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ABSTRACT 

This work deals with numerical methods for a fully 

coupled system of parabolic-hyperbolic partial 

differential equations modeling the thermo-mechanics 

of the hydrogel matrix of drug delivery devices. The 

model of hydrogel matrix is governed by heat 

conduction equation, wave equation and a 

thermodynamically admissible constitutive law. These 

equations are coupled by source terms. Transient 

analysis is assumed for the present study. Original 

numerical approach based on finite element formulation 

is developed to solve the problem. The model is 

developed to predict the reversible- irreversible entropy 

and heat production in the material to control drug 

delivery devices by following the temperature change. 

Experimentally, various situations are assumed in order 

to observe variations of entropy and temperature by 

using micro-calorimetric test for many frequency rates. 

Some numerical results in correlation with experimental 

measurements are presented in this work. 

 

Keywords: finite element formulation, cyclic load, 

parabolic-hyperbolic equations, drug delivery. 

 

1. INTRODUCTION 

magneto-elasticity, and thermo-elasticity and for many 

other phenomena in science engineering, a coupled 

partial differential equation appears (Mohammed 2009; 

Jeffrey 2005; Xia 2010). In general, coupled system of 

parabolic and hyperbolic equations is obtained after 

deriving conservation equation (physical laws) of the 

system (Holzapfel 1995). And it is well known that in 

continuous media theory, the mechanics and the 

thermodynamics fields are coupled. Most theoretical 

foundations of such phenomenon were established by 

Duhamel, Coleman Noll (e.g. Rakotomanana 2009; 

Claire 2011). In this paper, we are in presence of 

thermomechanical process in the material.   Then, the 

coupled partial differential equation are obtained by 

applying conservation law, first and second law of 

thermodynamics for heat conduction and linear 

momentum for the wave equation (e.g. Rakotomanana 

2009; Betram 1990). The Hydrogel matrix has 

dissipation properties inducing temperature change 

under cyclic load (Mohandreza 2013; Philippe 2014). 

The mechanical loading is accompanied by a production 

of entropy and heat, which can influence the 

temperature and the behavior of the material (Mahaman 

2012). Material is mostly viscoelastic. First such 

phenomenon may be used to optimize drug delivery 

device induced by the temperature change, as in 

cartilage joint which is always under cyclic load 

(Mohandreza 2013; Philippe 2014; chi 2001).  

Elevation of the temperature) may induce defect in the 

material (prostheses) and may influence the formation 

of transfer film and contact at the interface between the 

biological tissues and the prosthesis (Chi 2001). So, we 

need to establish a predictive model to qualify and 

quantify the temperature effect in these materials and to 

determine the maximal temperature admitted for various 

situations. 

 Constitutive equation of some viscoelastic material, 

biological tissues, without temperature effect and 

undergoing large strain was previously established 

(Rakotomanana and Pioletti 2009).  In order to include 

the material behavior, we introduce a new constitutive 

equation in strain gradient continuum taking into 

account the heat effect. Constitutive equation is first 

obtained by defining a Helmholtz free energy as in 

(Rakotomanana and Pioletti 2009) but taking into 

account an internal variable and temperature effect. We 

use classical Coleman and Noll approach for thermo-

mechanical processes (Holzapfel 1995). To obtain 

numerical solutions of a thermo-mechanical problem, 

equations must be solved simultaneously. 

  Various papers exhibit some smooth solutions of 

the coupled parabolic-hyperbolic system. The 

uniqueness, local existence and asymptotic study of the 

solution were developed in (Hao, Maurizio, Songmu 

2007; Yinghui 2013). Many assumptions are used to 

simplify the problem, some papers solve the problem 

for one or two dimensions (Shin and Seung 1999; Chi 

2001; Kunish 2009), solves the problem by considering 

that the effect of stress with temperature production is 

small (in this case the problem is weakly coupled). The 

last method uses the Eulerian-Lagrangian method in 

order to obtain numerical solutions for this problem 

(Mohammed 2009). In this work, we assume that 

coupling term is not negligible, so the problem is fully 

coupled and reintroduce the internal variable and its 

evolution law in order to complete the behavior of the 

material.  

 Mechanical transformation is accompanied by 

production of entropy and heat, which can influence the 
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temperature and the behavior of the material. For 

biological tissues, coupling is important. Indeed, some 

part of energy is converted into heat as dissipation, thus 

resulting in an irreversible temperature and entropy rise. 

In such a case, if temperature or entropy gradient is 

significant, mechanical coupling term cannot be 

neglected. We establish for the hydrogel the evolution 

law and then we study the response with a cyclic load. 

 This paper aim to develop a numerical approach for 

a fully coupled thermo-mechanical system under 

cyclically load and dynamical boundary conditions. 

First, we would like to better understand and quantify 

the influence of thermo-mechanical coupling on the 

material behavior and on the dynamic response of the 

viscoelastic biological tissues substitutes. Quantification 

is obtained by analyzing its effect on the dissipated 

energy and on the entropy production within the 

material for each cycle. We determine the behavior of 

artificial substitute by studying the correlation of the 

theoretical results with the experimental measurement. 

An artificial gel is used to substitute biological tissues, 

taking into account thermo-mechanical load in the 

material. 

 The first part of this paper illustrates the model for 

the thermo-mechanical coupling in the case of 

viscoelastic wires subject to a cyclically mechanical 

load. The numerical approach and the result are 

presented with the stability study on the evolution of the 

dissipated energy with the strain rate and on the 

influence of thermo-mechanical coupling. The second 

part presents briefly the experimental measurement and 

the correlation between results on the reversible and 

irreversible entropy. The thermo-mechanics approaches 

in this work are based on the Coleman and Noll based 

on the Clausis-Duhem inequality. 

 We assume that the Helmholtz's free energy and the 

equipresence theory by the Truesdell and Toupin to 

define the constitutive law of the material (Claire; 

Rakotomanana 2009; Holzapfel 1995). We introduce an 

internal variable in order to take into account the 

dependence of free energy, entropy and temperature 

gradient. These assumptions lead to consistent forms of 

the second principle of the thermo-mechanics and the 

Clausius-Duhem inequality. A new constitutive law is 

established for each internal variable. 

 

2. EXPERIMENTAL METHODS 

For measuring temperature change in substitute sample 

under cyclic load, deformation micro-calorimetric test 

was used. It consists to apply on a cylindrical sample of 

hydrogel matrix (4 [mm] and 6 [mm] of HEMA-

EGDMA hydrogels) a cyclic load. For experimental 

measurements, various frequencies are tested to observe 

variations of entropy and temperature by using micro-

calorimetric test. We assume that system is adiabatic. 

   
(a)                                      (b) 

Figure 1: Deformation micro-calorimetric test. 

The figure 1 illustrates the micro-calorimetric system: 

The left side (a) illustrates the global system. The right 

side (b) illustrates the sample (in middle of the two 

sensors). This system has a thermal insulation but no in 

the figure. 

 

 

3. MATHEMATICAL MODEL 

Let      be a bounded domain in with smooth 

boundary          (it represents the sample in 

hydrogel matrix HEMA-EGDMA). For any time, 

mechanical and heat stress occupies this domain. Time 

is defined by scalar         with     . 

 

3.1. Constitutive equation 

The constitutive equation is based on the 

thermodynamics potentials. The Helmholtz’s free 

energy is given by 

 (      )   (  ( )   ( )   ( )     )                  (1) 

And the dissipation potential is given by 

 (   ̇   ̅̅̅̅     
̅̅ ̅̅ )   (                       ̅̅̅̅     

̅̅ ̅̅     )     

                    (2) 

The expressions of the invariant    are given in the 

appendix. In the equation (1) and (2)   denotes the 

Cauchy-Green strain tensor, given by: 

  
 

 
(            )                                       (3) 

 ̇  
 

 
(  ̇     ̇     ̇        ̇)                       (4) 

Where   denotes the displacement vector. 

The second Piola-Kirchhoff stress tensor   is given by 

                                                                        (5) 
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The potential  (      ) and   (   ̇   ̅̅̅̅     
̅̅ ̅̅ ) are 

thermodynamically acceptable. They respect the 

entropy inequality and Clausius-Duhem inequality. 

  ̇  (     ) 
 ̇

 
 

 

 
           ̇ 

Then,  

 [  ̇    ̇(  ( )   ( )   ( )     )]  (     ) 
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Where   denotes the entropy, 

   (  ( )   ( )   ( )     ) 

And then, the dissipation potential  (   ̇   ̅̅̅̅     
̅̅ ̅̅ )  

 (                       ̅̅̅̅     
̅̅ ̅̅     ) must be convex, 

positive and null and verify: 
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denotes the dissipation potential in the dual base. 

The state function in   (     ) can be written as, 
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3.2.  Governing equation 

The governing equation in transient analysis is obtained 

as a parabolic-hyperbolic coupled system. 

{
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  ̇    
 ̇

 
                (     )

              (     )

            (8)                                       

Where   and   denote respectively the force vector and 

the heat source in   (     )                  

The first Piola-Kirchhoff stress tensor   is given by 

     . Then, we have      (     ). 

{
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Where   is the strain gradient,     (   ),  (   ) 

denotes the holonomic transformation of the      . 

with the condition       . We have the relation  

      ,  

 ̇    ̇      ̇, 

The internal energy   is given by       
  (  ( )   ( )   ( )     ) , and then we have  
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The governing equation can be written as 
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We have, 
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 The boundary conditions are: 

 Mechanical boundary condition 

{

   (     )     (   )
   

  (     )    
  (     )    
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Where n denote the outer unit vector, and   (   ) is 

the external body force applied in some part of   .                      

 Thermal  boundary condition 

{

          
         

    

          (    )

 

Where    denotes the convection coefficient,    denote 

the reference temperature. 

Finally, we have: 
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We consider two cases: 

 We consider that the effect of the heat 

produced by the internal variable    is equal to 

zero,  (
  

   
  

   

     
)    ̇   . 

In this case the governing equation is given by: 
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For the soft biological tissue and for the sample HEMA-

EGDMA, we propose the thermodynamics 

potential      (     ). 
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Where  (  ̇) denotes an indicative function, we assume 

that the Lamé’s constants    (  ) and    (  ). 

We propose the governing equation of the internal 

variable   : We assume that we have one internal 

variable, and his evolution law is given by: 

{
 (  ̇)  

  

   

     (     )

 ( )        (     )

 

 

4. NUMERICAL METHODS 

The numerical method used to solve the problem is 

based on finite element formulation (FEM).We use the 

software Comsol Multiphysics to solve the governing 

equation in   (     )   
So we introduce the variational principle and the finite 

element discretization. For the two cases we consider 

respectively   ,    and     the virtual displacement, 

temperature and the internal variable. 
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 Case 1: 
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Using the Galerkin’s Method the weak formulation of t 

case 1 is given by: 
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The weak formulation is computed with Comsol 

multiphysics of the problem and their constitutive law. 

 

 Case 2: 
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The weak formulation can be written as: 
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Then, 
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The weak formulation is computed with Comsol 

multiphysics of the problem and their constitutive law. 

 

5. SOME RESULTS AND DISCUSSIONS 

We assume two cases of cyclic mechanical loads. For 

each test, we change the frequency of the load in order 

to study the material response. We particularly analyze 

the sensitivity of the material in low frequency. The 

application of the cyclic load is done in three steps. The 
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first step is the pre-loading, the second is the loading 

with the cyclic load and the third step is the unloading. 

For the first case we use the magnitude and the second 

case take into account of the magnitude change. Two 

cyclic mechanical loads were studied. For each test, we 

change the load frequency. Figures report entropy 

production during cyclic loading. 

 

 
Figure 2: Mechanical load vs. time 

. 

 
Figure 3:  Hysteresis curves of the material 

 

 
Figure 4: Mechanical Power vs. time 

 

 
Figure 5: Mechanical Power vs. time, obtained by 

zooming the figure 4.in order to show the behavior in 

small time 

 

 

 
Figure 6: Mechanical Power vs. time 
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Figure 7: Mechanical Power vs. time, obtained by 

zooming the figure 6, in order to show the behavior in 

small time. 

 

 
Figure 8: Mechanical Power vs. time 

 

6. CONCLUDING REMARKS 

Theoretical model was successfully developed in the 

present work to analyze the thermo-mechanical 

behavior of hydrogel matrix HEMA-EGDMA. New 

constitutive equation is proposed in thermo-

viscoelasticity by assuming an adiabatic system. 

 Then, two new thermodynamics potentials and the 

energy conservation for this material were proposed. 

The thermo-mechanical of the coupled and transient 

system was solved by using simplified geometry. 

Fundamental and general trends can be clearly 

illustrated with validation with the help of the 

experimental measurement. New numerical approach to 

solve the coupled partial differential equation 

(governing equation) based on finite element method 

has been developed. 

 Reciprocal interaction between mechanical and 

thermal energy has been performed by this approach. 

This approach has revealed detailed information to 

qualify the temperature change and characterize the 

entropy production in the hydrogel matrix under cyclic 

loads. These results were shown that the heat effects to 

the dissipation energy were significant and may 

exploited to control the drug delivery device driven by 

the temperature. 
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APPENDIX 

A- Notations  
We introduce several notations which will be 

throughout this work. Let us: 

   : Henry constant 

 : Density 

  : Volumic force 

 : Displacement 

 : Heat source 

 : Piola-Kirchhoff’s first stress tensor 

 : Strain gradient  

 : Piola-Kirchhoff’s second stress tensor 

  : Elastic Piola-Kirchhoff’s second stress tensor 

  : Viscous Piola-Kirchhoff’s second stress tensor 

 : Green-Lagrange’s strain tensor 

 : Cauchy-Green’s strain tensor 

 : Identity matrix 

 : Entropy 

 : Density 

 : Internal energy 

 : Cauchy’s stress tensor 

 : Temperature 

  : Reference temperature 

  : Prescribed temperature 

   : Convection coefficient 

 : Helmholtz free energy 

 : Dissipation potential 

  : Internal variable 

 : Conduction coefficient of the hydrogel 

    : Reversible heat 

    : Irreversible heat 

 : Outer unit normal vector 

   : Polymer domain 

 

B- Operators 

   : Divergence operator  

 : Gradient operator 

  : Scalar product 

 : Vector product 

 : Tensor product 

 ̇: Temporal derivative operator of the variable   

   ( ): Determinant  

  ( ): Trace  

 

C- Tensor Invariant 

  : First invariant of the stress tensor 

  : Second invariant stress tensor 

  : Third stress tensor 
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      ̇,  

      ̇ ,  

      ̇ ,  

     (  ̇),  

     (   ̇),  

     (  ̇ ),  

     (   ̇ ). 
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