

COMBINING DEVS AND MODEL-CHECKING: USING SYSTEMS MORPHISMS FOR

INTEGRATING SIMULATION AND ANALYSIS IN MODEL ENGINEERING

Bernard P. Zeigler(a), James J. Nutaro(b)

(a)RTSync Corp. and Arizona Center for Integrative Modeling and Simulation, AZ
(b OakRidge National Laboratory, TN.

(a)zeigler@rtsync.com, (b) nutarojj@ornl.gov,

ABSTRACT

Our objectives here are to discuss the development of a
formal framework that exploits the advantages of the
Discrete Event System Specification (DEVS) formalism
and builds upon recent extensive work on verification
combining DEVS and model checking for hybrid
systems. The mathematical concepts within the DEVS
formalism encompass a broad class of systems that
includes multi-agent discrete event components
combined with continuous components such as timed
automata, hybrid automata, and systems described by
constrained differential equations. Moreover, DEVS
offers the ability, via mathematical transformations
called system morphisms, to map a system expressed in
a formalism suitable for analysis (e.g., timed automata
or hybrid automata) into the DEVS formalism for the
purpose of simulation. Conversely, it is also possible to
go from DEVS to formalism suitable for analysis for the
purposes of model checking, symbolic extraction of test
cases, reachability, among other analysis tasks. We give
an example of application of these concepts and discuss
the open opportunities for research in model
engineering in this direction.

1. INTRODUCTION

Model checking, a well-known formal verification
method, systematically explores the state space of a
system model to check that states satisfy specified
behavioral properties (Baier, and Joost-Pieter, 2008)
,Model checking methods encounter state space
explosion in analyzing autonomous systems that require
complex logical processes to perform complex decision
making tasks. Moreover, because they are limited in
their expressive capability to restricted logics, such
methods must typically make stringent assumptions
about physical components and environments. These
assumptions and idealizations greatly reduce the
methods’ applicability to cyber-physical systems where
the interplay of physical and computational elements is
paramount. Finally, cooperative multi-agent systems
raise the state space explosion exponentially through the
cross product of their individual state spaces. In the
absence of workable simulation approaches to enable

virtual testing, the only recourse for V&V of Cyber-
physical Autonomous Cooperative (CACSoS) is to
brute-force methods which are severely limited in the
range of conditions they can test.

A key root cause of limitations in current V&V
approaches to CACSoS is that they are not based on a
general dynamic systems modeling and simulation
framework. Such a framework should be capable of
expressing the interaction of decision logic, discrete
events, and continuous dynamics that are the hallmarks
of such systems. We therefore propose that the
Discrete Event System Specification (DEVS)
formalism, as the computational basis for a general
dynamic systems theory (Zeigler, Praehofer, and Kim
2000), provides a sound and practical foundation for
enhancing existing V&V methods to address their
limitations in addressing in CACSoS.

The value of Modeling and Simulation in defense and
other applications is well-known (Shaffer 2012) A
DEVS model is a system-theoretic concept specifying
inputs, states, outputs, similar to a state machine,
(Mittal and Risco 2012). Critically different however,
is that it includes a time-advance function that enables it
to represent discrete event systems, as well as hybrids
with continuous components (Nutaro 2011) in a
straightforward platform-neutral manner (Zeigler and
Sarjoughian 2012). A recent thesis (Denil 2013)
presents a multi-paradigm model-driven approach to
design, verification and deployment of software
intensive systems, another formulation of cyber-
physical systems. It shows that DEVS provides
excellent features for modeling such systems. The thesis
provides a list of properties of DEVS and their mapping
to properties of automotive software and systems – here
viewed as instances of CACSoS:

 Concurrency: Multiple processors and

communication links are concurrent in a CACSoS
system. The semantics of DEVS coupled models
supports concurrency by appropriate interleaving of
the discrete-event behavior of individual sub-
models.

 Time: Real-time performance is a crucial property
of CACSoS embedded software. End-to-end
latencies are part of the requirements for these

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

350

applications. The time advance function of an
atomic DEVS model can be used to model latency.

 Events: Event-triggered and time-triggered
architectures use triggers in the form of either
external events or timing events to start certain
pieces of functionality. DEVS implements reaction
to events using the external transition functions.

 Priorities: Some real-time communication channels
use priority-based and other mechanisms for
arbitration. DEVS supports such arbitration by
means of explicit specification of executable events
from the set of simultaneous events.

 Simulation of the physical parts of the system:
DEVS is a very general formalism and is able to
include different other formalisms. This generality
stems from the infinite possible states that DEVS
allows to model and the (continuous) time elapse
between the different state transitions. The
hierarchical coupling techniques are used to
integrate the different formalisms using DEVS as a
common denominator.

2. BACKGROUND

The Modeling and Simulation Framework (MSF)
(Zeigler 1976) presents entities and relationships of a
model and its simulation as background for the

proposed work (Figure 1.)

The MSF separates models from simulators as entities
that can be conceptually manipulated independently and
then combined in a relation which defines correct
simulation. The Experimental Frame defines a
particular experimentation process, e.g., Latin
hypercube sampling for yielding model outcome
measurements in accordance with specific analysis
objectives. Figure 1 depicts the notion of an
Optimization Frame to supplement the MSF
Experimental Frame, where the Optimization Frame
directs search among the possible models for one or
more that satisfy design space criteria, including those
that minimize uncertainty about how well the
implemented design will work. Figure 1 also

emphasizes the ability enabled by model continuity to
transfer a simulation model from a logical-time
simulator to a real-time simulator. In particular, DEVS
models for autonomous control in CACSoS can be
shifted without alteration (avoiding error-prone and
tedious reprogramming) to interact with real
environments in cooperative configurations after being
verified in virtual environments (Zeigler and
Sarjoughian 2012, Hu and Zeigler 2008.) The MSF
underlies the DEVS Simulation Protocol which
provides provably correct simulation execution of
DEVS models thereby obviating time and state conflicts
arising in simulation of multi-formalism models. There
are numerous implementations of DEVS simulators
(Nutaro 2011, Mittal and Risco 2012).

3. LIMITATIONS OF V&V METHODS
APPLIED TO CACSoS

Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) which are used for expressing desired
behavior and model checking have been applied to the
development of vehicle routing and road monitoring in
multi-UAV systems (Karaman and Frazzoli, 2008,
Sirigineedi, et al/, 2010). Humphrey (2013) explored
the use of LTL, the SPIN model checker, and the
modeling language PROMELA (Gerth 1997, Baier. and
Joost-Pieter, 2008, Holzmann 2004), for high-level
design and verification in UAV related applications,
reporting some success while suggesting limitations and
needed extensions. Table 1 shows three UAV related
cases she discussed.

Table 1. Example Applications of model
checking to CACSoS

Model A centralized UAV cooperator controller
that coordinates the actions of multiple UAVs
performing a monitoring task

Focus of Model Checking: Assuring that All sensors are
eventually visited.

Sample Simplifying Assumptions Communication
between UAVs and sensors can only occur
when in the same location and is error free.

Model A leader election protocol for a
decentralized system of unattended ground
sensors sending estimates of an intruder’s
position to a UAV

Focus of Model Checking At least one leader exists
at every time step.

Sample Simplifying Assumptions The sensors all use
sampling epochs of the same length enabling a
single time step for time advance.

Model Verification of high level UAV mission
plans for a scenario in which multiple UAVs
must be used to safely escort an asset across a

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

351

road network.

Focus of Model Checking The path travelled by the
asset is safe, i.e., all road segments in the path
have been scanned by UAV.

Sample Simplifying Assumptions UAVs and VIP were
assumed to travel at the same speed.

In each case, the focus of model is shown along with a
simplifying assumption. Because they are oriented to
verification, model checking tools tend to lack many
functions that exist in DEVS environments and require
abstractions that fit the tools’ operation. This forces an
abstraction of the real system that on the one hand
enables the modeler to better understand the model, and
on the other hand entails numerous assumptions to
enable the model checker to verify the focal
requirement. Despite these drastic simplifications, state
space explosion prevents employing more than a
handful of UAVs and sensors.

Zervoudakis et al (2013) write that “Research in model
checking has focused on enhancing its efficiency and
scalability thereby enabling model builders to verify
larger, more elaborate models. Popular model checkers
tend to support low-level modeling languages that
require intricate models to represent even the simplest
systems. For example, PROMELA, the language of the
model checker SPIN, is essentially a dialect of the low-
level programming language C. Another example is the
modeling language used by the probabilistic model
checker PRISM, whose lack of control structures forces
model builders to pollute model components with
counter variables that explicitly encode the components'
state transitions.” These authors show that mapping of
domain knowledge, assuming it exists in the right form,
can be used to reduce the manual and error-prone
encoding of state transitions at relatively low levels of
abstraction. Here we propose to develop such
mappings using the domain knowledge contained
within simulation models and their ontological
representations within the DEVS-based Modeling and
Simulation Framework.

4. DEVS SUPPORT FOR CACSoS

Cyber-physical systems are real-time hybrid systems,
i.e., include both discrete and continuous dynamics,
which, as earlier indicated, are well represented within
the DEVS-based MSF. Typically such a system is
described by a state consisting of both discrete control
phases and continuous variables (Nutaro 2008.,
Saadawi, Wainer, and Moallemi 2012). developed a
methodology that combines DEVS and Timed
Automata (TA) (Bengtsson and Yi 2004. Henzinger,.
1997, Alur 1995, Courcoubetis et a;l. 1995) to allow the
designer to model, simulate, verify, and deploy real-
time hybrid systems. This is achieved by guaranteeing

the correctness of the model with a methodology that
verifies DEVS models with TA model-checking
techniques and tools. Under model continuity (Figure
1) the verified DEVS models are then made executable
on the target platform, thus eliminating the risk of
introducing errors in the final system implementation.
TA provides a solid theory and algorithms for model
checking, and many existing tools implement these
algorithms (e.g., UPPAAL). The combined DEVS/TA
methodology deals with RTA-DEVS - a restriction of
DEVS to Rational (a subset of real) Time Advance
values. For this subclass the methodology provides
automated mappings to TA’s abstract formal system
specification that is verifiable by decidable model
checking. In this methodology, if UPPAAL (or other
model checker) faces a problem of state explosion, and
no answers can be obtained in reasonable time, the user
can use model checking on an abstraction of the system
while employing DEVS-based simulations to
empirically check out properties not included in the
formal analysis. In particular, the methodology applies
to hybrid systems whose continuous components are
expressed using differential equations solved using
Quantized State System (QSS) integration.
Concurrently, a burgeoning literature is developing on
the use of QSS, a class of DEVS models, to efficiently
and accurately model such systems, for example using
multicore processors.
While multi-agent-based simulation (ABS) is well
established using DEVS (e.g. (Perez et al. 2010), time-
step scheduling is still used in classic ABS models (e.g.,
Repast. 2009) However, Zhang et. al. (2014) developed
a DEVS simulation model which is significantly more
efficient than the Repast ABS model 350 times faster
for 10000 agents) while keeping high model spatial
fidelity and the same agent cognitive capability,
collision avoidance, and low agent-to-agent
communication cost.

Work on non-DEVS model checking for hybrid systems
includes that based on timed automata (Henzinger
1997, Alur 1995, Courcoubetis et a;l. 1995), abstraction
and simplification of systems (Chauhan et al. 2002,
Clarke, et al. 2003, Long 1993), and statistical model
verification (Younes et al. 2006).

5. INTEGRATING DEVS AND NON-DEVS

VERIFICATION METHODS

As discussed earlier, several DEVS methodologies have
been developed which incorporate non-DEVS
verification methods (Zeigler and Sarjoughian 2012, Hu
X. and Zeigler 2008.) These methodologies attempt to
employ DEVS to enable loosening the simplifying
assumptions typically made by non-simulation models.
For example, the Sample Simplifying Assumptions in
Table 1 suggest that such simplifications include those
concerning perfect communication among component
systems occurring when they are in exactly specified
locations, that time advances for all components using
the same fixed time step, and that speeds of vehicles are

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

352

constant or change instantaneously neglecting realistic
accelerations. However, so far, such methodologies
have not provided a general approach to combining
simulation and verification using available system
theoretic concepts.

Our objective here is to develop and employ system
morphisms and model transformations to integrate the
various types of models to be included in a general
DEVS-based framework for verification in model
engineering. Model transformations are a key means of
converting between different model types and must
preserve desired aspects of structure and behavior to
qualify as system morphisms. Our approach is to define
system morphisms for such transformations and to
prove these morphisms are mathematically correct using
existing theory of system morphisms (Zeigler, B. P.. ,
1976]. This will enable us eventually to automate
verification of properties for complex simulation
models as opposed to simplified models developed
specifically for model checking. Then we will explore
algorithmic approaches to automate the construction of
these types of systems mappings. Such automation is
necessary to create a practical tool for engineering
systems of systems.

Figure 3. Model for automatic verification of the

Figure 2 compares the methodology of (Saadawi,
Wainer, Moallemi 2012.) which provides automated
transformations from RTA-DEVS to TA enabling
tractable model-checking using UPPAAL (Behrman
2004) with the approach we discuss here. The RTA-
DEVS approach seeks to verify DEVS models by
transforming them into a subset of TA that can be
verified using UPPAAL. To do this, it must

appropriately limit the class of DEVS models to a
subclass that can be mapped to the input class of TA for
UPPAAL via 1-1 weak bi-simulation with the Safety
TA subclass of TA. Weak bi-simulation will be shown
to be a system morphism. The mappings are not
automated.

In contrast, as shown in Figure 2, our approach is to
start with the FD-DEVS (Zeigler and Sarjoughian 2012)
subclass of DEVS models having finite sets of states,
inputs, and outputs and whose construction is supported
by MS4 Me. Then two mappings are defined:

1. Map FD-DEVS models into non-deterministic
automata that are subject to model checking
using SPIN/PROMELA.

2. Elaborate FD-DEVS models into full-fledged
DEVS models that can be simulated to obtain
behavior of interest and possibly to discover
unexpected or emergent behaviors via
simulation.

To illustrate the general idea, we will construct and
illustrative, mathematically verifiable transformations
from DEVS models to model checking models and vice
versa.

5.1. Example of System Morphism between

PROMELA and DEVS

For an example of this approach, consider the
alternating bit protocol introduced by (Bartlett,
Scantlebury and Wilkinson, 1969) for implementing
full-duplex communications over half-duplex
communication lines. This protocol is illustrated in
Figure 3. It has been used to illustrate fundamental
elements and analysis capabilities of the PROMELA
language by proving that the protocol operates correctly
(see the SPIN manual, Gerth 1997); that is, that ``Every
message fetched by A is received error-free at least
once and accepted at most once by B''. It is apparent
from the figure that this PROMELA model is a finite
state automaton, and all finite state automata are are
instances of DEVS models that have a fixed time
advance (see (Zeigler, Praehofer, & Kim. 2000). Hence,

it is a DEVS model of this protocol can be built in a
simple way. We do this by adding two pieces of
information to the PROMELA description: the time T to
transmit a bit and the probability p of an error. One
important use of this DEVS model is to answer
questions about performance of the protocol.
Conversely, we may map any instance of this DEVS
model with parameters p and T onto a PROMELA
model by abstracting away the specific probability
distribution and stating only that a bit may arrive or not
arrive.

Figure 2 Comparing DEVS‐based Verification Approaches

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

353

Table 2 shows the results of a simulation study, using
the DEVS model sketched above, to discover how the
bit rate of the protocol varies as a function of T and p.
This table was constructed with the DEVS simulation
model by sweeping over a range of values for T and p,
and for each combination recording the bits per second
that could be exchanged by the system assuming 100%
utilization of the communication channel. These
simulations provide important, systems level
performance metrics that cannot be obtained via a query
of the PROMELLA model. At the same time, we may
be certain that the simulation model preserves the
formal properties that we have proven about the
protocol by use of the PROMELA model. The
capability to construct performance studies, like this bit
rate study, using a simulation model derived directly
from the formal verification model illustrates the power
of the proposed approach for engineering complex
systems.

Table 2. Performance study of the alternating bit
protocol

T
(seconds)

P Bits per
second

T
(seconds)

p Bits per
second

1E‐9 0 5.0E8 1E‐6 0 5.0E5

 0.25 3.8E8 0.25 3.8E5

 0.5 2.5E8 0.5 2.5E5

5.2. Extending the Range of Verification Models

with Simulation Models

Transformations between simulation models and
verification models can also facilitate the reuse of
model components throughout the lifecycle of an M&S

system, and this reuse can have the important effect of
revealing implicit assumptions in proofs constructed for
the verification model. For instance, it is natural to use
the alternating bit protocol as a media access control
layer within a more comprehensive network simulation.
This more comprehensive model could have a sender
and receiver each with two components. This is
illustrated in the Figure 4. The first component is our
DEVS model of the alternating bit protocol. The second
component sends and receives messages, rather than
just bits, and queues messages that are pending
transmission. This second component appends to each
message the bit that it receives from the MAC layer,
and sends to the MAC layer the first bit in each message
received from the network or an error indicator, as

appropriate. Transmissions in the upper layer occur at
the instant that a bit is received from the MAC layer
below. Central to understanding the behavior of this
model is its queue capacity, rate of requests to send
messages, and bit rate.

5.2.1. Alternating Bit Protocol with Infinite Queue

Let us first consider a combination of these that may be
reduced to a slightly more complex version of the
verification model for the alternating bit protocol. To
obtain this model we reduce the queue to two states:
empty and occupied. The former indicates no messages
waiting for transmission and the latter indicates a
message waiting to be transmitted. Adding these states
to the transmitter increases the size of the verification
model from 25 states to 50 states, and we may prove for
this larger model that every message transmitted is
received once and only once. This proof is significant
because it reflects the intended, but idealized, behavior

of the system. If, for instance, this assertion could not
be proved then the design of the system should be
reconsidered before moving to other forms of testing.

Figure 5 Relation between Verification and Simulation

5.2.2. Alternating Bit Protocol with Finite Queue

However, this proof does not indicate how the system
will behave over its entire range of structural variations
and realizable behaviors. In particular, we may
encounter a case where the queue’s capacity is finite. In
this case, the bit rate and rate of requests to send
messages may be such that at certain points in time the
queue’s capacity is exceeded as can be predicted by
simple queuing theory (Jain 1991). The consequence of
this will be messages that are lost: a clear violation of
the above proof! In this simple example, the cause of
this violation is obvious. The verification model
assumes that the queue never reaches its capacity, and
so the proof implicitly assumes a restricted range of
values for the queue capacity, rate of transmission
requests, and bit rate.

Figure 4 Message Layer addition to ABP

6. COMBINING SIMULATION AND FORMAL

VERIFICATION

These types of implicit assumptions can be difficult to
identify in a large model, and simulation offers an

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

354

opportunity to explore the system’s parameter space and
identify boundaries beyond which any particular proof
fails to hold.

As illustrated in Figure 5, the combination of simulation
and formal verification gives a much more powerful
capability to test designs than can be achieved with
either alone. In a design process that incorporates both
types of analysis, verification models can be used to
obtain absolute answers concerning system behavior
under idealized conditions. Failures in this verification
stage clearly indicate a need to find and correct
fundamental flaws in the system design. On the other
hand, a successfully verified model can be formally
extended into a simulation model for which the
verification model is a homomorphic simplification.
Hence, the simulation model retains the properties that
were verified with the simpler model, and then can be
used to explore scenarios that are necessarily outside the
scope of formal verification. In some cases, other
simplifications of a full-fledged simulation model can
be applied (for example, as mentioned above, queueing
theory can predict the probability of a finite capacity
queue being exceeded.) However, in general, simulation
models can incorporate the complexity needed to deal
with real systems using the base model concept. The
traceability between these two types of models, which is
obtained by the application for formal system
morphisms, is central to the success of this two tiered
approach to testing.

7. FUTURE RESEARCH

Future research must develop robust transformation
techniques that can be shown to be systems morphisms
of suitable types. This will ensure consistency between
the results of verification of emergent foreseen
behaviors using analytical techniques and the discovery
of emergent unforeseen behaviors through dynamic
simulations. This will require formulating a meta-
modeling approach that will lead to a multi-step
verification process that can handle the dynamical
complexity of CACSoS models. We recognize that the
most expeditious way to develop an inclusive
framework is to build on existing methods and software
tools to the extent possible. The multi-step verification
process will help to manage and cross-check results
obtained from the various analytical and simulation
methods, as well as from integrated methods that are
supported by the proposed framework. This approach
helps to deal with the complexities of CACSoS by
enabling more robust designs and a more thorough and
organized simulation and verification process. These
complexities can be addressed with the help of the
theory of M&S (Zeigler 1976) to develop methods for
hierarchical decomposition and simplification as
essential tools within the emerging field of model
engineering.

REFERENCES

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger,
T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis,
and J., Yovine, S. 1995, The algorithmic analysis
of hybrid systems. Theoretical Computer Science
138(1), 3–34

Baier, C. and Joost-Pieter, K. 2008, Principles of Model
Checking. The MIT Press

Bartlett, K.A., , Scantlebury, R.A., and Wilkinson, P.T.
1969`A note on reliable full-duplex transmission
over half-duplex lines,' Comm. of the ACM, , Vol.
12, No. 5, 260-265,

Behrmann, G., David A., Larsen K. 2004. “A Tutorial
on UPPAAL”. Proceedings of the 4th
International School on Formal Methods for the
Design of Computer, Communication, and
Software Systems. LNCS 3185.

Bengtsson, J. and Yi W.. 2004. “Timed Automata:
Semantics, Algorithms and Tools”. Lectures on
Concurrency and Petri Nets, 3098.

 Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith,
H., and Wang, D., 2002, Automated abstraction
refinement for model checking large state spaces
using SAT based conflict analysis. In: Aagaard,
M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 33–51.Springer, Heidelberg

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.,
2003, Counterexample-guided abstraction
refinement for symbolic model checking. Journal
of the ACM (JACM) 50(5), 752–794()

Denil, J, 2013 Design, Verification and Deployment of
Software Intensive Systems: A Multi-Paradigm
Modelling Approach, Ph. D. Dissertation,
University of Antwerp.

Gerth, R., 1997, Concise PROMELA reference (),
http://SPINroot.com/SPIN/Man/Quick.html

Henzinger, T.A., Ho, P.H., and Wong-Toi, H. 1997,
HyTech: A model checker for hybrid systems.
International Journal on Software Tools for
Technology Transfer (STTT) 1(1), 110–122 ()

Holzmann, G.J., 2004,The SPIN Model Checker:
Primer and Reference Manual. Addison Wesley
Publishing Company ()

Hu X. and Zeigler B. P., 2005. A Simulation-Based
Virtual Environment to Study Cooperative Robotic
Systems, Integrated Computer-Aided Engineering
(ICAE), 12:4, pp. 353-367,

Humphrey, L. R. 2013, Model Checking for
Verification in UAV Cooperative Control
Applications Recent Advances in Research on
Unmanned Aerial Vehicles, Lecture Notes in
Control and Information Sciences Volume
444, 2013, pp 69-117

Jain R. K. 1991, The Art of Computer Systems
Performance Analysis: Techniques For
Experimental Design, Measurement, Simulation,
And Modeling Hardcover: 685 pages Wiley.

Karaman, S. and Frazzoli, E., 2008 ,Vehicle routing
with linear temporal logic specifications:
Applicationsto multi-UAV mission planning. In:

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

355

http://spinroot.com/spin/Man/Quick.html

Proceedings of the AIAA Conference on
Guidance, Navigation, and Control

Long, D.E. 1993, Model Checking, Abstraction, and
Compositional Verification. PhD thesis, Carnegie
Mellon University

Mital, S,. Risco Martin José L 2012, Netcentric System
of Systems Engineering with DEVS Unified
Process, CRC Press; 1 edition

 Nutaro J. 2008. On constructing optimistic simulation
algorithms for the discrete event system
specification, ACM Transactions on Modeling and
Computer Simulation, 19(1), pp. 1-21.

 Nutaro J., 2011. Building Software for Simulation:
Theory and Algorithms with applications in C++.
Wiley.

Perez E, Ntaimo L, Bailey C and McCormack P , 2010,
Modeling and simulation of nuclear medicine
patient service management in DEVS. Simulation-
Transactions of the Society for Modeling and
Simulation International 86(8–9): 481–501.

Repast, 2009. Repast home page. Available at
http://repast.source forge.net,

Saadawi, H, Wainer, G. Moallemi, M.. 2012.
“Principles of Models Verification for Real-Time
embedded Applications”. Real-Time Simulation
Technologies: Principles, Methodologies, and
Applications. K. Popovici, P. Mosterman Eds.
Taylor and Francis. CRC Press. 2012.

Shaffer, Alan R 2012 The Value of Modeling and
Simulation for the Department of Defense M&S
Journal pp 2-3

Sirigineedi, G., Tsourdos, A., White, B., Zbikowski,
and R. Kripke, 2010, Modelling and model
checking of a multiple UAV system monitoring
road network. In: Proceedings of the AIAA
Guidance, Navigation, and Control Conference.

Younes, H.L.S., Kwiatkowska, M., Norman, G., and
Parker, D. 2006, Numerical vs. statistical
probabilistic model checking. International Journal
on Software Tools for TechnologyTransfer
(STTT) 8(3), 216–228

Zeigler, B. P. and Sarjoughian, H. S. 2012, Guide to
Modeling and Simulation of Systems of Systems
Springer; pp. 393

Zeigler, B. P., Praehofer, H., & Kim, T. G., 2000,
Theory of Modeling and Simulation (2nd ed.).
Academic Press.

Zeigler, B. P., 1976. Theory of Modeling and
Simulation (1st ed.). Academic Press.

Zervoudakis, F., Rosenblumy D. S., Elbaumz, S., and
Finkelstein, A, 2013 Cascading Verification: An
Integrated Method for Domain-Specific Model
Checking, ESEC/FSE 2013, Saint Petersburg,
Russia

Zhang, B, Chan, W K V, and S V Ukkusuri, 2014, On
the modelling of transportation evacuation: an
agent-based discrete-event hybrid-space approach
Journal of Simulation advance online publication
21 February 2014

 AUTHORS BIOGRAPHY

Bernard P Zeigler, Chief Scientist of RTSync
Corp.,and Emeritus Professor from Arizona Ceter
for Integrative Modeling and Simulation is
internationally known for his seminal contributions
in M&S theory, and has published several books
including Theory of Modeling and Simulation,
IEEE named him a Fellow of the IEEE for his
invention of the Discrete Event System
Specification (DEVS).

James Nutaro is Senior Research Staff at Oak
Ridge National Laboratory. He has extensive
experience in M&S and systems modeling in both
defense and commercial domains. He has applied
M&S techniques for design, analysis, and testing in
diverse enterprises including missile systems, space
systems, communications, uranium processing,
electrical power, disease processes, and high
performance computing technology. He is also the
author of Building Software for Simulation: Theory
and Algorithms, with Applications in C++.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

356

http://repast.source/

