
NON-HLA DISTRIBUTED SIMULATION INFRASTRUCTURE

Jan Voracek (a), Jiri Penzes (b), Antonin Kavicka (c)

(a) Faculty of Electrical Engineering and Informatics, University of Pardubice
(b) Faculty of Electrical Engineering and Informatics, University of Pardubice
(c) Faculty of Electrical Engineering and Informatics, University of Pardubice

(a) jan@voracek.net, (b) jirkapenzes@gmail.com, (c) antonin.kavicka@upce.cz

ABSTRACT

Distributed Simulation Infrastructure (DISIS)

represents a general layer specialized in communication

of distributed simulation engines. The layer supports a

multiplatform approach, facilitates the synchronization

and communication of simulators (involved in a

distributed simulation model) and it is easy to use. The

current version of DISIS supports discrete event

simulation with conservative synchronization method.

Applications of DISIS seem to be quite convenient for

industrial applications because of high degree of

flexibility.

Keywords: distributed simulation, Non-HLA

communication, discrete-event simulation

1. INTRODUCTION

Computer simulation is an effective approach to study

the behaviour of various systems over time. Distributed

simulation works by distributing the calculation to a

cluster of computing nodes that are interconnected in a

communication network. This approach has a number of

benefits, e.g., the simulation calculation can be easily

scaled or, in some cases, more cost-effective resources

can be used, etc. The major disadvantage of distributed

simulation is the requirement to keep causality which

means that the communication between simulators

needs to be implemented. The communication becomes

nontrivial when the logical processes in the simulation

model are implemented in different programming

languages / platforms. Each such platform usually

supports different high-level communication protocols

(like Java RMI, Windows Communication Foundation,

etc.) and interconnecting logical processes can become

very difficult to implement when a low-level

communication (like TCP) needs to be used. In

addition, it is also necessary to agree on a

synchronization algorithm to preserve time causality of

interconnected logical processes. The main goal of

DISIS is to minimize these problems. (Fujimoto 2000,

Topper 2002)

2. HLA AND DISIS

The proposed general DISIS layer can remind us of

High-Level Architecture (HLA). Standard HLA, which

was originally developed for military purposes (Kuhl

and Dahmann 2000), allows the interconnection of

several simulations into a larger simulation unit. It is

indeed a very powerful and complex tool. The biggest

asset of HLA lies in its universality, which is

compensated by strict adherence to standards. The main

idea of HLA is a federation – a system that encapsulates

all simulators. In the federation, there are described,

inter alia, all objects that participate in simulation, or

defined methods of data exchange. Every member of

the federation – a federate – has to be designed

according to Simulation Object Model (SOM), which

describes the functionality of the member (Kuhl and

Dahmann 2000). Federate also has to be able to receive

information from other members, manage its local

virtual time and time of other members of federation

and also take responsibility for data ownership transfers.

This is just a short list of rules of HLA architecture

requirements for the federation and its members. The

federation has to contain Runtime Infrastructure (RTI)

backend layer, which must lead in providing of services

needed for running of distributed simulation to all its

members. The comparison of HLA and DISIS

terminology is in the following table (Kuhl and

Dahmann 2000).

Table 1: Terminology of HLA and DISIS

HLA DISIS

Federation
Distributed simulation

model

Federate Simulator

RTI DISIS infrastructure

Federation Object

Model
Not required

Object Model Template Not required

Simulation Object

Model
API

 Compared to HLA, the main idea of DISIS is not to

support various combinations of discrete and

continuous simulation, different synchronization

algorithms etc. DISIS is in this respect way more

restrictive, and therefore much easier for

implementation. Because DISIS is not so strictly tied to

the simulation engine, the software designer of a logical

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

319

mailto:jan@voracek.net
mailto:jirkapenzes@gmail.com
mailto:antonin.kavicka@upce.cz

process has much more freedom with regard to the

implementation. There is no need to implement some

standard or adjust the implementation of a simulation

engine to a specific communication layer. That enables

to completely replace the communication layer with

another. Regarding to their implementation, simulators

are not directly dependent on the DISIS layer. Among

other things, this feature allows us an easy switch from

the monolithic engine to the distributed one with a

minimal intervention in the implementation. For

example the complexity of a simulated problem may not

be well-known in industrial applications in advance.

Thus, with DISIS we can start with monolithic

simulation and when we need a higher performance or a

higher degree of decomposition, we can easily change

the standing model to the distributed one. DISIS only

provides basic API for message exchange and takes full

responsibility for communication. There is no need to

design the very simulator according to some standard

(see Implementation) (McLeod Institute of Simulation

Sciences 2001).

2.1. Other alternatives

Beside HLA there are also other solutions that solve the

problem of communication. For example the DDS

(Data Distribution Service) or DIS (Distributed

Interactive Simulation). Like HLA, they are both very

complex. The main disadvantage may be that the

serialization is done by the infrastructure, not the

simulator. Therefore, the user has to describe all objects

exchanged in the simulation by the layer specification.

Consequently, such implementation becomes quite

difficult (Joshi and Castellote 2006).

3. DISIS

DISIS is implemented as a network of services that are

exchanging messages. Simulators of distributed

simulation are supposed to be connected to the

mentioned services. Each simulation engine

communicates only with DISIS service through which it

sends messages to other logical processes (Figure 1).

This communication runs via given API (Application

Programming Interface). The network infrastructure is

hidden from the logical processes. Thus, the logical

process has no information about the physical location

of other processes which it communicates with. When

all DISIS services are ready (initialized and paired),

each logical process has to obtain a command in order

to start the simulation.

Logical Process

Simulator

DISIS

DISIS DISIS / LP

REST API

JAVA RMI
DISIS

Figure 1: Simulator and DISIS

 Every simulator has to communicate with other

simulator only through the DISIS service. From the

perspective of infrastructure architecture is DISIS a

decentralized distributed system that can run on more

computing stations. This fact brings us benefits for

instance in situation where we have logical processes at

geographically distant places (in each location may be

one DISIS service) or in the case where we want to

control or optimize the message flow.

 One case of the use of DISIS infrastructure is a

situation where each simulator has its own DISIS

service through which it communicates with others

(Figure 2).

In
frastru

ctu
re

LP1

Simulator

DISIS

LP2

Simulator

DISIS

LP3

Simulator

DISIS

LP3

Simulator

DISIS

Figure 2: DISIS infrastructure

 Figure 2 implies two kinds of messages exchanged

in the DISIS network: (i) simulators communicate with

DISIS services and (ii) the DISIS services communicate

with each other. The simulator has no information about

internal messages and cannot interfere with their flow.

Internal messages are used only to transfer information

between DISIS services. The message contains this set

of information:

 sender (DISIS service),

 recipient (DISIS service),

 message timestamp,

 data.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

320

 Attribute data usually contains a message sent by

logical process during simulation. However DISIS

services can exchange messages that are not directly

related to the simulation – such messages are called

service messages. Amount of service messages in the

overall communication is minimal due to optimization.

Service messages are sent especially before running the

simulation itself because of the initial initialization and

exchange information on the locations of all simulators

connected to DISIS network.

 The DISIS layer brings even more advantages

compared to direct interconnection of logical processes.

Thanks to the fact that all communications are made via

DISIS, it is possible to control the flow of exchanged

messages. There is a potential to optimize the

communication for maximum efficiency in the large

networks (similarly as in computer networks). An

example might be two simulators where we know that

they will have higher communication overhead during

the simulation process. Then it is better if they share

one DISIS service (Figure 3).

LP1

Simulator

DISIS

LP2

Simulator

DISIS

LP3

Simulator

DISIS

Simulator

Figure 3: Two simulators sharing one DISIS service

 In case of simulation model where we don’t expect

too high interaction between logical processes or if they

are all on local network, we can use a centralized

architecture with only one DISIS service (Figure 4).

LP3

Simulator

LP

DISIS

LP1

Simulator

LP2

Simulator

LP4

Simulator

Figure 4: Centralized DISIS network

 The DISIS infrastructure architecture is designed

by using configuration files. Each DISIS service has its

own configuration. It is necessary to have the

configuration ready before running the infrastructure.

The configuration contains basic information about the

configured DISIS service and information about remote

DISIS service it will directly communicate with.

 The start of DISIS is a very important part.

Simulators cannot connect to the DISIS network before

all DISIS services are ready. The ready-state in our

terminology means the moment when all DISIS services

are connected and they established communication with

their immediate surroundings. Until this moment, the

network is not available for simulators and the

simulation cannot be started. The start-up process is

realized by these steps performed by each DISIS

service:

1. load configuration,

2. initialize local DISIS service,

3. search for remote DISIS services,

4. connect to remote DISIS services,

5. send ready message,

6. wait for simulators.

 The connection to a remote DISIS service is

successful when the ready message is received. If there

are all DISIS services ready, the simulators can connect.

Let’s look closer to the realization of distributed

simulation using DISIS. Consider the basic simulation

model, which consists of two simulators that are

supposed to communicate with each other and so create

a distributed simulation model (Figure 4).

LP1

Simulator

DISIS

LP2

Simulator

DISIS

Figure 5: Two simulators

 Each simulator communicates through its own

DISIS service. DISIS supports only discrete simulation

with conservative synchronization method and the

actual simulation works on the principle of simulating a

life cycle of an entity. In other words, except the

timestamp, simulators exchange also an entity and

information about what will happen with the entity. In

DISIS there is used an algorithm of sending null-

messages on request to guarantee the causality. The

responsibility of sending null-message requests is taken

by DISIS. The simulator doesn’t need to worry about

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

321

sending null-message requests. The simulator works in

a standard way – it contains a local event calendar and

input queue for every remote simulator it wants

communicate to (Figure 5). All messages from

simulators go through DISIS, and therefore it is possible

to detect the right moment when to send a null-message

request (Figure 6). There is one condition for the

simulator in order to have everything working all right.

It has to inform the DISIS about every change of its

local virtual time. If this condition is met, the DISIS

knows the exact moment when to send the null-message

request.

LP1 LP2

Simulator

Communicator

Simulator

Communicator

DISIS DISIS

DISIS message

MessageMessage

Figure 6: Message transferred from LP1 to LP2

 The DISIS infrastructure allows to connect an

“observer module”. This module can be connected to a

DISIS like standard simulator with the exception that it

only consumes data (Figure 7).

LP1

Simulator

DISIS

LP2

Simulator

DISIS

Observer

DISIS

Figure 7: Connected analytic module

 This module can be located anywhere. It will be

receiving messages from DISIS so it can for example do

some analysis of current state of simulation or act like

an animation engine.

4. IMPLEMENTATION

The main pillar of DISIS is DISIS-API (Distributed

Simulation Infrastructure – Application Programming

Interface), which has every DISIS service and through

which the simulator communicates with the service.

This interface declares four functions:

 connect(RestSimulatorInfo),

 send-message(RestMessage),

 register-observer(ObserverInfo,

Observables[]),

 update-simulation-

timestamp(RestSimulatorInfo, double).

 The connect function has to be called by the

simulator as first, because it’s used to connect to the

DISIS network. Until this function is called, other

functions are unavailable. The simulator sends basic

information about itself:

 title (name in human-readable form),

 remote-name (unique network name),

 description (short description, not

required),

 end-point-address (network address of the

simulator),

 surrounding-simulators (simulators with

whom it wants to communicate).

 The names of surrounding simulators are necessary

for monitoring incoming messages. Since we know the

timestamps of all messages from remote simulators and

the local virtual time of given simulator in DISIS

service, we can detect a situation when it is necessary to

send null-message request. Thus, the user is partly

shielded from the synchronization algorithm.

 As its name implies, the function send-message is

used to send messages. The message has to contain the

following information:

 from (sender – simulator),

 to (recipient – simulator),

 timestamp,

 message (message content).

 The function register-observer mediates the

connection of observer module. Its parameters are

information about the module (like in the case of

connect function) and list of message types that it wants

to observe.

 The last operation update-simulation-timestamp is

used to update local virtual time. It is necessary that

every simulator calls this function after every change of

its local virtual time.

 The communication between simulator and DISIS

service is implemented using REST-API, since REST is

available across many platforms. The disadvantage of

this approach is the HTTP on background. Because it is

request-response protocol, the HTTP server has to run

on both sides – DISIS service and simulator. The

simulator has its own REST-API, which supports these

four operations:

 start-simulation,

 stop-simulation,

 process-message,

 null-message-request.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

322

 The start-simulation function is called at the start

of simulation calculation – when all simulators are

properly connected to DISIS. On the other hand, the

second operation stop-simulation is used for an explicit

stopping of the simulation (such as instruction from

some other simulator).

 The function process-message is intended for

receiving messages. DISIS uses this function for

passing messages to simulator.

 The last function null-message-request is used for

sending null-message request.

 The previous text describes the establishing

communication with DISIS and following messaging,

which is done through DISIS-API (Figure 8). It should

be recalled that the communication between DISIS and

simulator is available only when the entire DISIS

infrastructure is ready.

Simulator DISIS-API

connect()

connected

broadcast:
new simulator

start-simulation()

waiting for
other
simulators

Figure 8: Connection establishing diagram

 For the functioning of simulator in DISIS network

it is necessary that the simulator meets following

requirements:

 It has to send every change of local virtual

time to the DISIS service.

 It has to implement REST-API for

receiving messages from DISIS service.

 DISIS controls the initial impulse that starts the

simulation calculation at individual simulators. After

running the entire DISIS infrastructure all DISIS

services wait for connection of simulators. The DISIS

service has no information where the simulators

(doesn’t know their network location) or what

simulators will be connected to it. Information about the

connection of each simulator is distributed to all DISIS

services. Each service maintains information about

which DISIS service is each simulator connected to and

the path to given service in the infrastructure (Figure 9).

This register is created before starting the simulation.

Simulator 1

DISIS 1 DISIS 2

Simulator 2

DISIS 3

Figure 9: Indirect communication between two

simulators

 Once all simulators, which given simulator needs

for its running, are connected, the DISIS sends its

command to start the simulation.

 The simulator starts to execute scheduled events

and DISIS service updates its information about the

simulator’s local virtual time and sends null-message

requests.

 DISIS uses Java RMI (Remote Method Invocation)

for internal communication and it is necessary to

transform every incoming message from simulator to

DISIS message. Thus, DISIS receives message from

simulator, transforms it to internal message and looks

for service which the target simulator is connected to.

The target DISIS service is found in the register

mentioned above. Then it sends the message to the

target service. The target service transforms the

message back (extracts the encapsulated message for

simulator) and sends it to the target simulator.

5. CASE STUDY

This chapter will target on a case study, which will

reflect a simplified traffic system of a limited scope.

There will be demonstrated a process of construction of

a simple generic distributed simulation model, that

means inputs or outputs of simulation experiments are

not closely monitored.

5.1. Crossroad simulation

Let’s have a restricted transport segment – crossroad, to

which traffic flows from four directions (Figure 10).

North

SouthEast

West

Figure 10: Considered transport segment

 The intended case study assumes four traffic input

generators and a model of crossroad. One of the

possibilities to design an appropriate distributed

simulation model is its division into three separated

logical parts:

 crossroad,

 traffic – north and south,

 traffic – east and west.

 Let’s have two simulators that generate, or receive

flow of vehicles (in two directions) and a simulator that

reflects a model of crossroad. There are several

possibilities how to design the communication

infrastructure. In this case we used two DISIS services

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

323

(Figure 11). One service only handles the crossroad.

The second one handles the traffic.

LP1

Simulator
crossroads

DISIS

LP2

DISIS

LP4

Simulator
East + West

LP3

Simulator
South + North

Figure 11: DISIS infrastructure

 During the configuration it is necessary to

configure properly all simulators and DISIS services. In

the intended simulation model we try to find out if it

was better to use a crossroad with traffic lights or a

traffic roundabout. Replacing the simulator of crossroad

with roundabout simulator is very easy. It is possible to

use the observer module for mining data for analysis, or

we can collect the data directly from the simulators.

 The described generic simulation model was run in

a laboratory of the University of Pardubice – Faculty of

Electrical Engineering and Informatics. The computing

nodes (on which the logical processes were allocated)

were realized by three normal desktop personal

computers connected to computer network.

6. CONSLUSION

The paper introduces the problems of communication

between simulators across different platforms –

especially finding a suitable solution with minimal

impact to the original simulator in terms of

implementation. The main concept of the HLA

standard, which solves this problem to some extent, was

also introduced.

 Distributed simulation has a number of benefits,

e.g., the simulation calculation can be easily scaled or,

in some cases, more cost-effective resources can be

used. There is a problem if we want to implement the

distributed simulation in different programming

languages / platforms. The HLA standard could be a

possible solution of this problem. However, this

standard is very complex and quite difficult to

implement. The complexity may not be an advantage

when we already have implemented simulators and only

want to integrate them to a distributed environment

(Fujimoto 2000).

 The main topic of the paper is our proposed

solution DISIS (Distributed Simulation Infrastructure).

The basic concept, main advantages and disadvantages

are introduced to the reader.

 The issue of different platform is solved by

universal API, through which the simulator can

communicate with DISIS. All communication between

simulators is done through the DISIS infrastructure.

This can be used in the simulation process itself – for

example to collect data for analysis.

 For implementation of DISIS, the Java platform

was chosen and the communication interface is

designed as REST-API with only small number of

necessary operations that are required to run the

simulation. It is easy to communicate on almost all

commonly used platforms through REST-API. The

DISIS requires very little modification of already

implemented simulator. Therefore, the integration of

DISIS to current solution is relatively simple and fast.

REFERENCES

Fujimoto, R.M, 2000, Parallel and distributed

simulation systems. New York Wiley-Interscience.

Kuhl, F., Dahmann, J., Weatherly, R., 2000, Creating

computer simulation systems : an introduction to

the high level architecture. Upper Saddle River,

NJ Prentice Hall PTR.

Topper, C., 2002, Parallel and distributed discrete

event simulation. New York Nova Science.

McLeod Institute of Simulation Sciences, 2001. HLA

Module 1. Basic Concepts of the High Level

Architecture (HLA). California State University

HLA Courses. Available from:

http://www.ecst.csuchico.edu/~hla/courses.htm

[accessed 15 July 2014].

Joshi, R., Castellote, G., 2006, A Comparison and

Mapping of Data Distribution Service and High-

Level Architecture. Santa Clara Real-Time

Innovations, Inc.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

324

