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ABSTRACT 
Excessive or poorly timed application of irrigation and 
fertilizers, coupled with inherent inefficiency of nutrient 
uptake by crops result in nutrient fluxes into the water 
system. Due to the recent adoption of WSNs in 
precision agriculture, it is proposed that existing 
networked agricultural activities can be leveraged into 
an integrated mechanism by sharing information about 
discharges and predicting their impact, allowing 
dynamic decision making for irrigation strategies. Since 
resource constraints on network nodes (e.g. battery life, 
computing power etc.) require a simplified predictive 
model, low-dimensional model parameters are derived 
from the existing National Resource Conservation 
Method (NRCS). An M5 decision tree algorithm is then 
used to develop predictive models for depth (Q), 
response-time (t1) and duration (td) of the discharge. 10-
fold cross-validation of these models demonstrates 
RRMSE of 10.2%, 30% and 9.6% for Q, t1 and td 
respectively. Furthermore, performance of these models 
is validated using multiple linear regression method. 

 
Keywords: discharge prediction, wireless sensor 
networks, M5 decision trees, simplified model 

 
1. INTRODUCTION 
Water quality degradation in a catchment is mainly 
attributed to outdated agricultural practices. Excessive 
or poorly timed application of pesticides, irrigation 
water and fertilizer result in nutrient fluxes into the 
water system with main issues being due to 
phosphorous (P) and nitrogen (N) losses (EPA 2009). In 
addition, the inherent inefficiency of nutrient uptake by 
crops (up to 50% for N and 10% uptake for P) renders 
nutrient outflows inevitable. This implies that adopting 
a reutilization mechanism of drainage and nutrients 
within the farm system can prove to be a valuable 
strategy to manage these outflows before they end up in 
rivers (Harper 2012). However, it is challenging to 
make valid predictions about outflows (what and when 
to expect) and then make them available across a farm 
system for their timely reutilization. 

Over recent years, wireless sensor networks 
(WSNs), due to their low cost and real time data 
availability, have received considerable attention in 
precision agriculture. It is believed that, despite their 
limitations, there is huge potential for leveraging 
existing networked agricultural activities into an 

integrated mechanism by sharing information about 
discharges (Zia, Harris et al. 2013). However, there is 
no framework to investigate and implement such a 
mechanism. In this paper, we propose a framework for 
water quality monitoring control and management 
(WQMCM) using collaborative WSN’s in a catchment 
to investigate and enable such a mechanism. The basic 
architecture comprises modules to enable individual 
networks to evaluate if a correlation exists between 
neighboring events and the events within their own 
zone, to predict their impact and then adapt the local 
monitoring and management strategy. This paper 
focuses on the development and evaluation of the 
discharge prediction aspects.  

For the prediction of discharges, various physical 
and mathematical hydrological models have been 
developed. Although popular in academic research, 
their dependence on acquiring numerous event and land 
parameters, the need for calibrating models to 
individual areas, and the tremendous computational 
burden involved in running the models makes wide-
spread application complicated and difficult (Basha, 
Ravela et al. 2008). A computing model running on 
WSNs requires a simplified underlying physical model, 
based on fewer and, ideally, real-time field parameters 
acquired autonomously. In that respect, data-driven 
techniques based on machine learning, are becoming 
popular in hydrological modeling (Dawson and Wilby 
1998; Wilby, Abrahart et al. 2003; Solomatine and Siek 
2006; Galelli and Castelletti 2013), can yield low 
computational complexity. However, existing models 
are developed for very large catchments (>1000ha), and 
hence use years of data as training samples to learn the 
heterogeneity of such large areas. These models use 
precipitation and temperature instances, however, do 
not take into account field conditions which can have 
visible impact on flow volumes for smaller lands. In 
this paper, we use a popular NRCS curve number model 
as a basis for deriving and evaluating simplified model 
parameters based on real field conditions. In this paper, 
M5 tree learning algorithm is used to generate the 
predictive models based on the proposed parameters 
and fewer training samples. The effect of different 
feature sets and training sizes, on the prediction 
performance of the models, are evaluated and discussed. 
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2. ARCHITECTURE OF WQMCM FRAMEWORK 
The fundamental part of the WQMCM framework is 
that individual networks learn their environment to 
predict the impact of events elsewhere in the catchment 
on their own zone of influence and therefore adopt a 
management strategy. The predicted events can then be 
classified to allow the adjustment of management 
strategy accordingly. The overall block diagram of the 
architecture is illustrated in Figure 1. There are four key 
modules in this architecture which are briefly discussed 
below; however, this paper focuses on the discharge 
predictive model.  

 
2.1. Neighbor Linking Model  
As a network receives event information shared by its 
neighbors, it first needs to be able to correlate those 
neighboring events to events within its own zone of 
influence. This requires an individual network to learn 
about its neighbors which are likely to have an impact 
on it in case of an event. This linking process 
determines if a linear relationship exists between the 
discharge sensed by the networks sensors and the event 
information shared by a particular neighbor. 
Geographical filtering and linear regression is used to 
determine these neighbor links. 
 
2.2. Predicted Discharge Model 
Once a link is established, the next step is to then 
develop a learning model for predicting discharge 
dynamics in response to the event information shared 
by the linked neighbor. The model is termed as 
‘Predicted Discharge Model’ and is developed 
separately for hydrograph and pollutograph dynamics. 
This paper focuses on the hydrograph predictive model.   

For the prediction of discharges, various physical 
and mathematical hydrological models have been 
developed. Although popular in research, their 
dependence on acquiring numerous input parameters, 
the need for calibration, and the tremendous 
computational burden involved in running the models 
makes wide-spread application complicated and 
difficult for sensor networks (Basha, Ravela et al. 
2008). Furthermore, for implementing the WQMCM 

framework, constraints are associated with the 
practicality of information sharing among neighbors and 
the transmission costs linked with sharing high-
dimensional input parameters for the predictive models.  

To develop these models, machine learning 
algorithms are used on the accumulated training set 
from the previous stage. The training instances are 
based on a set of simplified model parameters which are 
derived from a mathematical hydrological in the later 
section. 

  
2.3. Event Classification Model 
Based on the predicted discharge dynamics, the event is 
then classified as to whether it is reusable or not. It 
involves the interpretation of discharge loads (of a 
hydrograph and a pollutograph) into well-defined 
levels, and then setting thresholds for a local farm based 
on its field conditions and irrigation or fertilization 
requirements.  An event maybe classified as unusable 
on the basis of whether it is a high pollutant and a flood 
event (High risk) or a low pollutant but a low discharge 
event. On the other hand, an event is classified as usable 
if either of water or nutrients can be reutilized from the 
discharges.  

 
2.4. Decision Model 
The ‘Decision Model’, then decides either to raise an 
alert, in case of high pollutant loads, or reutilize the 
discharges. The model evaluates the economic and 
environmental benefit of the reuse, in particular, on its 
field and, in general, on the environment.  

The challenge lies in designing a classification and 
decision model which takes into account local field 
conditions, predicted event dynamics and its likely 
benefits or repercussions on the field and then decide 
for the adapting management practices. 

 
3. PREDICTED DISCHARGE MODEL –

SIMPLIFICATION OF MODEL 
PARAMETERS  

A runoff or drainage discharge is represented using a 
hydrograph as shown in Figure 2A. Before the runoff  

 
Figure 1: Architecture of the WQMCM framework  
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Figure 2: A) A discharge hydrograph, B) Predictive model for hydrograph dynamics 

 
occurs, a certain volume of rainfall (termed as initial 
abstraction) is either retained in surface depressions and 
taken up by vegetation, or lost through evaporation, and 
infiltration. For the hydrograph-predictive model, the 
parameters of interest are;  

1. Depth of discharge (Q) 
2. Response time of discharge (t1)  
3. Duration of discharge (td)  

 
These parameters provide information which 

enables effective reutilization of expected discharges. 
Individual learning models are developed to obtain 
these parameters termed as Q-predictive model, t1- 
predictive model and td-predictive model (as shown in 
Figure 2B).  

 
3.1. Mathematical Model for ‘Q’  
One of the most popular and simpler methods to 
estimate the volume of direct surface runoff for a given 
rainfall event, is the Natural Resource Conservation 
Service (NRCS) Curve Number (CN) method 
(Hawkins, Hjelmfelt Jr et al. 1985). Using this method, 
Q is computed as follows;  
 

      
 

Where, P is the rainfall depth and CN is a 
coefficient reducing the total precipitation to runoff 
potential after surface absorption (with values in the 
range 0-100). The higher the CN coefficient, the higher 
is the runoff potential. It is computed considering the 
type of land use, land treatment, hydrological condition, 
hydrological soil group, and antecedent soil moisture 
condition (AMC). The volume of rainfall either retained 
in surface depressions or lost through evaporation or 
infiltration, termed as the initial abstraction (Ia), is 
assumed to be 20% of the potential soil moisture 
retention (Hawkins, Hjelmfelt Jr et al. 1985). 

 
3.2. Mathematical Model for ‘t1’ and ‘td’ 
As evident from Figure 2A, td is expressed as;  

 
 
Where, Tc is time for runoff to travel from the 

furthest distance in the watershed to the location where 
Q is to be determined, and tp is the time to peak 
discharge. Typically there are three distinct runoff 
patterns in a watershed such as sheet flow, shallow 
concentrated flow, and channel flow. Numerical 
equations based on the underlying physical model are 
described below. 
 

 
Where, L is length (ft.) of flow pattern, n 

represents land cover, P2 is 2-year return period 24 hour 
precipitation (in.) for a region, R is hydraulic radius 
(ft.), s is average ground slope (ft.-vertical/ft.-
horizontal), Tt  is travel time (hr.),  and V is average 
velocity (ft./s) of water.  
      As per the author’s best knowledge, there is no 
direct mathematical equation to express tp in the NRCS 
method. The other parameter required is t1, and once 
again there is no mathematical expression for this. 
However, both are extracted from hydrograph plots 
drawn using the convolution of incremental runoff 
depth and unit hydrograph flow rate for a specific 
region. The unit hydrograph is a hypothetical unit 
response of a watershed (in terms of runoff volume and 
timing) to a unit input of rainfall. It is specific to a 
particular watershed, rainfall distribution (RD), and  
rainfall duration (Pd) such as 1-hour, 6-hour, or 24-hour 
(Shaw, Beven et al. 2010). 

 
3.3. Limitations in Mathematical Model 
The NRCS method, although simpler than the other 
models, still presents a challenge of acquiring a variety 
of permanent and transient parameters for every field 
under observation to determine discharge dynamics (Eq. 
(1) and Eq. (3)). Under the WQMCM framework 
paradigm, sharing these parameters among networks is 
not practical as it incurs high transmission costs 
resulting in low battery life of the deployed sensors.  
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Figure 3: Soil moisture conditions in response to irrigation events in a field 

 
 

Figure 4: Model simplification for a Q-predictive model 

 
Moreover, at the time the NRCS method was 

developed, due to the absence of remote and 
inexpensive sensing measures, proxy parameters, 
average values or manual observations were used to 
represent land conditions. An example is AMC, which 
is used to determine CN. 

This is represented by using the amount of rainfall 
received in the five days preceding the storm event, 
which is a subjective judgment, instead of a physical 
reality (Fennessey and Hawkins 2001). In addition, type 
and extent of land cover, slope and land treatment etc., 
is determined by manual observation of the field, which 
limits autonomous monitoring and renders result prone 
to error. Furthermore, determining t1 and td is 
computationally intensive. This implies that low-
dimensional model parameters are required which 
should take into account real time field conditions in an 
autonomous manner. 
 
3.4. Model Simplification for Q, t1 and td 
During the last decade the area of empirical modeling 
received an important boost due to developments in the 
area of WSNs and machine learning. It is anticipated 
that learning models yield low computational 
complexity. Here, the authors derive a simplified model 
based on the NRCS model. This simplification is based 
on two steps; firstly the transient parameters from the 
NRCS model parameters are selected for each of the 
predictive models for Q, t1 and td. This is because 
learning models are trained only on transient values.  
After this, the transient parameters are analyzed for 
likely improvements made possible by using WSNs. 

For Q, model simplification is as shown in Figure 
4. The transient parameters in the NRCS model are 
rainfall depth, past 5-day rainfall and land cover. With 
increasing adoption of WSNs in agriculture, it is more 
practical to use this technology to extract real field 
conditions for prediction. For example, methods such as 
field imaging and signal attenuation methods have been 
used to determine the plant biomass autonomously 
(Vellidis, Savelle et al. 2011). This can be interpreted 
into the crop stage. Similarly, various applications have 
used sensors to monitor soil moisture conditions of the 
field for precision irrigation (Vellidis, Tucker et al. 
2008; Zia, Harris et al. 2013). Therefore, it is proposed 
to use actual soil moisture values instead of the 5-day 
rainfall index.  

In order to validate the limitation of 5-day rainfall 
index to represent AMC, we have analyzed season long 
data observed in a precision irrigation application, 
supplied by the University of Georgia (Vellidis, Tucker 
et al. 2008). The analysis show that in many cases the 
soil moisture condition was measured as moderate, 
although the field did not receive any rainfall or 
irrigation in the last 5 days. Figure 3 plots a week long 
data of measured soil tension (represents soil moisture). 
Using the 5-day rainfall index, on 22nd July, dry soil 
conditions would be estimated, due to the fact that there 
was no rain in the preceding 5 days. However, the 
actual soil condition is measured as adequately 
saturated by the sensors. This leads to incorrect 
determination of drainage after a rainfall or irrigation. 
Therefore, rainfall, soil moisture and crop stage are 
proposed as the simplified model parameters for the 
prediction of Q (Figure 5).  
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Figure 5: Model simplification for a t1 and td-predictive models 

 
 
As already discussed, for t1 and td, the 

mathematical model and convolution method requires 
various parameters and historical data. Firstly the 
transient parameters are selected which include rainfall 
duration (Pd), rainfall (P), surface roughness (n) and 2-
year average rainfall (P2). This is further corroborated 
by analyzing an extensive set of simulated data (using 
NRCS based simulator(Davis), for which a routine in 
Matlab was written to extract t1 and td. The data 
indicated strong correlation of the selected transient 
parameters with t1 and td. This is because higher surface 
roughness inhibits flow rate and increases travel times. 
It is proposed in this paper that crop stage may well 
represent the field roughness. Furthermore, instead of 
relying on historical data for estimating P2 and RD for 
every region, it is proposed to use actual soil moisture 
conditions. Simulation results can be used to evaluate 
the effect of this substitution on prediction accuracy of 
t1 and td. 

 
4. SIMULATION AND RESULTS FOR 

HYDROGRAPH PREDICTVE MODELS 
 
Using machine learning algorithms, the models are 
trained on the historical data describing the 
phenomenon in question. Historical data includes 
known samples that are combinations of inputs and 
corresponding outputs. The learned model is then used 
to predict the outputs from the new input values. 
Examples of the most popular supervised learning 
methods used in data driven modeling for hydrological 
predictive systems are: statistical methods, artificial 
neural networks (ANN), and decision model trees. 

An example of a statistical method is multiple 
linear regression (MLR), which postulates a model 
(linear function) and then find the parameter values that 
maximize its fit to the training data (Quinlan 1992). 
MLR has been used for flood forecasting, in which a 
model is learnt based on data for parameters such as 
precipitation, air temperature and river flow (Basha, 
Ravela et al. 2008). However, the training data is 
collected from historical data of 7 years. Furthermore, 
ANNs have been used for rain-runoff modeling (Wilby, 
Abrahart et al. 2003) and stream-flow forecasting 
(Rasouli, Hsieh et al. 2012). One of the disadvantages 
of ANNs is that for a decision maker it is very difficult 

to analyze the structure of the resulting ANN and to 
relate it to the outputs. However, there are approaches 
to numerical prediction that use piece-wise linear 
approximations which are much easier to interpret. One 
example is M5 decision model trees  (Quinlan 1992), 
which has been demonstrated as an alternative to ANNs 
(Solomatine and Dulal 2003).  

 
4.1. Decision model trees for the predictive model 
Model trees are an extension of regression trees, and 
include first order linear models at the leaf nodes, 
compared to zero-order models in regression trees. 
Model trees have higher predictive accuracy and are 
able to make predictions for values outside the training 
data range, which is not the case with regression trees 
(Kuzmanovski 2012). The inputs for M5 model trees 
are mainly selected according to the correlation 
analysis, which works very well (Solomatine and Dulal 
2003). Predictions using M5 in, for example flood 
forecasting, have been reported to have given an 
accuracy of 80-95% (Solomatine and Xue 2004). 
Therefore, we use M5 decision tree algorithm for 
generating the predictive models in this paper. 
However, we also use MLR algorithm to compare its 
prediction performance with the M5 decision tree 
model.   

 
4.2. Datasets  
For training and testing the model, historical data is 
generated using a simulator based on the NRCS method  
(Davis), which is developed in Matlab. A combination 
of various event depths, field conditions and event 
duration is considered to generate two sets of data – one 
for Q predictive model and the other for t1 and td 
predictive model. The obtained data set is then modified 
to substitute CN with the proposed simplified model 
parameters of CS and SM. To ensure robust evaluation 
of the model performance, the datasets are randomly 
sampled, in order to create training and testing subsets, 
respectively containing one-third and one-fourth of the 
available data. 

 
4.3. Model evaluation 
The prediction accuracy of the learned models is 
evaluated using multi-assessment criteria (Hwang, Ham 
et al. 2012). The criteria considered are (i) RMSE (Root  
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Figure 6: A) Plot of test data for Q-predictive models developed using M5 decision trees for different model parameters, 
B) Plot of test data for Q-predictive models developed using M5 decision trees and MLR algorithm for the proposed 
parameters.  
 
Mean Square Error), which estimates the concentration 
of the data around the fitted equation, (ii) Mean 
Absolute error (MAE), (iii) Relative RMSE (RRSME), 
which is the ratio of the variance of the residuals to the 
variance of the target values themselves and, (iv) R 
squared value (R2), which shows goodness of fit, i.e., 
correlation between actual and predicted values. RMSE 
and MAE are scale dependent measure and have the 
same unit as the data. A good value for RMSE is stated 
as half of the standard deviation value for the output 
data (Singh, Knapp et al. 2005). However, while 
comparing two forecasting models, a smaller RMSE 
indicates better forecasting accuracy. This comes out as 
1.3 for Q and t1, and 3.2 for td. Values of R2 and 
RRMSE can range between 0 and 1, where 1 means 
perfect forecasting. In this paper, the value of RRMSE 
is represented as a percentage. The predicted models 
developed using different model parameters and 
training set sizes, are evaluated with test data to 
compare their performance with the NRCS model. For 
performance evaluation of these models, we use M5 
decision tree toolbox developed in MATLAB 
(Jekabsons 2010)) and the Java-based WEKA machine 
learning simulator (Hall, Frank et al. 2009). 

 
4.4. Comparative Assessment 
The predicted test results of each model developed 
using the proposed simplified model parameters is 
compared with the measured test results of the NRCS 
method. In addition to that, more combinations of 
feature sets based on reduced parameters from the 
simplified model parameters are tested to see if further 
simplification can maintain reasonable prediction 
accuracy or not. The test results are plotted for each of 
the predictive models. 

In order to compare the prediction performance of 
the models developed using M5 decision trees with 
another modeling technique, multiple linear regression 
model (MLR) is used here. The predicted results are 
plotted for each of the Q, t1 and td models developed 
using the M5 decision trees and the MLR model.  

 
4.5. Q-predictive model  
For the prediction of Q, 100 training samples, based on 
the proposed parameters, are used to generate the M5 
decision tree model. The prediction performance for this 
model with 10-fold cross validation has RMSE value of 
0.23 and RRMSE as 10.2%, validate the use of 
proposed model parameters for Q. The plot of predicted 
output for Q-predictive model, using test data, shows a 
very good fit (R2=0.98) as compared to the plot of 
measured output using the NRCS model (as shown in 
Figure 6 A).  

For the sake of comparison, an M5 decision tree 
learning model is developed using only a single input 
parameter of P for the prediction of Q. The plot for the 
model shows very poor fit and gives 30% RRMSE. This 
is because other parameters such as CS and SM have a 
substantial impact on the runoff or drainage expected 
from a field for a given rainfall. This validates that 
using CS and SM, along with P, in the learning model 
can significantly improve its prediction accuracy. 

Later, MLR algorithm was used to compare its 
performance with the M5 decision tree model. For a 
small training set of 100 samples, both the models give 
almost comparable performance. As the M5 decision 
tree model had RMSE as 0.23 and RRMSE as 10.2%, 
the regression tree model has RMSE of 0.30 and 
RRMSE as13.5%. The result for cross validation and 
test data for the two models is given in Table 1. Figure 
6B illustrates the plot of the predicted output for test 
data using the two models. While trying to test these 
two models further, we reduced the number of training 
samples to 50 for developing the models which showed 
a significant performance difference. M5 decision tree 
model gives RMSE as 0.317 and R2 as 0.984, whereas 
for MLR model, RMSE rises to 0.915 and R2 drops 
down to 0.506, which shows a poor fit of the MLR 
model for smaller training sample size.  

 
4.6. t1-Predictive and td-Predictive model  
For t1, initially 100 training instances, based on the 
same model parameters as in the Q- predictive model 
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Figure 7: A) Plot of test data for t1-predictive models developed using M5 decision trees for different model parameters, 
B) Plot of test data for t1-predictive models developed using M5 decision trees and MLR algorithm for the proposed 
parameters.   

 
 

 
Figure 8: A) Plot of test data for td -predictive models developed using M5 decision trees for different model parameters, 
B) Plot of test data for td -predictive models developed using M5 decision trees and MLR algorithm for the proposed 
parameters.   

 
Table 1: Cross validation and test data results for the predictive models developed using M5 decision trees (M5) and 
multi linear regression method (MLR) 

 
 

(P, CS, SM), were used to generate the model for the 
sake of comparison using M5 decision tree. However, 
the model performance was very poor with RMSE of 
1.47, which is higher than the acceptable value of 1.3, 
and RRMSE as 74%. This validates that the same 
model parameters cannot be used for predicting t1. 
Therefore, the proposed parameters (Pd, P, CS, and SM) 
were then used to generate the model. This substantially 

improved the model performance (RMSE= 0.533, 
RRMSE=27%). This is further illustrated by plotting 
the result of test data predicted using the above two 
models against the measured output of the NRCS model 
in Figure 7A. R2 for the first model (using P, CS & 
SM) comes as 0.667, whereas for the second model 
developed using the proposed parameters, it comes as 
0.96. The performance of the t1-predictive model can be 
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    10 fold cross-validation       Testing     

  Model R2 MAE RMSE RRMSE   R2 MAE RMSE RRMSE 

Q-Predictive 
Model 

M5 0.99 0.19 0.23 10.20% 
 

0.98 0.16 0.20 8.00% 

MLR 0.98 0.24 0.30 13.50% 
 

0.99 0.20 0.26 10.20% 

t1-Predictive 
Model 

M5 0.91 0.45 0.61 30.00%   0.85 0.46 0.56 38.10% 

MLR 0.74 0.73 1.00 50.00%   0.70 0.90 0.95 60.00% 

td -Predictive 
Model 

M5 0.99 0.45 0.62 9.60% 
 

0.99 0.45 0.56 7.40% 

MLR 0.96 0.75 1.01 15.00%   0.96 0.82 1.05 13.97% 
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further improved if the number of training samples is 
increased to two-third of the total samples, which is 
around 300.  Hence the model trained on 300 samples 
reduces the RRMSE to 16.8% and the RMSE value to 
0.318. 

Furthermore, the 5 decision tree model for t1 is 
compared with another learning model, the MLR 
model. The performance evaluation parameters for 
cross validation and testing data is given in Table 1. 
There is a substantial difference in performance with 
30% and 50% RRMSE respectively for the M5 decision 
tree model and the MLR model. The plot using test data 
for the two models, illustrated in Figure 7B, shows poor 
fit of the MLR model (R2=0.74), specifically for higher 
values of t1. The low performance of MLR model is 
attributed to its model architecture. In MLR model, the 
predicted output is simply the mean of the output values 
associated to the inputs falling in a specific leaf. 
Whereas, M5 decision model trees show better 
performance because they have a linear function model 
in each leaf. 

For td, the plot shown in Figure 8A) demonstrates 
that the results of the model trained on 100 samples of 
the parameter set consisting of P, CS and, SM, using 
M5 decision trees algorithm, fits poorly to a 1:1 ratio 
(R2=0.107, RRMSE=98%). However, in comparison to 
that, the results of the model generated using the 
proposed parameter set (Pd, P, CS, & SM), for the same 
training set, show good performance with R2=0.991 and 
RRMSE =8.2%. As illustrated in the model, the 
prediction of td shows higher correlation with Pd.  

The comparison of the results of M5 decision tree 
and MLR algorithms for the development of the td –
predictive models is given in Table 1. The value of 
RRMSE and RMSE, for the later model, increases by 
50%. RRMSE increases from 9.6% to 15%, and, RMSE 
changes from 0.62 to 1.01 respectively. However, the 
models show adequate fit on the plot as illustrated in 
Figure 8B). 
 
5. CONCLUSION 
This paper has proposed that individual farm-scale 
networks can be integrated into a collaborative 
framework to support catchment-scale water quality 
monitoring and management to learn and predict the 
impact of catchment events. This enables reutilization 
and timely control of nutrient outflows within the farm 
system. Since a computing model on a sensor network, 
for the implementation of the collaborative WQMCM 
framework, requires a simplified underlying physical 
model therefore, low-dimensional model parameters are 
derived from the existing NRCS method for the 
prediction of discharge dynamics. An M5 decision tree 
algorithm is used to develop predictive models for 
depth (Q), response time (t1) and duration (td) of the 
discharge, based on the proposed model parameters. 10-
fold cross-validation of these models demonstrates 
RRSE of 10.2%, 30% and 9.6% for Q, t1 and td 
respectively. Furthermore, performance of these models 
is validated using multiple linear regression model. 
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