening  the simplifying 
assumptions typically made by non-simulation models. 
For example, the Sample Simplifying Assumptions in 
Table 1 suggest that such simplifications include those 
concerning perfect communication among component 
systems occurring when they are in exactly specified 
locations, that time advances for all components using 
the same fixed time step, and that speeds of vehicles are 
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constant or change instantaneously neglecting realistic 
accelerations.  However, so far, such methodologies 
have not provided a general approach to combining 
simulation and verification using available system 
theoretic concepts. 
 
Our objective here is to develop and employ system 
morphisms and model transformations to integrate the 
various types of models to be included in a general 
DEVS-based framework for verification in model 
engineering. Model transformations are a key means of 
converting between different model types and must 
preserve desired aspects of structure and behavior to 
qualify as system morphisms.  Our approach is to define 
system morphisms for such transformations and to 
prove these morphisms are mathematically correct using 
existing theory of system morphisms (Zeigler, B. P.. , 
1976].   This will enable us eventually to automate 
verification of properties for complex simulation 
models as opposed to simplified models developed 
specifically for model checking. Then we will explore 
algorithmic approaches to automate the construction of 
these types of systems mappings. Such automation is 
necessary to create a practical tool for engineering 
systems of systems. 
 

Figure 3. Model for automatic verification of the 

Figure 2 compares the methodology of (Saadawi, 
Wainer, Moallemi 2012.) which provides automated 
transformations from RTA-DEVS  to TA  enabling 
tractable model-checking using UPPAAL (Behrman  
2004) with the approach we discuss here. The RTA-
DEVS approach seeks to verify DEVS models by 
transforming them into a subset of TA that can be 
verified using UPPAAL. To do this, it must 

appropriately limit the class of DEVS models to a 
subclass that can be mapped to the input class of TA for 
UPPAAL via 1-1 weak bi-simulation with the Safety 
TA subclass of TA. Weak bi-simulation will be shown 
to be a system morphism. The mappings are not 
automated. 
 

In contrast, as shown in Figure 2, our approach is to 
start with the FD-DEVS (Zeigler and Sarjoughian 2012)  
subclass of DEVS models having finite sets of states, 
inputs, and outputs and whose construction is supported 
by MS4 Me.  Then two mappings are defined: 
 

1. Map FD-DEVS models into non-deterministic 
automata that are subject to model checking 
using SPIN/PROMELA. 

2. Elaborate FD-DEVS models into full-fledged 
DEVS models that can be simulated to obtain 
behavior of interest and possibly to discover 
unexpected or emergent behaviors via 
simulation.  

 
To illustrate the general idea, we will construct and 
illustrative, mathematically verifiable transformations 
from DEVS models to model checking models and vice 
versa.  
 
5.1. Example of System Morphism between 

PROMELA and DEVS 
 
For an example of this approach, consider the 
alternating bit protocol introduced by (Bartlett, 
Scantlebury and Wilkinson, 1969) for implementing 
full-duplex communications over half-duplex 
communication lines. This protocol is illustrated in 
Figure 3. It has been used to illustrate fundamental 
elements and analysis capabilities of the PROMELA 
language by proving that the protocol operates correctly 
(see the SPIN manual, Gerth 1997); that is, that ``Every 
message fetched by A is received error-free at least 
once and accepted at most once by B''.  It is apparent 
from the figure that this PROMELA model is a finite 
state automaton, and all finite state automata are are 
instances of DEVS models that have a fixed time 
advance (see (Zeigler, Praehofer, & Kim. 2000). Hence, 

it is a DEVS model of this protocol can be built in a 
simple way. We do this by adding two pieces of 
information to the PROMELA description: the time T to 
transmit a bit and the probability p of an error. One 
important use of this DEVS model is to answer 
questions about performance of the protocol. 
Conversely, we may map any instance of this DEVS 
model with parameters p  and T onto a PROMELA 
model by abstracting away the specific probability 
distribution and stating only that a bit may arrive or not 
arrive. 

Figure 2 Comparing DEVS‐based Verification Approaches

Proceedings of the European Modeling and Simulation Symposium, 2014 
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

353



Table 2 shows the results of a simulation study, using 
the DEVS model sketched above, to discover how the 
bit rate of the protocol varies as a function of T and p. 
This table was constructed with the DEVS simulation 
model by sweeping over a range of values for T and p, 
and for each combination recording the bits per second 
that could be exchanged by the system assuming 100% 
utilization of the communication channel. These 
simulations provide important, systems level 
performance metrics that cannot be obtained via a query 
of the PROMELLA model. At the same time, we may 
be certain that the simulation model preserves the 
formal properties that we have proven about the 
protocol by use of the PROMELA model. The 
capability to construct performance studies, like this bit 
rate study, using a simulation model derived directly 
from the formal verification model illustrates the power 
of the proposed approach for engineering complex 
systems. 

Table 2. Performance study of the alternating bit 
protocol 

T 
(seconds) 

P  Bits  per 
second 

T 
(seconds) 

p  Bits  per 
second 

1E‐9  0  5.0E8  1E‐6  0  5.0E5 

  0.25  3.8E8    0.25  3.8E5 

  0.5  2.5E8    0.5  2.5E5 

 
 
5.2. Extending the Range of Verification Models 

with Simulation Models 
 

Transformations between simulation models and 
verification models can also facilitate the reuse of 
model components throughout the lifecycle of an M&S 

system, and this reuse can have the important effect of 
revealing implicit assumptions in proofs constructed for 
the verification model. For instance, it is natural to use 
the alternating bit protocol as a media access control 
layer within a more comprehensive network simulation. 
This more comprehensive model could have a sender 
and receiver each with two components. This is 
illustrated in the Figure 4. The first component is our 
DEVS model of the alternating bit protocol. The second 
component sends and receives messages, rather than 
just bits, and queues messages that are pending 
transmission. This second component appends to each 
message the bit that it receives from the MAC layer, 
and sends to the MAC layer the first bit in each message 
received from the network or an error indicator, as 

appropriate. Transmissions in the upper layer occur at 
the instant that a bit is received from the MAC layer 
below. Central to understanding the behavior of this 
model is its queue capacity, rate of requests to send 
messages, and bit rate. 
 
5.2.1. Alternating Bit Protocol with Infinite Queue 
 
Let us first consider a combination of these that may be 
reduced to a slightly more complex version of the 
verification model for the alternating bit protocol. To 
obtain this model we reduce the queue to two states: 
empty and occupied. The former indicates no messages 
waiting for transmission and the latter indicates a 
message waiting to be transmitted. Adding these states 
to the transmitter increases the size of the verification 
model from 25 states to 50 states, and we may prove for 
this larger model that every message transmitted is 
received once and only once. This proof is significant 
because it reflects the intended, but idealized, behavior 

of the system. If, for instance, this assertion could not 
be proved then the design of the system should be 
reconsidered before moving to other forms of testing. 

Figure 5 Relation between Verification and Simulation

 
5.2.2. Alternating Bit Protocol with Finite Queue 
 
However, this proof does not indicate how the system 
will behave over its entire range of structural variations 
and realizable behaviors. In particular, we may 
encounter a case where the queue’s capacity is finite. In 
this case, the bit rate and rate of requests to send 
messages may be such that at certain points in time the 
queue’s capacity is exceeded as can be predicted by 
simple queuing theory (Jain  1991). The consequence of 
this will be messages that are lost: a clear violation of 
the above proof!  In this simple example, the cause of 
this violation is obvious. The verification model 
assumes that the queue never reaches its capacity, and 
so the proof implicitly assumes a restricted range of 
values for the queue capacity, rate of transmission 
requests, and bit rate.  

Figure 4 Message Layer addition to ABP 

 
6. COMBINING SIMULATION AND FORMAL 

VERIFICATION 
 
These types of implicit assumptions can be difficult to 
identify in a large model, and simulation offers an 
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opportunity to explore the system’s parameter space and 
identify boundaries beyond which any particular proof 
fails to hold. 
 
As illustrated in Figure 5, the combination of simulation 
and formal verification gives a much more powerful 
capability to test designs than can be achieved with 
either alone. In a design process that incorporates both 
types of analysis, verification models can be used to 
obtain absolute answers concerning system behavior 
under idealized conditions. Failures in this verification 
stage clearly indicate a need to find and correct 
fundamental flaws in the system design. On the other 
hand, a successfully verified model can be formally 
extended into a simulation model for which the 
verification model is a homomorphic simplification. 
Hence, the simulation model retains the properties that 
were verified with the simpler model, and then can be 
used to explore scenarios that are necessarily outside the 
scope of formal verification. In some cases, other 
simplifications of a full-fledged simulation model can 
be applied (for example, as mentioned above, queueing 
theory can predict the probability of a finite capacity 
queue being exceeded.) However, in general, simulation 
models can incorporate the complexity needed to deal 
with real systems using the base model concept.  The 
traceability between these two types of models, which is 
obtained by the application for formal system 
morphisms, is central to the success of this two tiered 
approach to testing. 
 
7. FUTURE RESEARCH 
 
Future research must develop robust transformation 
techniques that can be shown to be systems morphisms 
of suitable types. This will ensure consistency between 
the results of verification of emergent foreseen 
behaviors using analytical techniques and the discovery 
of emergent unforeseen behaviors through dynamic 
simulations. This will require formulating a meta-
modeling approach that will lead to a multi-step 
verification process that can handle the dynamical 
complexity of CACSoS models.  We recognize that the 
most expeditious way to develop an inclusive 
framework is to build on existing methods and software 
tools to the extent possible. The multi-step verification 
process will help to manage and cross-check results 
obtained from the various analytical and simulation 
methods, as well as from integrated methods that are 
supported by the proposed framework. This approach 
helps to deal with the complexities of CACSoS by 
enabling more robust designs and a more thorough and 
organized simulation and verification process. These 
complexities can be addressed with the help of the 
theory of M&S (Zeigler 1976)  to develop methods for 
hierarchical decomposition and simplification as 
essential tools within the emerging field of model 
engineering. 
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