
NON-HLA DISTRIBUTED SIMULATION INFRASTRUCTURE 
 

 

Jan Voracek (a), Jiri Penzes (b), Antonin Kavicka (c) 

 

 
(a) Faculty of Electrical Engineering and Informatics, University of Pardubice 
(b) Faculty of Electrical Engineering and Informatics, University of Pardubice 
(c) Faculty of Electrical Engineering and Informatics, University of Pardubice 

 
(a) jan@voracek.net, (b) jirkapenzes@gmail.com, (c) antonin.kavicka@upce.cz 

 

 

 

 

ABSTRACT 

Distributed Simulation Infrastructure (DISIS) 

represents a general layer specialized in communication 

of distributed simulation engines. The layer supports a 

multiplatform approach, facilitates the synchronization 

and communication of simulators (involved in a 

distributed simulation model) and it is easy to use. The 

current version of DISIS supports discrete event 

simulation with conservative synchronization method. 

Applications of DISIS seem to be quite convenient for 

industrial applications because of high degree of 

flexibility. 
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1. INTRODUCTION 

Computer simulation is an effective approach to study 

the behaviour of various systems over time. Distributed 

simulation works by distributing the calculation to a 

cluster of computing nodes that are interconnected in a 

communication network. This approach has a number of 

benefits, e.g., the simulation calculation can be easily 

scaled or, in some cases, more cost-effective resources 

can be used, etc. The major disadvantage of distributed 

simulation is the requirement to keep causality which 

means that the communication between simulators 

needs to be implemented. The communication becomes 

nontrivial when the logical processes in the simulation 

model are implemented in different programming 

languages / platforms. Each such platform usually 

supports different high-level communication protocols 

(like Java RMI, Windows Communication Foundation, 

etc.) and interconnecting logical processes can become 

very difficult to implement when a low-level 

communication (like TCP) needs to be used. In 

addition, it is also necessary to agree on a 

synchronization algorithm to preserve time causality of 

interconnected logical processes. The main goal of 

DISIS is to minimize these problems. (Fujimoto 2000, 

Topper 2002) 

 

2. HLA AND DISIS 

The proposed general DISIS layer can remind us of 

High-Level Architecture (HLA). Standard HLA, which 

was originally developed for military purposes (Kuhl 

and Dahmann 2000), allows the interconnection of 

several simulations into a larger simulation unit. It is 

indeed a very powerful and complex tool. The biggest 

asset of HLA lies in its universality, which is 

compensated by strict adherence to standards. The main 

idea of HLA is a federation – a system that encapsulates 

all simulators. In the federation, there are described, 

inter alia, all objects that participate in simulation, or 

defined methods of data exchange. Every member of 

the federation – a federate – has to be designed 

according to Simulation Object Model (SOM), which 

describes the functionality of the member (Kuhl and 

Dahmann 2000). Federate also has to be able to receive 

information from other members, manage its local 

virtual time and time of other members of federation 

and also take responsibility for data ownership transfers. 

This is just a short list of rules of HLA architecture 

requirements for the federation and its members. The 

federation has to contain Runtime Infrastructure (RTI) 

backend layer, which must lead in providing of services 

needed for running of distributed simulation to all its 

members. The comparison of HLA and DISIS 

terminology is in the following table (Kuhl and 

Dahmann 2000). 

 

Table 1: Terminology of HLA and DISIS 

HLA DISIS 

Federation 
Distributed simulation 

model 

Federate Simulator 

RTI DISIS infrastructure 

Federation Object 

Model 
Not required 

Object Model Template Not required 

Simulation Object 

Model 
API 

 

 Compared to HLA, the main idea of DISIS is not to 

support various combinations of discrete and 

continuous simulation, different synchronization 

algorithms etc. DISIS is in this respect way more 

restrictive, and therefore much easier for 

implementation. Because DISIS is not so strictly tied to 

the simulation engine, the software designer of a logical 
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process has much more freedom with regard to the 

implementation. There is no need to implement some 

standard or adjust the implementation of a simulation 

engine to a specific communication layer. That enables 

to completely replace the communication layer with 

another. Regarding to their implementation, simulators 

are not directly dependent on the DISIS layer. Among 

other things, this feature allows us an easy switch from 

the monolithic engine to the distributed one with a 

minimal intervention in the implementation. For 

example the complexity of a simulated problem may not 

be well-known in industrial applications in advance. 

Thus, with DISIS we can start with monolithic 

simulation and when we need a higher performance or a 

higher degree of decomposition, we can easily change 

the standing model to the distributed one. DISIS only 

provides basic API for message exchange and takes full 

responsibility for communication. There is no need to 

design the very simulator according to some standard 

(see Implementation) (McLeod Institute of Simulation 

Sciences 2001). 

 

2.1. Other alternatives 

Beside HLA there are also other solutions that solve the 

problem of communication. For example the DDS 

(Data Distribution Service) or DIS (Distributed 

Interactive Simulation). Like HLA, they are both very 

complex. The main disadvantage may be that the 

serialization is done by the infrastructure, not the 

simulator. Therefore, the user has to describe all objects 

exchanged in the simulation by the layer specification. 

Consequently, such implementation becomes quite 

difficult (Joshi and Castellote 2006). 

 

3. DISIS 

DISIS is implemented as a network of services that are 

exchanging messages. Simulators of distributed 

simulation are supposed to be connected to the 

mentioned services. Each simulation engine 

communicates only with DISIS service through which it 

sends messages to other logical processes (Figure 1). 

This communication runs via given API (Application 

Programming Interface). The network infrastructure is 

hidden from the logical processes. Thus, the logical 

process has no information about the physical location 

of other processes which it communicates with. When 

all DISIS services are ready (initialized and paired), 

each logical process has to obtain a command in order 

to start the simulation. 

 

Logical Process

Simulator

DISIS

DISIS DISIS / LP

REST API

JAVA RMI
DISIS

 
 

Figure 1: Simulator and DISIS 

 

 Every simulator has to communicate with other 

simulator only through the DISIS service. From the 

perspective of infrastructure architecture is DISIS a 

decentralized distributed system that can run on more 

computing stations. This fact brings us benefits for 

instance in situation where we have logical processes at 

geographically distant places (in each location may be 

one DISIS service) or in the case where we want to 

control or optimize the message flow. 

 One case of the use of DISIS infrastructure is a 

situation where each simulator has its own DISIS 

service through which it communicates with others 

(Figure 2). 
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Figure 2: DISIS infrastructure 

 

 Figure 2 implies two kinds of messages exchanged 

in the DISIS network: (i) simulators communicate with 

DISIS services and (ii) the DISIS services communicate 

with each other. The simulator has no information about 

internal messages and cannot interfere with their flow. 

Internal messages are used only to transfer information 

between DISIS services. The message contains this set 

of information: 

 sender (DISIS service), 

 recipient (DISIS service), 

 message timestamp, 

 data. 
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 Attribute data usually contains a message sent by 

logical process during simulation. However DISIS 

services can exchange messages that are not directly 

related to the simulation – such messages are called 

service messages. Amount of service messages in the 

overall communication is minimal due to optimization. 

Service messages are sent especially before running the 

simulation itself because of the initial initialization and 

exchange information on the locations of all simulators 

connected to DISIS network. 

 The DISIS layer brings even more advantages 

compared to direct interconnection of logical processes. 

Thanks to the fact that all communications are made via 

DISIS, it is possible to control the flow of exchanged 

messages. There is a potential to optimize the 

communication for maximum efficiency in the large 

networks (similarly as in computer networks). An 

example might be two simulators where we know that 

they will have higher communication overhead during 

the simulation process. Then it is better if they share 

one DISIS service (Figure 3).  
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Simulator

DISIS
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Figure 3: Two simulators sharing one DISIS service 

 

 In case of simulation model where we don’t expect 

too high interaction between logical processes or if they 

are all on local network, we can use a centralized 

architecture with only one DISIS service (Figure 4). 
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Figure 4: Centralized DISIS network 

 

 The DISIS infrastructure architecture is designed 

by using configuration files. Each DISIS service has its 

own configuration. It is necessary to have the 

configuration ready before running the infrastructure. 

The configuration contains basic information about the 

configured DISIS service and information about remote 

DISIS service it will directly communicate with. 

 The start of DISIS is a very important part. 

Simulators cannot connect to the DISIS network before 

all DISIS services are ready. The ready-state in our 

terminology means the moment when all DISIS services 

are connected and they established communication with 

their immediate surroundings. Until this moment, the 

network is not available for simulators and the 

simulation cannot be started. The start-up process is 

realized by these steps performed by each DISIS 

service: 

  

1. load configuration,  

2. initialize local DISIS service, 

3. search for remote DISIS services, 

4. connect to remote DISIS services, 

5. send ready message, 

6. wait for simulators. 

 

 The connection to a remote DISIS service is 

successful when the ready message is received. If there 

are all DISIS services ready, the simulators can connect.  

Let’s look closer to the realization of distributed 

simulation using DISIS. Consider the basic simulation 

model, which consists of two simulators that are 

supposed to communicate with each other and so create 

a distributed simulation model (Figure 4). 

 

LP1

Simulator

DISIS

LP2

Simulator
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Figure 5: Two simulators 

 

 Each simulator communicates through its own 

DISIS service. DISIS supports only discrete simulation 

with conservative synchronization method and the 

actual simulation works on the principle of simulating a 

life cycle of an entity. In other words, except the 

timestamp, simulators exchange also an entity and 

information about what will happen with the entity. In 

DISIS there is used an algorithm of sending null-

messages on request to guarantee the causality. The 

responsibility of sending null-message requests is taken 

by DISIS. The simulator doesn’t need to worry about 
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sending null-message requests. The simulator works in 

a standard way – it contains a local event calendar and 

input queue for every remote simulator it wants 

communicate to (Figure 5). All messages from 

simulators go through DISIS, and therefore it is possible 

to detect the right moment when to send a null-message 

request (Figure 6). There is one condition for the 

simulator in order to have everything working all right. 

It has to inform the DISIS about every change of its 

local virtual time. If this condition is met, the DISIS 

knows the exact moment when to send the null-message 

request. 
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Simulator

Communicator

Simulator
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DISIS DISIS
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Figure 6: Message transferred from LP1 to LP2 

 

 The DISIS infrastructure allows to connect an 

“observer module”. This module can be connected to a 

DISIS like standard simulator with the exception that it 

only consumes data (Figure 7). 

 

LP1

Simulator

DISIS

LP2

Simulator

DISIS

Observer

DISIS

 
 

Figure 7: Connected analytic module 

 

 This module can be located anywhere. It will be 

receiving messages from DISIS so it can for example do 

some analysis of current state of simulation or act like 

an animation engine. 

 

4. IMPLEMENTATION 

The main pillar of DISIS is DISIS-API (Distributed 

Simulation Infrastructure – Application Programming 

Interface), which has every DISIS service and through 

which the simulator communicates with the service. 

This interface declares four functions: 

 connect(RestSimulatorInfo), 

 send-message(RestMessage), 

 register-observer(ObserverInfo, 

Observables[]), 

 update-simulation-

timestamp(RestSimulatorInfo, double). 

 

 The connect function has to be called by the 

simulator as first, because it’s used to connect to the 

DISIS network. Until this function is called, other 

functions are unavailable. The simulator sends basic 

information about itself: 

 

 title (name in human-readable form), 

 remote-name (unique network name), 

 description (short description, not 

required), 

 end-point-address (network address of the 

simulator), 

 surrounding-simulators (simulators with 

whom it wants to communicate). 

 

 The names of surrounding simulators are necessary 

for monitoring incoming messages. Since we know the 

timestamps of all messages from remote simulators and 

the local virtual time of given simulator in DISIS 

service, we can detect a situation when it is necessary to 

send null-message request. Thus, the user is partly 

shielded from the synchronization algorithm.  

 As its name implies, the function send-message is 

used to send messages. The message has to contain the 

following information: 

 from (sender – simulator), 

 to (recipient – simulator), 

 timestamp, 

 message (message content). 

 

 The function register-observer mediates the 

connection of observer module. Its parameters are 

information about the module (like in the case of 

connect function) and list of message types that it wants 

to observe. 

 The last operation update-simulation-timestamp is 

used to update local virtual time. It is necessary that 

every simulator calls this function after every change of 

its local virtual time.  

 The communication between simulator and DISIS 

service is implemented using REST-API, since REST is 

available across many platforms. The disadvantage of 

this approach is the HTTP on background. Because it is 

request-response protocol, the HTTP server has to run 

on both sides – DISIS service and simulator. The 

simulator has its own REST-API, which supports these 

four operations: 

 start-simulation,  

 stop-simulation, 

 process-message,  

 null-message-request. 
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 The start-simulation function is called at the start 

of simulation calculation – when all simulators are 

properly connected to DISIS. On the other hand, the 

second operation stop-simulation is used for an explicit 

stopping of the simulation (such as instruction from 

some other simulator).  

 The function process-message is intended for 

receiving messages. DISIS uses this function for 

passing messages to simulator. 

 The last function null-message-request is used for 

sending null-message request. 

 The previous text describes the establishing 

communication with DISIS and following messaging, 

which is done through DISIS-API (Figure 8). It should 

be recalled that the communication between DISIS and 

simulator is available only when the entire DISIS 

infrastructure is ready. 

 

Simulator DISIS-API

connect()

connected

broadcast:
new simulator

start-simulation()

waiting for 
other 
simulators

 

Figure 8: Connection establishing diagram 

 

 For the functioning of simulator in DISIS network 

it is necessary that the simulator meets following 

requirements: 

 It has to send every change of local virtual 

time to the DISIS service.  

 It has to implement REST-API for 

receiving messages from DISIS service. 

 

 DISIS controls the initial impulse that starts the 

simulation calculation at individual simulators. After 

running the entire DISIS infrastructure all DISIS 

services wait for connection of simulators. The DISIS 

service has no information where the simulators 

(doesn’t know their network location) or what 

simulators will be connected to it. Information about the 

connection of each simulator is distributed to all DISIS 

services. Each service maintains information about 

which DISIS service is each simulator connected to and 

the path to given service in the infrastructure (Figure 9). 

This register is created before starting the simulation. 

 

Simulator 1

DISIS 1 DISIS 2

Simulator 2

DISIS 3
 

 

Figure 9: Indirect communication between two 

simulators 

 Once all simulators, which given simulator needs 

for its running, are connected, the DISIS sends its 

command to start the simulation. 

 The simulator starts to execute scheduled events 

and DISIS service updates its information about the 

simulator’s local virtual time and sends null-message 

requests. 

 DISIS uses Java RMI (Remote Method Invocation) 

for internal communication and it is necessary to 

transform every incoming message from simulator to 

DISIS message. Thus, DISIS receives message from 

simulator, transforms it to internal message and looks 

for service which the target simulator is connected to. 

The target DISIS service is found in the register 

mentioned above. Then it sends the message to the 

target service. The target service transforms the 

message back (extracts the encapsulated message for 

simulator) and sends it to the target simulator.  

 

5. CASE STUDY 

This chapter will target on a case study, which will 

reflect a simplified traffic system of a limited scope. 

There will be demonstrated a process of construction of 

a simple generic distributed simulation model, that 

means inputs or outputs of simulation experiments are 

not closely monitored. 

 

5.1. Crossroad simulation 

Let’s have a restricted transport segment – crossroad, to 

which traffic flows from four directions (Figure 10). 

 

North

SouthEast

West

 

Figure 10: Considered transport segment 

 

 The intended case study assumes four traffic input 

generators and a model of crossroad. One of the 

possibilities to design an appropriate distributed 

simulation model is its division into three separated 

logical parts: 

 crossroad,  

 traffic – north and south,  

 traffic – east and west.  

 

 Let’s have two simulators that generate, or receive 

flow of vehicles (in two directions) and a simulator that 

reflects a model of crossroad. There are several 

possibilities how to design the communication 

infrastructure. In this case we used two DISIS services 
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(Figure 11). One service only handles the crossroad. 

The second one handles the traffic. 
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Figure 11: DISIS infrastructure 

 

 During the configuration it is necessary to 

configure properly all simulators and DISIS services. In 

the intended simulation model we try to find out if it 

was better to use a crossroad with traffic lights or a 

traffic roundabout. Replacing the simulator of crossroad 

with roundabout simulator is very easy. It is possible to 

use the observer module for mining data for analysis, or 

we can collect the data directly from the simulators. 

 The described generic simulation model was run in 

a laboratory of the University of Pardubice – Faculty of 

Electrical Engineering and Informatics. The computing 

nodes (on which the logical processes were allocated) 

were realized by three normal desktop personal 

computers connected to computer network. 

 

6. CONSLUSION 

The paper introduces the problems of communication 

between simulators across different platforms – 

especially finding a suitable solution with minimal 

impact to the original simulator in terms of 

implementation. The main concept of the HLA 

standard, which solves this problem to some extent, was 

also introduced. 

 Distributed simulation has a number of benefits, 

e.g., the simulation calculation can be easily scaled or, 

in some cases, more cost-effective resources can be 

used. There is a problem if we want to implement the 

distributed simulation in different programming 

languages / platforms. The HLA standard could be a 

possible solution of this problem. However, this 

standard is very complex and quite difficult to 

implement. The complexity may not be an advantage 

when we already have implemented simulators and only 

want to integrate them to a distributed environment 

(Fujimoto 2000). 

 The main topic of the paper is our proposed 

solution DISIS (Distributed Simulation Infrastructure). 

The basic concept, main advantages and disadvantages 

are introduced to the reader. 

 The issue of different platform is solved by 

universal API, through which the simulator can 

communicate with DISIS. All communication between 

simulators is done through the DISIS infrastructure. 

This can be used in the simulation process itself – for 

example to collect data for analysis. 

 For implementation of DISIS, the Java platform 

was chosen and the communication interface is 

designed as REST-API with only small number of 

necessary operations that are required to run the 

simulation. It is easy to communicate on almost all 

commonly used platforms through REST-API. The 

DISIS requires very little modification of already 

implemented simulator. Therefore, the integration of 

DISIS to current solution is relatively simple and fast. 
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