
APPROACH CLASS LIBRARY OF HIGH LEVEL PARALLEL COMPOSITIONS TO

IMPLEMENTS COMMUNICATION PATTERNS USING STRUCTURED PARALLEL

PROGRAMMING

M. Rossainz-López
(a)

, M. I. Capel-Tuñón
(b)

(a) Universidad Autónoma de Puebla, Avenida. San Claudio y 14 Sur, San Manuel, Puebla,

State of Puebla, 72000, México
(b) Departamento de Lenguajes y Sistemas Informáticos, ETS Ingeniería Informática y de Telecomunicación,

Universidad de Granada, Periodista Daniel Saucedo Aranda s/n,

18071 Granada, Spain

(a)rossainz@cs.buap.mx, (b)manuelcapel@ugr.es

ABSTRACT

This article presents through an environment of Parallel

Objects, an approach to Structured Parallel

Programming and the Object-Orientation paradigm, a

programming methodology based on High Level

Parallel Compositions (HLPC). By means of the

method application, the parallelization of commonly
used communication patterns among processes is

presented, which is initially constituted by the HLPCs

Farm, Pipe and TreeDV that represent, respectively, the

patterns of communication Farm, Pipeline and Binary

Tree, the latter one used within a parallel version of the

design technique known as Divide and Conquer.

Keywords: Parallel Objects, Communication Patterns,

Structured Parallel Programming, High Performance

Computing.

1. INTRODUCTION

At the moment the construction of concurrent and

parallel systems has less conditioning than one decade

ago, since there currently exist, within the realms of

HPC or Grid computing, high performance parallel

computation systems that are becoming more and more

affordable, being therefore possible to obtain a great

efficiency today in parallel computing without having to

invest a huge amount of money in purchasing a state-of-

the-art multiprocessor. Nevertheless, to obtain

efficiency in parallel programs is not only a problem of

acquiring processor speed; on the contrary, it is rather
about how to program efficient

interaction/communication patterns among the

processes (Brinch Hansen 1993; Capel and Palma 1992;

Darlington 1993), which will allow us to achieve the

maximum possible speed-up of a given parallel

application. These patterns are aimed at encapsulating

parallel code within programs, so that an inexperienced

parallel applications programmer can produce efficient

code by only programming the sequential parts of the

applications processes (Brinch Hansen 1993; Brinch

Hansen 1994; Capel and Troya 1994). Parallel

Programming based on the use of communication

patterns is known as Structured Parallel Programming

(SPP) (Corradi and Zambonelli 1995; Danelutto and

Orlando 1995). The widespread adoption of SPP

methods by programmers and system analysts currently

presents a series of open problems, which motivate us

to carry out research in this area; we are particularly
interested on those that have to do with parallel

applications that use predetermined communication

patterns among their processes. In regarding an

improvement of the use of SPP methods, several open

problems have currently been identified. It is worth

mentioning, among the most important, the following

ones:

 The lack of acceptance of structured parallel
environments applicable to developing a wider
range of software applications.

 Determination of a complete set of
communication patterns as well as their
concrete semantics.

 The necessity to make available predefined
communication patterns or high level parallel
compositions aimed to encapsulate parallel
code within programs.

 Adoption without anomalies of a programming
approach merging concurrent primitives and
Object-Oriented (O-O) features, thereby
fulfilling the requirements of uniformity,
genericity and reusability of software
components (Corradi and Zambonelli 1995).

This work study the Methods of Structured Parallel

Programming, proposing a new implementation of a

library classes of High Level Parallel Compositions-

HLPC or CPAN according to its Spanish acronym

(Corradi and Zambonelli 1995; Danelutto and Orlando
1995; Capel and Rossainz 2004; Rossainz 2005), which

provide the programmer with the communication

patterns more commonly used in Parallel Programming.

At the moment, the library includes the following ones:

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

30

mailto:rossainz@cs.buap.mx
mailto:manuelcapel@ugr.es

Farm, Pipeline and Binary Tree (Rossainz and Capel

2008), the latter one being used in a parallel version of

Divide and Conquer algorithmic design technique and

implementation of the solution of the traveling salesman

problem using the HPLC Farm using branch & bound

algorithmic design technique for solving NP-complete
problems (Rossainz and Capel 2006).

2. HIGH LEVEL PARALLEL COMPOSITIONS

(HLPC)

The basic idea of the programming method consists in

the implementation of any type of communication

patterns between parallel processes of an application or

distributed/parallel algorithm as classes, following the

O-O paradigm. Starting from these classes, an object

can be instantiated and its methods can be invoked, and

then be executed, on a client-server basis, thereby

hiding parallelism or communication protocols to the
application processes. A HLPC is made up of the

composition of a set of objects of three types, (see

Figure 1).

An object manager that represents the HLPC itself,

making of it an encapsulated abstraction that hides its

internal structure. The manager controls the references

of a set of objects (a denominated Collector object and

several denominated Stage objects) that represent the

components of the HLPC and whose execution is

carried out in parallel and should be coordinated by the

manager itself.

Figure 1: Internal Structure of a HLPC

The stage objects are objects of specific purpose

responsible for encapsulating a client-server type

interface between the manager and the object slaves

(objects that are not actively participative in the

composition of the HLPC, but rather, are considered

external entities that contain the sequential algorithm

constituting the solution of a given problem) as well as

providing the necessary connection among them to
implement the communication pattern semantics, whose

definition is being sought. In other words, each stage

should act in parallel as a node of the graph that

represents the communication pattern and should be

capable of executing its methods as an active object. A

stage can be directly connected to the manager and/or to

another component stage depending on the particular

pattern of the HLPC.

An object collector which is an object in charge of

storing in parallel the results that it receives from the

stage objects connected to it, i.e., during the service of a

petition. The control flow within the stages of a HLPC

depends on the communication pattern implemented

between these. When the HLPC concludes its
execution, the result does not return to the manager

directly, but rather to an instance of the class Collector,

which takes charge of storing these results and of

sending them to the manager, which then sends them to

the exterior as they arrive, i.e., without being necessary

to wait for all the results to be obtained at the end of the

computation.

2.1. The HLPC as composition of parallel objects

The objects manager, collector and stages are included

within the definition of Parallel Object - PO (Corradi

and Zambonelli 1995). The Parallel Objects are active
objects, that is to say, objects that have execution

capacity in them. The applications within the pattern PO

can exploit the parallelism so much among objects

(inter-object) as the internal parallelism of them (intra-

object). An object PO has a similar structure to that of

an object in Smalltalk, but it also includes a politics of

scheduling, determined a priori that specifies the form

of synchronizing an or more operations of a class in

parallel (Rossainz and Capel 2012). The

synchronization policies are expressed in terms of

restrictions; for example, the mutual exclusion in
processes readers/writers or the maximum parallelism in

processes writers. All the parallel objects derive then of

the classic definition of “class” more the incorporation

of the synchronization restrictions (mutual exclusion

and maximum parallelism). The objects of oneself class

shares the same specification contained in the class of

which you/they are instantiates. The inheritance allows

deriving a new specification of one that already exists.

The parallel objects support multiple inheritance.

2.2. Types of communication between parallel

objects

1. The synchronous way stops the client’s activity

until the object’s active server gives back the

answer to the petition.

2. The asynchronous way does not force any

waiting in the client’s activity; the client

simply sends its petition to the active server

and then it continues.

3. The asynchronous future way makes only to

wait the client’s activity when the result of the

invoked method is needed to evaluate an
expression during its code execution.

2.3. Semantic and Syntactic definition of the classes

bases of a HLPC anyone

The abstract class ComponentManager defines the

generic structure of the component manager of a HLPC,

from which all the concrete manager classes are derived,

HLPC

Collector Stage

Manager

Slave

Stage

Stage

Stage

Slave

Slave

Slave

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

31

depending on the parallel behaviour which is needed to

create a specific HLPC.

CLASS ABSTRACT ComponentManager

 {

 ComponentStage[] stages;

 PUBLIC VOID init (ASOCIACION[] list)

 { ABSTRACT;}

 PUBLIC ANYTYPE execution(ANYTYPE datain)

 VAR

 ComponentCollector res;

 {

 res = ComponentCollector CREATE();

 commandStages(datain,res);

 RETURN res.get();

 }

 PRIVATE VOID commandStages(ANYTYPE datain,

 ComponentCollector res)

 { ABSTRACT; }

 MAXPAR (execution);

 };

The abstract class ComponentStage defines the

generic structure of the component stage of a HLPC as

well as its interconnections, so that all the concrete
stages needed to provide a HLPC with a given parallel

behaviour can be obtained by class instantiation.

CLASS ABSTRACT ComponentStage

 {

 ComponentStage[] otherstages;

 BOOL am_i_last;

 METHOD meth;

 OBJECT obj;

 PUBLIC VOID init (ASOCIACION[] list)

 VAR
 ASOCIACION item;

 {

 item = HEAD(list);

 obj = item.obj;

 meth= item.meth;

 if (TAIL(list) == NULL)

 am_i_last = true;

 }

 PUBLIC VOID request (ANYTYPE datain,

 ComponentCollector res)
 VAR

 ANYTYPE dataout;

 {

 dataout = EVAL (obj, meth, datain);

 IF (am_i_last)

 TREAD res.put(dataout)

 ELSE commandOtherStages (dataout, res);

 }

 PRIVATE VOID commandOtherStages (ANYTYPE

 dataout, ComponentCollector res)

 { ABSTRACT;}

 MAXPAR (request);

 };

The concrete class ComponentCollector defines the

concrete structure of the component collector of any

HLPC. It implements a multi-item buffer, which permits

the storage of the results from stages that make reference

to this collector.

CLASS CONCRETE ComponentCollector

 {

 VAR

 ANYTYPE[] content;

 PUBLIC VOID put (ANYTYPE item)
 { CONS(content, item); }

 PUBLIC ANYTYPE get()

 VAR

 ANYTYPE result;

 {

 result = HEAD(content[]);

 content = TAIL(content[]);

 RETURN result;

 }

 SYNC(put,get);
 MUTEX(put);

 MUTEX(get);

 };

2.4. The synchronization restrictions MaxPar,

Mutex and Sync

Synchronization mechanisms are needed when several

petitions of service take place in parallel in a HLPC,

being capable its constituting parallel objects of

interleaving their concurrent executions while, and at

the same time, they preserve the consistency of the data

being processed. Within the code of any HLPC,
execution constraints are automatically included when

the reserved words MAXPAR, MUTEX and SYNC of

the library are found. The latter ones must be used to

obtain a correct programming of object methods and to

guarantee data consistency in applications.

3. THE HLPC PIPE, FARM AND TREEDV

The parallel patterns worked until now have been the

pipeline, the farm and the TreeDVD, since they

constitute a significant set of reusable communication

patterns in multiple parallel applications and algorithms.

3.1. The HLPC PipeLine

It is presented the technique of the parallel processing

of the pipeline as a High Level Parallel Composition or

HLPC, applicable to a wide range of problems that

you/they are partially sequential in their nature. The

HLPC Pipe guarantees the parallelization of sequential

code using the patron PipeLine.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

32

3.1.1. The technique of the Pipeline

Using the technique of the Pipeline, the idea is to divide

the problem in a series of tasks that have to be

completed, one after another. In a pipeline each task can

be executed by a process, thread or processor for
separate (Roosta 1999). The processes of the pipeline

are sometimes called stages of the pipeline. Each stage

can contribute to the solution of the total problem and it

can pass the information that is necessary to the

following stage of the pipeline. This type of parallelism

is seen many times as a form of functional

decomposition. The problem is divided in separate

functions that can be executed individually, but with

this technique, the functions are executed in succession.

3.1.2. Representation of the Pipeline as a HLPC

The figure 2, represent the parallel pattern of
communication Pipeline as a HLPC.

Figure 2: The HLPC of a Pipeline

The objects stage_i and Manager of the graphic

pattern of the HLPC-Pipe are instances of concrete

classes that inherit the characteristics of the classes

ComponentManager and ComponentStage.

3.1.3. Semantic and Syntactic Definition of the

HLPC-Pipe

The HLPC-Pipe is represented by the class
PipeManager that inherits of ComponentManager, and a

pattern of communication pipeline implements whose

stages is instances of the class PipeStage that inherits of

ComponentStage. Any object PipeManager only takes

charge of the first stage of the pipeline in its

initialization. During the execution of a petition of

service, the first stage is only commanded.

CLASS CONCRETE PipeManager EXTENDS OF

ComponentManager

 {

 PUBLIC VOID init(ASOCIACION[] list)

 {stages[0] = PipeStage CREATE(list);}

 PRIVATE VOID commandStages (ANYTYPE datain,

 ComponentCollector res)

 { THREAD stages[0].request(datain,res); }
 };

The objects of the class PipeStage creates the

following stage of the pipeline during its initialization

phase. In the execution of their operation request(), an

object stage commands directly to the following one

and it is the last one that sends the result to the object

Collector (instance of the class ComponentCollector)
whose reference is transmitted dynamically stage by

stage.

CLASS CONCRETE PipeStage EXTENDS OF

ComponentStage

 {

 PUBLIC VOID init (ASOCIACION[] list)
 {

 stage.init(list);

 IF (! am_i_last)

 {

 otherstages[0] = PipeStage CREATE(TAIL(list));

 }

 }

 PRIVATE VOID commandOtherStages (ANYTYPE

 datain, ComponentCollector res)

 {
 THREAD otherstages[0].request (datain, res);

 }

 };

The operations execution() and request() are

inherited of their respective super class and the

operations private commandStages() (of the class

PipeManager) and commandOtherStages() (of the class

PipeStage), together with the operation init() are

redefined. However there are not synchronization

problems since in their definitions the synchronization

restrictions they are inherited of their super class.

3.2. The HLPC Farm

It is shown the technique of the parallel processing of

the FARM as a High Level Parallel Composition or

HLPC.

3.2.1. The technique of the Farm

The parallel pattern of interaction Farm, is formed to

each other with a set of independent processes, called

worker processes, and a process that controls them, call

the process controller (Roosta 1999). The worker
processes are executed in parallel until reaching a

common objective for all them. The process controller

is in charge of distributing the work and of controlling

the progress of the farm until finding the solution of the

problem. With this model it could be interesting to

observe the performance of the execution in parallel of

several sorting algorithms with oneself set of data for all

them.

3.2.2. Representation of the Farm as a HLPC

The representation of parallel pattern FARM as a HLPC
is show in figure 3.

HLPC Pipe

Collector
Stage_n

Manager

Slave

Stage_n-1

Stage_n-2

Stage_1

Slave

Slave

Slave

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

33

Figure 3: The HLPC of a Farm

The same as in the previous pattern, the objects

Manager and stage_i are respectively instances of the
classes that inherit of the classes base denominated

ComponenManager and ComponentStage.

3.2.3. Semantic and Syntactic Definition of the

HLPC Farm

A first policy for the composition of the FARM is that

the manager only waits the first available result given

by anyone of the stages, which respond to a petition of

service in an asynchronous way.

CLASS CONCRETE FarmManager EXTENDS OF
ComponentManager

 {

 VAR

 INT nWorker;

 PUBLIC VOID init (ASOCIACION[] list)

 VAR

 asociacion[] newlist, INT i = 0;

 {

 WHILE (!(newlist = TAIL(list)))

 {

 stages[i++] = FarmStage CREATE
 (CONS(HEAD(list),NULL));

 list = newlist;

 }

 nWorker = i;

 }

 PRIVATE VOID commandStages(ANYTYPE

 datain,ComponentCollector res)

 VAR INT i;

 {

 FOR i =(0,nWorker)
 {

 THREAD stages[i].request(datain, res);

 }

 }

 };

The concrete class FarmManager inherits of

ComponentManager. The operation init () create all the

necessary stages, while the operation execution () it is

thrown in parallel in an asynchronous way, distributing

data to all the stages, waiting the first available result in

the object collector. As in the case of the pipeline, the

synchronization restrictions are inherited of the abstract

class ComponentManager without any problem. The
stages of the farm are objects of FarmStage that inherits

of ComponentStage:

CLASS CONCRETE FarmStage EXTENDS OF

ComponentStage

 {

 };

The stages of the Farm are not connected some

with others (am_i_last is always true and the

CommandOtherStages operation, as in the abstract class

this empty). The manager commands them to all in his
execution and the result of each one is a correspondent

to the object collector and position to the manager's

disposition. As the stages are executed in parallel in an

asynchronous way, the policies of scheduling inherited

of the super class guarantees that the access to the

collector, necessary to return the results, it will be made

in a way synchronized on the part of this objects.

3.3. The HLPC TreeDV

Finally, the programming technique is presented it

Divide and Conquer as a HLPC, applicable to a wide
range of problems that can be parallelizable within this

scheme.

3.3.1. The technique of the Divide and Conquer

The technique of it Divide and Conquer it is

characterized by the division of a problem in sub-

problems that have the same form that the complete

problem. The division of the problem in smaller sub-

problems is carried out using the recursion. The method

recursive continues dividing the problem until the parts

divided can no longer follow dividing itself, then they

combine the partial results of each sub-problem to
obtain at the end the solution to the initial problem

(Blelloch 1996). In this technique the division of the

problem is always made in two parts, therefore a

formulation recursive of the method Divide and

Conquer form a binary tree whose nodes will be

processors, processes or threads. The node root of the

tree receives as input a complete problem that is divided

in two parts. It is sent to the node left son, while the

other is sent to the node that represents the right son.

This division process is repeated of recursive form

until the lowest levels in the tree. Lapsed a certain time,
all the nodes leaf receives as input a problem given by

its node father; they solve it and the solutions (that are

the exit of the node leaf) are again correspondents to its

progenitor. Any node father in the tree will obtain his

children's two partial solutions and it will combine them

to provide an only solution that will be the node father's

exit. Finally the node root will give as exit the complete

solution of the problem, (Brinch Ansen 1993). This

Collector
Stage_n

Manager

Slave

Obj
ect

Stage_n-
1

Stage_n-
2

Stage_1

Slave

Obj
ect

Slave

Obj
ect

Slave

Obj
ect

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

34

way, while in a sequential implementation a single node

of the tree can be executed or visited at the same time,

in a parallel implementation, more than a node it can be

executed at the same time in the different levels, it is,

when dividing the problem in two sub-problems, both

can be processed in a simultaneous way.

3.3.2. Representation of the TreeDV as a HLPC

The representation of the patron tree that defines the

technique of it Divide and Conquer as HLPC has their

model represented in figure 4.

Figure 4: The HLPC of a TreeDV

Contrary to the previous models, where the objects

slaves were predetermined outside of the pattern HLPC,

in this model an object slave is only predefined

statically and associated to the first stage of the tree.
The following objects slaves will be created

internally by the own stages in a dynamic way, because

the levels of the tree depend from the problem to solve

and a priori the number of nodes that can have the tree

is not known, neither its level of depth.

3.3.3. Semantic and Syntactic Definition of the

HLPC TreeDV

The class TreeDVManager is created, which inherits of

ComponentManager, and a pattern of communication of

a binary tree implements within the programming
technique it Divide and Conquer. The nodes of the

binary tree are represented by the stages that are objects

of the class TreeDVStage that inherits of

ComponentStage. Any instance of the class

TreeDVManager only takes charge of the first stage or

node root of the tree in its initialization. During the

execution of a petition of service, the root of the binary

tree, that is to say, the first stage of the structure is

commanded by the manager and internally each node

father created in the lowest levels in the tree will

command his respective nodes children in the solution

of the problem.

CLASS CONCRETE TreeDVManager EXTENDS OF
ComponentManager

 {

 PUBLIC VOID init (ASOCIACION[] list)

 { stages[0] = TreeDVStage CREATE (list); }

 PRIVATE VOID commandStages(ANYTYPE

 datain,ComponentCollector res)

 {

 THREAD stages[0].request(datain,res);

 THREAD res.put(datain);

 }

 };

Any object TreeDVStage will take charge of

creating a node of the binary tree (left or right). When

the node root or initial stage execute the operation

request() in parallel, the problem is evaluated with the

method of the slave object associate, returning the

division of the problem in two parts. Later on, will call

himself to the method commandOtherStages() who will

take this sub-problems, it will create two nodes stages

associated to their node father, associating these last

their respective objects slaves that will be created
dynamically conform to they go creating the nodes of

the binary tree, and will send to each one a part of the

problem to solve. Of recursive form the nodes stages

children will receive the sub-problem and they will

execute their method request() in parallel, carrying out

the same process until the sub-problem can no longer be

divided more. The last objects TreeDVStage of the tree,

that is to say, the leaves, send the result from their

calculation process to their progenitor and this

combines the solutions to pass them, in turn, to their

progenitor and so on, in the return of the recursion, until

arriving to the node root who will send the final result
to an object collector who in turn will pass the result to

the manager of the composition.

CLASS CONCRETE TreeDVStage EXTENDS OF

ComponentStage

 {

 VAR

 ASOCIACION list;

 PUBLIC VOID init(ASOCIACION[] *list)

 {
 this.list=list;

 stage.init(list);

 am_i_last= FALSE;

 }

 PRIVATE VOID commandOtherStages

 (ANYTYPE datain, ComponentCollector res)

HLPC TreeDV

Collector

Stage

Manager

Stage

Stage

Stage

Slave

Stage

Stage

Stage

S
O

S
O

S
O

S
O

S
O

S
O

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

35

 VAR

 ANYTYPE data_izq, data_der;

 {

 IF(datain.inicio<datain.fin)

 {

 otherStages[0]= TreeDVStage CREATE(list);
 otherStages[1]=TreeStage CREATE(list);

 THREAD otherStages[0].request

 (dv(datain,datain.inicio, datain.medio),res);

 THREAD otherStages[1].request

 (dv (datain,datain.medio+1, datain.tam-1),res);

 }

 }

 PRIVATE ANYTYPE dv(ANYTYPE dataout,

 int inicio, int fin)
 {

 datain.inicio=inicio;

 datain.fin=fin;

 RETURN datain;

 }

 };

4. USE OF A HLPC WITHIN AN APPLICATION

Once implemented the HLPCs of interest, the way in

that you/they are used in user's application is the

following one:

1. It will be necessary to create an instance of the

class manager of interest, that is to say, one

that implements the required parallel behavior

in agreement with the following steps:

1.1. To initialize the instance with the

reference to the objects slaves that will be

controlled by each stage and the name of

the method requested as an association of

even (slave_obj, associated_method).

1.2. The internal stages is created (using the

operation init()) and they are passed each
one an association (slave_obj,

associated_method) that will use

invoking the associated_method on their

slave object.

2. The user asks the manager to begin a

calculation through the execution within the

HLPC of the method execution(). This

execution is carried out as it continues:

2.1. The object collector is created with

respect to the petition.

2.2. They are passed to the stages the input
data (without verification of types) and

the reference to the collector.

2.3. The results are obtained from the object

collector.

2.4. The collector returns the results again to

the exterior without verification of types.

3. An object manager has been created and

initialized and some execution petitions can be

dispatched in parallel.

The speedup analysis of the Farm, PipeLine and

TreeDV HLPCs appears in (Rossainz and Capel 2008)

4.1. Example of the use of a HLPC

Supposing that we want process an array that contains

data that must be ordered. It is well-known that,

depending on the data, different sorting algorithms can

show different performances. It can be interesting to

order the same data by means of the execution of

different algorithms in parallel and to wait the results.

The parallel pattern identified is FarmManager.

1. Objects of different sorting classes are created

that represent the slaves objects and are stored
in an array of references to object:

Object obj[]= {

 Qsort CREATE(. . .),

 BubleSort CREATE(. . .),

 Isort CREATE(. . .)

 };

2. The objects are created that they represent the

methods associated to the objects slaves and

they are stored in an array of references to

method.

method meth[]={
 method CREATE (. . . resuelve),

 method CREATE (. . . resuelve),

 method CREATE (. . . resuelve)

 };

3. A list of associations is created (slave_obj,

associated_method)

Asociación pareja=

crea_asociacion(obj,meth,3);

4. An instance of the class FarmManager is

created initializing it with the previous list

FarmManager cpanfarmInt=

FarmManager CREATE(pareja);
5. The initial data are specified to process by

means of the specific creation of the type and

of the defined data as an object for the user, in

this example this object it is denominated

MyInt. Each object MyInt represents a problem

to solve

int nums[t1]={-11,-14,-6,-1,...};

int nums2[t2]={5,1,9,11,4,8,...};

ANYTYPE data[]= {

 MyInt CREATE(t1,nums),

 MyInt CREATE(t2,nums2)
 };

6. The initial data are printed in screen

FOR i =(0,num_problems)

 {imprime_datos(data[i]);}

7. The instance FarmManager is ready to work,

that is to say, the execution of the operation

execution() is requested that sort the array of

data in parallel:

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

36

FUTURETYPE resul[num_problems];

FOR i =(0,num_problems)

 {

 resul[i]=THREAD

 cpanfarmInt.execution(data[i]);

 }
8. The final results are printed in screen

ANYTYPE resultados[num_problems];

FOR i =(0,num_problems)

 {

 resultados[i]=resul[i];

 imprime_datos(resultados[i]);

 }

5. THE WORK OF PRESENT PROGRAMMING

The work of programming made until this moment is

made up of six sets of classes that constitute the

implementation of the parallel patterns farm, pipe and
treeDV as HLPCs that are part of what will be the

library of High Level Parallel Compositions. These sets

of classes are the following ones:

The set of the classes base (Table.1), necessary to

build a HLPC, or said in another way, the classes that

implement the Parallel Objects of a HLPC.

Table 1: Classes base for the construction of a HLPC

Class Object It represents slave objects generic,
that is to say, it is an abstract class
inherited by the slave objects
concrete (for example ISort,
QSort, Invierte, etc.) to
implement the virtual method it

resuelve() that will be the method
to be executed by the slave object
within the HLPC.

Class FutureType It defines the type FutureType
referred as a Future of type void *
that will be the type of the value
of return of a function. This class
denotes instances of FutureType

to indicate that but this available
one the return value in a given
moment, if it can be he in some
time in the future.

Header Util.h It contains the definition of
“primitive function” used in the
code of the HLPC (the primitive

CONS for to append elements in a
list, the primitive HEAD that
obtains the head of a list, the
primitive TAIL that obtains the
rest of a list, the primitive EVAL
that evaluates a function), as well
as the definition of several types
of abstract data (the type
association that defines a pair

(method,slave_obj), the type
method that defines the execution
method associated to an slave
object, the type vector_sol that is
used as container of results)
necessary in the implementation
of the HLPCs.

Class
ComponentCollector

It is used to create instances or
objects Collector. An object
collector will to set the solutions
from the connected stages to him

and it will store them in a variable
of type vector_sol.

Class Sched_GetPut It defines the synchronization
restrictions for the functions
member get() and put() within the
class ComponentCollector: Mutex
for the processes put(), Mutex for

the processes get() and Sync for
the communication of processes
put() and get(). All the members
of this class are static.

Class ComponentStage It defines the generic structure of
a STAGE in the construction of a
HLPC and has to be inherited by
the specific stages that can be

built in the implementation of the
parallel composition for to
concretize a particular stage. It is
constituted of two parts: the part
of initialization of the "stage" and
the execution part, in parallel.

Class
ComponentManager

It defines the generic structure of
a MANAGER in the construction

of a HLPC that has to be inherited
by the specific manager that can
be built for the implementation of
the HLPC. It is constituted of two
parts: the part of the "manager's"
initialization and the execution
part, in parallel.

Class
Sched_RequestExecution

It implements the restrictions of
maximum parallelism and use of
futures for the functions member
execution() and request() of the
classes ComponentManager and
ComponentStage respectively.
Their methods request_t() and
execution_t() implement the

maxpar restrictions for the
functions request() and
execution() and the use of futures
in the assignment of the value of
return of execution() to an
instance FutureType.

The set of the classes that define the types of own

data (Table.2), used for the creation of types of abstract

data to be worked by the HLPCs in form of objects:

Table 2: Classes that define own data types
Class
MyInt

It defines the specific data and their type (in this
case integer) that the user wants to provide to the
HLPC for his processing as an instance of this
class. In particular the objects of this class are
used within the HLPCs Farm and Pipe.

Class
MyIntDV

It defines the specific data and their type (also
integer) that the user wants to provide to the
HLPC for his processing as a object. In
particular instances of this class are used within
the HLPC TreeDV.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

37

The set of classes that define the slave objects

(Table.3), they should inherit the characteristics of

Object to be worked in a generic way by the HLPCs,

implementing the virtual method resuelve() that is

where the code of solution of the problem will be.

Table 3: Classes that define slave objects

Class

QsortDV

It is used for instance slave objects type

QSortDV and it solves the problem partially of
sorting a set of data in disorder using the
algorithm of QuickSort (implementation of the
part of “conquer” of the technique divide and
conquer) for HLPC type TreeDV.

Class
Qsort

It is used for instance slave objects type QSort
and it solves the one

problem of sorting a set of data in disorder using
the algorithm of QuickSort within the paradigm
of it divide and conquer, for HLPC type Farm
and type Pipe.

Class
BubleSort

Used for instance slave objects type BubleSort
and it solves the problem of sorting a set of data
in disorder using the algorithm of the Bubble for
HLPCs type Farm or type Pipe.

Class
ISort

It is used for instance slave objects type ISort
and it solves the problem of sorting a set of data
in disorder using the algorithm of Sorting for
Insertion for HLPCs type Farm or type Pipe.

Class
Invierte

It is used for instance slave objects type Invierte
and it solves the problem of investing the

sequence of a set of data. Instances of this type
were used in the implementation of the HLPC
Pipe.

The set of classes that define the HLPC Farm

(Table.4) that is formed of:

Table 4: Classes that define the HLPC Farm
Main Program
cpanfarm.cpp

It proves the execution of the HLPC Farm.
The problem that is solved is the sorting in
parallel of two arrays of integer numbers
using three different algorithms of sorting
(QuickSort, BubleSort and Isort) sent
concurrently.

Class
FarmStage

It defines the component stage relative to
the parallel pattern FARM and it inherits
of ComponentStage.

Class
FarmManager

It defines a concrete instance of a manager
for a HLPC type Farm. The class inherits
of ComponentManager.

Class

CpanFarm

It is used in the main program to create an

active object that represents The High
Level Parallel Composition Farm and to
solve "n" problems in parallel through this
implemented communication pattern.

The set of classes that define the HLPC Pipe

(Table.5), formed by the following classes.

Table 5: Classes that define the HLPC Pipe
Main

Program
cpanpipe.cpp

It proves the execution of the HLPC Pipe.
The problem that is solved is the execution
of a sequence in parallel of 3 algorithms: the
algorithm Invierte, the algorithm Qsort and

again the algorithm Invierte to invest a
sequence of data in disorder, to order the
sequence change and to invest the sorted
sequence of two arrays of integer numbers

sent concurrently again.

Class
PipeStage

It defines the component stage relative to the
parallel pattern PIPE and it inherits of
ComponentStage.

Class
PipeManager

It defines a concrete instance of a manager
for a HLPC type Pipe. The class inherits of
ComponentManager.

Class
CpanPipe

It is used in the main program to create an
active object that represents The High Level
Parallel Composition Pipe and to solve "n"
problems in parallel through this
implemented communication pattern.

The set of classes that define the HLPC TreeDV

(Table 6), formed by the classes:

Table 6: Classes that define the HLPC TreeDV

Main Program
cpantreeDV.cpp

It proves the execution of the HLPC
TreeDV. The problem that is solved is
the sorting in parallel of two arrays of
integer numbers using the QuickSort
algorithm so many times as nodes stage

of the tree leave creating in the solution
process which are sent concurrently for
its execution.

Class
TreeDVStage

It defines the component stage relative to
the parallel pattern TreeDV and it
inherits of ComponentStage.

Class
TreeDVManager

It defines a concrete instance of a
manager for a HLPC type TreeDV. The
class inherits of ComponentManager.

Class
CpanTreeDV

It is used in the main program to create
an active object that represents The High
Level Parallel Composition TreeDV and
to solve "n" problems in parallel through
this implemented communication

pattern.

6. CONCLUSIONS

Method of original programming has been developed

based on HLPCs.
Patterns of communication/interaction have

implemented themselves within the model of the HLPC

commonly used in the parallel and distributed

programming: the HLPC Pipe, the HLPC Farm and the

HLPC TreeDV.

The implemented HLPCs can be exploited, thanks

to the adoption of the approach oriented to objects using

the different mechanisms of reusability of the paradigm

to define new patterns already using those built.

Well-known algorithms that solve sequential

problems in algorithms parallelizable have transformed
and with them the utility of the method has been proven

and of the component software developed in the

investigation.

The HLPCs Pipe, Farm and TreeDV conform the

library of classes that intends in this work.

The restrictions of synchronization have been

programmed of original form suggested by the model of

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

38

the HLPC for their parallel and concurrent operation:

the maximum parallelism (MaxPar), the mutual

exclusion (Mutex) and the synchronization of

communication of processes readers/writers (Sync).

Of equal it forms the programming in the

asynchronous future communication way for results
“futures” within the HLPCs it has been carried out in an

original way by means of classes.

REFERENCES

Blelloch, G.E., 1996. Programming Parallel Algorithms.

Comunications of the ACM. Volume 39. Number

3.

Brinch Hansen, 1993. Model Programs for

Computational Science: A programming

methodology for multicomputers. Concurrency:

Practice and Experience. Volume 5. Number 5.

Brinch Hansen, 1994. SuperPascal- a publication
language for parallel scientific computing.

Concurrency: Practice and Experience. Volume 6.

Number 5.

Capel, M.I. and Palma A., 1992. A Programming tool

for Distributed Implementation of Branch-and-

Bound Algorithms. Parallel Computing and

Transputer Applications. IOS Press/CIMNE.

Barcelona.

Capel, M.I. and Troya J.M., 1994. An Object-Based

Tool and Methodological Approach for

Distributed Programming. Software Concepts and
Tools.

Capel, M.I. and Rossainz, M., 2004. A parallel

programming methodology based on high level

parallel compositions. Proceedings of the 14th

International Conference on Electronics,

Communications and Computers. IEEE CS press.

0-7695-2074-X.

Corradi A., Leonardi L., 1991. PO Constraints as tools

to synchronize active objects. Journal Object

Oriented Programming. Volume10: 42-53.

Corradi, A., Leonardo, L., Zambonelli, F., 1995.

Experiences toward an Object-Oriented Approach
to Structured Parallel Programming. DEIS

technical report. DEIS-LIA-95-007.

Danelutto, M., Orlando, S., et al., 1995. Parallel

Programming Models Based on Restricted

Computation Structure Approach. Technical

Report-Dpt. Informatica. Universitá de Pisa.

Darlington, et al., 1993. Parallel Programming Using

Skeleton Functions. Proceedings PARLE’93.

Munich (D).

Roosta, Séller, 1999. Parallel Processing and Parallel

Algorithms. Theory and Computation. Springer.
Rossainz, M., 2005. Una Metodología de

Programación Basada en Composiciones

Paralelas de Alto Nivel (CPANs). Thesis (PhD).

Universidad de Granada.

Rossainz, M., Capel, M.I., 2006. Design and

Implementation of the Branch & Bound

Algorithmic Design Technique as an High Level

Parallel Composition. Proceedings of

International Mediterranean Modelling

Multiconference. Barcelona, Spain.

Rossainz, M., Capel M.I., 2008. A Parallel

Programming Methodology using Communication

Patterns named CPANS or Composition of

Parallel Object. Proceedings of 20TH European
Modeling & Simulation Symposium. Campora S.

Giovanni. Italy.

Rossainz M., Capel M.I., 2012. Compositions of

Parallel Object to Implement Communication

Patterns. Proceedings of XXIII Jornadas de

Paralelismo, pp.8-13. September 19-21. Elche,

Spain.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

39

