
WEBRTC TECHNOLOGY AS A SOLUTION FOR A WEB-BASED DISTRIBUTED
SIMULATION

Stepan Kartak(a), Antonin Kavicka(b)

(a) Faculty of Electrical Engineering and Informatics, University of Pardubice
(b) Faculty of Electrical Engineering and Informatics, University of Pardubice

(a)stepan.kartak@student.upce.cz, (b)antonin.kavicka@upce.cz

ABSTRACT
The modern web browser is a runtime environment
which aspires to replace original (native or desktop)
applications. This article describes a new HTML5
technology called WebRTC, which enables a direct
connection between browsers and which enables to
perform a peer-to-peer network connection, which is
suitable for the creation of a distributed simulation
model. We compare this new technology with original
web-based distributed simulation solutions –
implemented using applets – and present one of the
possible approaches to distributed simulation model
creation.

Keywords: web-based simulation, WebRTC, discrete-
event simulation, HTML5

1. INTRODUCTION
Web browsers are part of daily life today. During the
past few years, web browsers have grown enormously;
standards have been unified – especially JavaScript –
and the present-day web browser succeeds as a platform
for a wide range of applications which used to be
implemented as so-called desktop applications, which
are bound to the operation system, processor
architecture, etc. The web browser overcomes these
dependencies and represents and ideal multi-platform
runtime environment, which, together with extended
HTML5 support, represents minimum restrictions to the
deployment of applications which could only be
implemented as desktop ones in the past.

Since the second half of 2013, major web browsers
have supported WebRTC (included in HTML5), which
enables to initiate a peer-to-peer network connection
between browsers (clients), and thus to perform a
smooth distributed and decentralized simulation. It is
this type of simulation that we elaborate on.

The article also covers available competing
technologies, the technology and use of WebRTC, and
describes a practical implementation of distributed
simulation models running in the web browser.

The aim of the solution is not to compete with the
existing HLA solutions, but to present new possibilities
opened up by modern web browsers, and point out their
advantages (as well as disadvantages). This article is a
follow-up to a previous work (Kartak 2013), where a

web-based simulation was implemented using Java
Applets (which was the only possible solution at that
time). The article concludes with a simple comparison
of the two solutions.

2. AVAILABLE TECHNOLOGIES
The aim of a web-based simulation is to create a
browser ecosystem where the deployment of external
elements (applets, extensions, etc.) is reduced to
minimum.

Distributed compute nodes require a bi-directional
communication between individual logical processes in
the network. This purpose is best served using the peer-
to-peer architecture (figure 1).

Figure 1: Peer-to-peer Network Topology

2.1. HTML Before Introducing HTML5
As mentioned in the previous paragraph, bi-directional
communication is necessary. In the past, it was the
absence of this functionality that did not allow for this
type of connection among devices (typically, browser-
browser or browser-server).

There were several solutions dealing with this
issue. The simplest one, exclusively at the level of
browsers, was accumulating client requests in a queue
on a server, which was accessible to all clients involved
in the communication, where the requests were waiting
for the retrieval by the original target client (browser),
see Figure 2.

This way, defacto, we pass from the peer-to-peer
communication to the client-server one. It follows that
this solution can be considered as an “emergency” one
and thus not suitable in general. The use of a server
within a distributed simulation may have its purpose;
however, it is only complemental to the planned
simulation topology. Using a server is purposeful for
on-line gathering of information regarding the system
behavior – statistics, animation output, etc.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

343

Although it works, this solution brings several
disadvantages (the major ones are listed below):

• It requires an efficient server (a network

element which is virtually missing in the peer-
to-peer network architecture).

• As a rule, it requires a low response rate of the
client connection. In this case, requests are
repeatedly sent to the server (requests repeated
after several milliseconds). Most of the
requests sent to the central server element are
useless, yet they are necessary for the required
low response rate of the whole system (in our
case, a simulation). This considerably
increases the communication traffic in the
network.

Figure 2: Message Queue For Clients On Server

2.2. The Use Of Applets
In the past, the only possibility to deal with the above-
mentioned issue was the use of applets. In web
browsers, it was the use of an external application (e.g.
Java code running in Java Virtual Machine) in the
context of a web page. (Byrne, Heavey and Byrne 2010)

All commonly available applets (Java Applet,
Adobe Flash Player, Microsoft Silverlight) include
features to perform the peer-to-peer connection;
however, most of them (with the exception of Adobe
Flash Player) are “process virtual machines”, which
usually have direct access to the host computer. This is
very dangerous, as applets can be loaded from any web
page, and thus allow an unauthorized user to access the
computer. These applets deal with this issue by using
so-called policy files – files which contain a security
policy definition (i.e. a definition of enabled and
disabled features or operations and network access). In
these files, it is necessary to explicitly allow client call
from a specific server/client, or more generally defined
groups of servers/clients often called “domains”. In
addition, the above-mentioned must be allowed by the
user. The communication is often blocked by a firewall
or another security feature in the target computer or in
the network.

The use of applets is easy due to the well-known
languages (typically Java and Java Applet); however, in
general it is not suitable because of a non-trivial use and
network communication safety issues.

The most applicable out of the above-mentioned
applet types is Java Applet; its safety policies enable a
smooth bi-directional client-server communication
(with the server from where the applet was loaded).
This, of course, contradicts the notion of the peer-to-

peer connection, and does not bring any vital benefit
when compared to the above-mentioned solution based
solely on HTML.

All these applet-based solutions had to deal with
connection safety issues (connection blocked by
firewalls, etc.) and incompatibility among browsers,
platforms, or operating systems. (Martin, Rajagopalan
and Rubin 2013)

2.3. New HTML(5) Possibilities
Together with new technologies (often called HTML5),
HTML allows all necessary communication in the
network:

• Download and upload data (standard browser

features even before HTML5).
• The WebSocket technology allows for

performing real bi-directional client-server
communication.

• WebRTC technology allows bi-directional
communication directly between browsers –
real peer-to-peer communication.

This solves the issues related to network

communication for the needs of distributed simulation
(see Table 1 for the overview of the availability in web
browsers). For a detailed description of HTML5
network technologies, refer to Chapter 3.

Table 1: The HTML5 Network Technology Availability
In Major Web Browsers

Web Browser WebSocket WebRTC
Chrome 14 23
Firefox 6 22

Internet Explorer 10 -
Opera 12.10 22
Safari 6 -

Available since May 2012 July 2013

HTML5 brings further useful technologies which

find their use in a web-based simulation:

• Canvas: Allows for (mainly vector) 2D

drawing using JavaScript. A crucial
disadvantage of Canvas is the necessity to
always redraw the whole scene (there are some
mostly “caching” techniques to minimize the
problem to a certain degree).

• SVG: Allows for drawing (and animation)
using a declarative HTML-like approach.

3. HTML5 NETWORK TECHNOLOGIES

3.1. WebSocket
WebSocket technology enables us to perform a network
connection correspoding to the standard behavior of
desktop applications, familiar to us for years. Network
sockets establish a bi-directional connection between
two applications (client 1 can contact client 2 and vice

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

344

versa). In terms of web applications, it means that a web
page (client 1) opens a connection with a server
(responding to client 2) and this connection is bi-
directional – there is no longer a queue (see Figure 2),
the server sends messages directly to the client via the
opened connection.

This solution, of course, requires a server. The
server side does not have to meet any special
requirements; it only needs to follow the WebSocket
protocol. We also have at our disposal a wide range of
ready-made open-source tools, from PHP (e.g. the
Ratchet library), via Python (e.g. the Tornado
framework) to Java (e.g. TooTallNate) or C# (the
Alchemy WebSockets library).

3.2. WebRTC
At first it is crucial to mention that the development of
this technology is still in progress. According to W3C,
WebRTC is in the “Working Draft” phase (as of
September 10, 2013, see References), and the behavior
of some features in different browsers may not be 100%
correct, or different browsers have implemented these
features in different ways. Most of these issues can be
solved using a JavaScript solution, which overcomes
the existing browser-specific differences (at present
only minor differences among browsers).

This technology crucially enhances web browser
capabilities in terms of network communication. It is
possible to perform the peer-to-peer connection without
a server (a server is only required to initiate the
connection, which is, of course, standard for peer-to-
peer communication). To solve routing issues when
communicating with a client in a local network using
NAT, WebRTC implements directly the use of the ICE
(Interactive Connectivity Establishment) protocol. More
information is provided in the following chapter 4.2.

WebRTC transfers data in two ways:

• MediaStream – used for audio and video

streaming.
• DataChannel – used for text message transfer –

it is this type that we used for the
communication in the simulation.

DataChannel (uses the SCTP protocol for the
communication between clients; this protocol allows for
optional reliability settings). The reliable variant
ensures that the message is delivered to the addressed
clients (reliability corresponds to TCP); in the opposite
case, the delivery is not quarranteed (or, only a limited
number of callbacks is quaranteed; this type is similar to
the UDP protocol).

4. NETWORK COMMUNICATION ISSUES IN

A PUBLIC NETWORK
In this section, we elaborate on the two major and
restrictive issues which need to be considered when
communicating in the network (not only in the web
browser).

4.1. Same-Origin Policy
Web browsers require following the same-origin policy.
In practice, a problem arises when JavaScript needs to
call the source – usually to download data – from a
server which is located in a different domain than the
one from where the page was loaded.

This way, browsers prevent the cross-site request
forgery (CSRF or XSRF) attack, where the local script
(loaded on a currently viewed web page) might call a
script (or data containing executable code) which is not
under the control of the application author (is located in
another domain), and thus may present a potential
threat.

We are likely to encounter this issue if we want to
incorporate a logical process (performed using a web
page) into a web-based distributed simulation, where
the simulation is located in a different domain than the
domain where e.g. the initialization server is located.

There are several solutions which can perform this
type of communication. The simplest and most
dangerous solution is an explicit disabling of the cross-
origin request blocked (CORB) in a web browser. The
best and most straightforward solution is the use of a
server script which runs in a domain from where the
web page was loaded. The web page then calls the
script with the respective request for loading the source
from another domain. On request, the script loads the
requested source and sends it to the web page.

4.2. Peer-to-peer Communication via NAT
In the peer-to-peer network architecture, a problem in
the connection between clients may arise when the
clients are located behind NAT (Network Address
Translation) routers. In this case, clients are in a local
network and communicate with a public network via
NAT routers, which serve as a public network gateway.
What causes a problem in this case is the addressing of
the client behind the NAT router, because from the
public network perspective, the client is not visible
(only the NAT router is visible), and is thus
unreachable. In this case, direct initiation of a peer-to-
peer connection is not possible.

The client connection problem can be solved using
the ICE protocol (RFC 5245, see References).

The solution requires the use of an initialization
server, which provides the connection.

The following example of the ICE protocol
function has been simplified to demonstrate the scope of
the problem (the performing of this connection
algorithm requires 2 computers (clients) A and B which
are, from the public network perspective, located behind
a single NAT router at maximum (not port-forwarding)
– see Figure 3):

1. Client A contacts a STUN server via port X.

STUN sends back the number of port Y, from
where it was contacted by client A. Based on
the response (the number of the
communication port of the client STUN
request and the number of the port in the

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

345

STUN server response is the same),
client finds out that the computer is accessible
from the public network (has a public IP
address – in this case, port X = Y), there is no
problem in the communication
peform a connection and ICE protocol has
finished.

2. If the client finds out, according to the STUN
server response, that it is not publicly
accessible (the port numbers of the request and
of the response are not the same
client A sends the public port number Y via the
initialization server (the port which the STUN
server was able to contact) to client B
which it can then communicate.

3. Steps 1 and 2 are also performed
4. Clients A and B initiate a connection via public

IPs and ports, which they exchanged via the
initialization server.

5. If direct communication between clients A and
B is not possible (is blocked by the NAT
router, firewall, etc.), it is the TURN server
which can function as a mediating element
between the two clients. The
exchanges messages from one client to
another. This does not correspond to the peer
to-peer architecture but to the client
client network topology. The use of the TURN
server is not an ideal solution as there is high
latency and server load; however, in this case,
it is the only solution to connect clients A and
B. This is, however, a rather exceptional state.

Figure 3: Visualisation Of ICE P

From the above-mentioned algorithm it fol

that the procedure is not rivial. Importantly, both
STUN and the TURN servers are available as open
source, and there are libraries available for the common
programming languages (Java, C#, C++, etc.) which
support the ICE protocol. WebRTC is no exception, and
when the STUN (eventually TURN) server address is
provided, the web-browser itself handles the operation
without the need of human interference.
available STUN and TURN servers also exist and can
be used, making the facilitation of direct
communication a very easy operation.

STUN server response is the same), if the
client finds out that the computer is accessible
from the public network (has a public IP

port X = Y), there is no
on – the client can

a connection and ICE protocol has

, according to the STUN
that it is not publicly

accessible (the port numbers of the request and
not the same, i.e. X ≠ Y),

lient A sends the public port number Y via the
the port which the STUN

to client B, with
it can then communicate.

performed by client B.
Clients A and B initiate a connection via public
IPs and ports, which they exchanged via the

direct communication between clients A and
B is not possible (is blocked by the NAT
router, firewall, etc.), it is the TURN server

can function as a mediating element
The TURN server

messages from one client to
This does not correspond to the peer-

peer architecture but to the client-server-
The use of the TURN

er is not an ideal solution as there is high
latency and server load; however, in this case,
it is the only solution to connect clients A and

xceptional state.

Protocol

mentioned algorithm it follows
Importantly, both the

TURN servers are available as open-
source, and there are libraries available for the common
programming languages (Java, C#, C++, etc.) which

WebRTC is no exception, and
server address is

browser itself handles the operation
without the need of human interference. Some publicly
available STUN and TURN servers also exist and can
be used, making the facilitation of direct

5. WEBRTC PRACTICAL APP
To be used in practice, WebRTC has to meet yet
another requirement. Each peer
requires an initialization server, which serves as an
“intermediary” while initiating
clients. WebRTC is no exception; in the context of
WebRTC, the initialization server is called a signaling
server. In practice, the situation is more
another (by no means less important) role is the role of
the client, which performs a connection using the SDP
and ICE protocol.

Signaling server is a server via which
exchange SDP (Session Description Protocol)
messages, where they provide the info
network connection via which they are to communicate.
(It follows that a signaling server is not required if the
SDP message exchange can be facilitated using another
option). The communication via a signaling server can
be facilitated using a wide range of options:

• The simplest solution is sending requests to a

server, or eventually sending the required SDP
information (see Chapte

• A more efficient option is the usage of
WebSockets.

• A wide range of other options.

If the initialization process is successful, a bi
directional communication channel
(web browsers) is created, with the help of which we
can exchange messages (or other data types supported
by WebRTC – especially audio and video streaming).

We also have at our disposal a number of open
source signaling servers, which we can use and
deal with the logical process modeling.

6. IMPLEMENTATION
For testing and application purposes, a collection of
programming tools and protocols was
create a simple ecosystem with focus on reusability,
simplicity and development speed.
implementation in this chapter.

6.1. Concept
The central idea was to create a set of (relatively
general) logical processes, which can be integrated into
the distributed model. The sample implementation
concerned traffic, where logical processes represented:

• A road,
• A road with a turnoff
• A road with a crossroads.

The three logical processes can be

times in a single distributed model in arbitrar
combinations and individual instance
the used logical processes. The three
are sufficient for the purpose of
trafic infrastructure of a small town.

WEBRTC PRACTICAL APPLICATIONS
To be used in practice, WebRTC has to meet yet

Each peer-to-peer connection
initialization server, which serves as an

while initiating a connection between
WebRTC is no exception; in the context of

WebRTC, the initialization server is called a signaling
In practice, the situation is more complex;

other (by no means less important) role is the role of
a connection using the SDP

server is a server via which clients
exchange SDP (Session Description Protocol)
messages, where they provide the information about the
network connection via which they are to communicate.

signaling server is not required if the
SDP message exchange can be facilitated using another

The communication via a signaling server can
ing a wide range of options:

The simplest solution is sending requests to a
server, or eventually sending the required SDP
information (see Chapter 2.1.).
A more efficient option is the usage of

A wide range of other options.

zation process is successful, a bi-
directional communication channel between clients
(web browsers) is created, with the help of which we

exchange messages (or other data types supported
especially audio and video streaming).

at our disposal a number of open-
which we can use and only

e logical process modeling.

For testing and application purposes, a collection of
programming tools and protocols was introduced to

a simple ecosystem with focus on reusability,
simplicity and development speed. We elaborate on the
implementation in this chapter.

The central idea was to create a set of (relatively
general) logical processes, which can be integrated into

The sample implementation
concerned traffic, where logical processes represented:

A road with a turnoff,
crossroads.

The three logical processes can be used multiple
a single distributed model in arbitrary

combinations and individual instance configurations of
The three logical processes

the purpose of simulations of e.g.
trafic infrastructure of a small town.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

346

We elaborate on a web-based simulation, i.e.
individual logical processes were implemented as web
pages programmed in JavaScript. The communication
among the logical processes was performed
peer-to-peer connection via the HTML5 WebRTC
technology.

6.2. Used Synchronization Algorithm
To synchronize logical processes, we used a
conservative synchronization technique of sending
messages with a lookahead (Chandy
Distributed Discrete-Event Simulation Algorithm
Fujimoto 2000). The algorithm was modified to a
version where null messages are only sent on request.
The lookahead ensures that the simulation calculation
proceeds forward in time – there is no risk of a
deadlock. In our logical process creation concept, the
logical process lookahead is not dificult to define.
simplest method to define the lookahead
registering the most short-time activities which occur in
the logical process.

The algorithm can be described in the following
way (the example of simulators SC1 and SC2, where
SC1 receives messages from SC2; LVT = Local Virtual
Time, Calendar = the event queue).

1. SC1 has no planned activites from SC2.
2. SC1 sends the LBTS activity of the

type, which is labelled as a “service”
sends its own SC1.LVT.

3. SC1 is waiting.
4. SC2 receives the LBTS event; as the LBTS

activity is labelled as a “service”
queue it, but executes it immediately after the
current activity has been finished.

5. SC2 performs the LBTS activity: it calculates
SC2.LBTS = SC2.LVT + SC2. Lookahead.

6. If SC1.LVT > SC2.LBTS, SC1 does not accept
such LBTS answer and the sending on the
SC2.LBTS answer is scheduled in
SC2.Calendar to the SC1.LVT time.

7. Otherwise, the LBTS event of the
type with the SC2.LBTS time is sent
is no longer labelled as a “service”

8. SC2 continues its activities.
9. SC1 queues the LBTS event which was sent by

SC2.
10. By this time, SC1 knows the lower limit of the

SC2 time and can execute the planned events
before the received LBTS message

6.3. Administration interface
To facilitate the administration of the distributed
models, an administration interface was created which
runs as a common web application. It allows for a
simple addition of individual logical processes and their
integration into the simulation.

based simulation, i.e.
individual logical processes were implemented as web

The communication
performed using the

peer connection via the HTML5 WebRTC

To synchronize logical processes, we used a

technique of sending null
Chandy-Misra-Bryant

Event Simulation Algorithm,
The algorithm was modified to a

null messages are only sent on request.
ensures that the simulation calculation

there is no risk of a
In our logical process creation concept, the

is not dificult to define. The
lookahead limit is

time activities which occur in

The algorithm can be described in the following
way (the example of simulators SC1 and SC2, where

; LVT = Local Virtual

SC1 has no planned activites from SC2.
SC1 sends the LBTS activity of the “Request”

is labelled as a “service”; it also

the LBTS event; as the LBTS
vity is labelled as a “service”, SC2 does not

, but executes it immediately after the
current activity has been finished.
SC2 performs the LBTS activity: it calculates
SC2.LBTS = SC2.LVT + SC2. Lookahead.

> SC2.LBTS, SC1 does not accept
LBTS answer and the sending on the

SC2.LBTS answer is scheduled in
SC2.Calendar to the SC1.LVT time.

LBTS event of the “Response”
is sent to SC1 (it

“service”).

which was sent by

By this time, SC1 knows the lower limit of the
SC2 time and can execute the planned events
before the received LBTS message.

the administration of the distributed
models, an administration interface was created which
runs as a common web application. It allows for a
simple addition of individual logical processes and their

Figure 4: Administ

The simulation is created using the Drag & Drop

method in a visual editor directly in an HTML page
(implemented using the HTML canvas) and brings
editor a whole range of functions

• A multiple use of individual logical

(multiple instances of a single logical process
type),

• An intuitive connection of logical process
instances – logical processes have distinct
input and output connection points.
connection distinguishes various types of
received entities by l

• Individual logical process instances are
configurable.

• Global configuration of the whole simulation is
available.

6.4. A Software Library For
Implementation

To simplify the development, a software library (a set of
classes and functions in JavaScript) was introduced
which allows for a simple creation of logical processes
and an implicit realization of logical process
synchronization.

The library includes the implementation of:

• A simulation kernel,
• An activity prototype (a

activites can be created easily).
• A network connection using WebRTC,
• A synchronization mechanism (described in

Chapter 6.2).
• Animation.

All was implemented using primarily the

CoffeeScript language, which
JavaScript.

CoffeeScript was used for faster and more
transparent implementation
Script solution. Both types of source files are at the
user’s disposal. The whole solution is
encapsulation of functions and classes has been redu
to minimum to allow for prototyping (and especially
inheritance). This does not represent a typical OOP
approach; however, in its very nature,

Administration Example

The simulation is created using the Drag & Drop
method in a visual editor directly in an HTML page
(implemented using the HTML canvas) and brings the

functions (basic features):

ultiple use of individual logical processes
(multiple instances of a single logical process

ntuitive connection of logical process
logical processes have distinct

input and output connection points. The
connection distinguishes various types of
received entities by logical processes.
Individual logical process instances are

Global configuration of the whole simulation is

or Logical Process

To simplify the development, a software library (a set of
functions in JavaScript) was introduced

which allows for a simple creation of logical processes
implicit realization of logical process

The library includes the implementation of:

simulation kernel,
ctivity prototype (a class from which

activites can be created easily).
A network connection using WebRTC,
A synchronization mechanism (described in

All was implemented using primarily the
CoffeeScript language, which subsequently compiled to

CoffeeScript was used for faster and more
transparent implementation than a comparable Java

Both types of source files are at the
The whole solution is opened; the

encapsulation of functions and classes has been reduced
to minimum to allow for prototyping (and especially

This does not represent a typical OOP
in its very nature, JavaScript was

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

347

designed differently. Although this solution may
potentially be dangerous (the user can “rewri
code while the program is running), as a result it brings
increased flexibility and a possibility to exp
(especially as far as inheritance is concerned
parts of the solutions are dependent on it).

As a result, the programmer is onl
implement activities which run on the basis of a logical
process (eventually to create appropriate animation
output). The rest is ready to use without any
modifications or alterations.

6.5. Logical Process Communication Methods A

Other Suggested Standards
If the logical process creator works with a library which
has been designed specifically for this purpose (see the
previous chapter), they do not have to solve the
implementation of logical process communication or
loading of configuration files at all.

It is of course possible to create a logical process
quite independently of the above-mentioned software
library. In this case, we have at our disposal a
description of the communication between
processes (defacto an internal communication protocol)
and a description of configuration XML files using
XML schema.

The communication implements
JavaScript implicitly solves a correct language coding
of messages. Information is transfered in the JSON dat
format (a common means of data transfer via the
Internet actively supported by JavaScript).

The configuration of the whole simulation is
available in two XML files (can be processed using
JavaScript):

• The logical process configuration, which

describes especially the possibilities to connect
with other logical processes and the required
instance configuration. This file uses especially
the administration for corresponding visual
editor behavior.

• Configuration of the whole distributed
simulation setup. The file contains a global
simulation configuration and a configuration of
all logical process instances and their
interconnection.

6.6. A Sample Solution And Testing L

Processes
The whole solution was tested on 3 logical processes
representing:

• Highways with turnoffs,
• Two logical process types representing

(highway) fastfood facilities.

The logical processes are accompanied with an
animation, which provides visual information about the
events within the logical process.

designed differently. Although this solution may
lly be dangerous (the user can “rewrite” the

code while the program is running), as a result it brings
to expand classes

is concerned, some
parts of the solutions are dependent on it).

As a result, the programmer is only required to
implement activities which run on the basis of a logical

appropriate animation
The rest is ready to use without any

Logical Process Communication Methods And

logical process creator works with a library which
has been designed specifically for this purpose (see the
previous chapter), they do not have to solve the
implementation of logical process communication or

It is of course possible to create a logical process
mentioned software

In this case, we have at our disposal a
between logical

an internal communication protocol)
of configuration XML files using an

implements very easily.
implicitly solves a correct language coding

Information is transfered in the JSON data
format (a common means of data transfer via the
Internet actively supported by JavaScript).

The configuration of the whole simulation is
available in two XML files (can be processed using

The logical process configuration, which
especially the possibilities to connect

with other logical processes and the required
This file uses especially

corresponding visual

Configuration of the whole distributed
e file contains a global

simulation configuration and a configuration of
all logical process instances and their

Logical

The whole solution was tested on 3 logical processes

logical process types representing

The logical processes are accompanied with an
animation, which provides visual information about the

See an an example of
(Fig. 4) and used logical processes (Fig.

Figure 5: An Example Of Logical Processes Running I
A Web Browser

As mentioned above, logical processes can be

freely concatenated and allow for multiple usage.
context of testing, the three logical processes were used
in a distributed simulation which consisted of 20 logical
processes. All worked smoothly and without issues.

6.7. Comparison Of Java Applet A

Solutions
As mentioned at the beginning, this
to a previous solution, where logical processes were
also running in the web browser, yet using Java Applet.
This allows us to compare the effort spent on both
solutions as well as their results.
is not to compare which of the two s
JavaScript, is better (especially due to the fact that the
two languages are quite different one from another); it
is rather to point out which kinds of comparison the two
solutions inspire.

As expected, the results for the same
scenarios in both realizations were equal.

A much more interesting comparison is that of the
implementation of the same problem.
were written by the same author; we can thus claim that
the style and the algorithm solution woul
The size of the JavaScript source code (realized solely
by web technologies) represents approximately 70% of
the size of the code in Java (used in the Java Applet).
Provided that we do not take into account
frameworks for the DOM man
facilitation of canvas drawing (to a certain extent, both
include the basic programming tool collection which is
also provided by Java SDK), we realize that the
JavaScript code is less than half the size of the Java
code.

In slighly exaggerated terms, we can claim that a
program which is half the size takes half the time to
create and contains half of issues.
to read and understand. Even from this perspective,
transfer from applets to web technologies
consider, provided that it is feasible.
demonstrates that the transfer

The simulation speed was not measured, because
in both cases, the animation was running in

See an an example of an administration interface
) and used logical processes (Fig. 5).

Logical Processes Running In

above, logical processes can be
freely concatenated and allow for multiple usage. In the

the three logical processes were used
in a distributed simulation which consisted of 20 logical

All worked smoothly and without issues.

Of Java Applet And JavaScript

As mentioned at the beginning, this work is a follow-up
to a previous solution, where logical processes were
also running in the web browser, yet using Java Applet.
This allows us to compare the effort spent on both
solutions as well as their results. The aim of this chapter

to compare which of the two solutions, Java or
JavaScript, is better (especially due to the fact that the
two languages are quite different one from another); it

which kinds of comparison the two

As expected, the results for the same simulation
scenarios in both realizations were equal.

A much more interesting comparison is that of the
implementation of the same problem. Both source codes
were written by the same author; we can thus claim that
the style and the algorithm solution would be similar.

JavaScript source code (realized solely
by web technologies) represents approximately 70% of

Java (used in the Java Applet).
we do not take into account the used

DOM manipulation and for the
facilitation of canvas drawing (to a certain extent, both
include the basic programming tool collection which is
also provided by Java SDK), we realize that the
JavaScript code is less than half the size of the Java

xaggerated terms, we can claim that a
program which is half the size takes half the time to
create and contains half of issues. Shorter code is faster

Even from this perspective, the
transfer from applets to web technologies is worth to
consider, provided that it is feasible. And this article
demonstrates that the transfer certainly is feasible.

The simulation speed was not measured, because
the animation was running in real time,

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

348

which itself decreased the speed so that the simulation
could be observed by the user. When compared to the
program itself, there was a significant time lag in the
network communication. In the end, the speed of the
code execution is not essential.

It has to be mentioned that JavaScript has
numerous implementation drawbacks (as any other
programming language, in fact); however, their
description is beyond the scope of this article.

7. SUMMARY
The article introduced the reader into a web-based
simulation and mainly into new HTML5 possibilites of
web browsers, which provide opportunities for a web-
based simulation using only a web browser, i.e. without
complemental third-party software (applets, etc.).
A web-based simulation provides the opporunity to
create logical processes within the public network
irrespective of the platform or processor architecture. A
software platform, which is typically realized as a
desktop application requiring installation, is to be
replaced by the web browser, which is today widely
available free of charge, and for almost any computer.
The creation of a web-based distributed simulation
faces only a limited number of issues (they usually
concern network traffic safety policy); as opposed to
desktop applications, the web browser brings a variety
of ready-made features (in our case, the most important
one is WebRTC), whose realization in common native
applications is not trivial.

 Using the web browser as a runtime environment,
we can focus on the main aim, i.e. on the creation of
distributed simulation models running in a web browser
on any device connected to the network, from
computers via cellular phones to e.g. smart TVs. This
opens up an opportunity for a user-friendly, interactive
simulation available for anybody at any time.

REFERENCES
Fujimoto, R.M., 2000. Parallel and distribution

simulation systems. New York: Wiley.
Kuhl, F., Dahmann, J., Weatherly., R., 2000. Creating

Computer Simulation Systems: An Introduction to
the High Level Architecture. Upper Saddle River,
NJ: Prentice Hall.

Tropper, C., 2002. Parallel and distributed discrete
event simulation. New York: Nova Science Pub
Inc.

Bergkvist, A., Burnett, D.C., Jennings, C., Anant
Narayanan, 2013. WebRTC 1.0: Real-time
Communication Between Browsers. W3C.
Available from: http://www.w3.org/TR/webrtc/
[accessed date July 2014]

Rosenberg, J., 2014. Interactive Connectivity
Establishment (ICE). IETF. Available from:
http://tools.ietf.org/html/rfc5245 [accessed date
May 2014]

Martin, D., Rajagopalan, S., Rubin, A., 2013. Blocking
Java Applets at the Firewall. Available from:

http://avirubin.com/block.java.pdf [accessed date
June 2013]

Hridel, J., Kartak, S., 2013. Web-based simulation in
teaching. Proceedings of The European Simulation
and Modelling Conference 2013, pp. 109–113.
September 23–25, Lancaster, UK.

Byrne, J., Heavey, C., Byrne, P.J., 2010. A review of
Web-based simulation and supporting tools.
Simulation Modelling Practice and Theory
18: 253–276

Javor, A., Fur, A., 2012. Simulation on the Web with
distributed models and intelligent agents.
Available from: http://sim.sagepub.com/
content/88/9/1080 [accessed date June 2013]

Kartak, S., 2013. The software tool for configuring
distributed simulation model using a web
simulation. Thesis. University of Pardubice.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

349

