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ABSTRACT 

Given a discrete event system modeled by an 
alternatives Petri net system, the identification of 
common patterns is required in the incidence matrices 
in order to transform the model into another minimum 
one necessary to develop a more efficient optimization. 
Transformations of set of the alternatives Petri nets to 
be considered are two: aggregation and fusion. 
Aggregation is used to obtain alternatives Petri nets, and 
is performed by means of the following operations: 
identifying of shared subnets on the alternative nets,  
identification of binding transitions and unshared 
blocks, and aggregation of the incidence matrices. 
Fusion is used for obtaining a composed Petri net, and 
is made by means of the following operations:  
application of swaps to rows or columns to achieve an 
optimal configuration, and overlay of matrices. Those 
types of transformations on Petri nets are based on the 
equivalence class of the incidence matrices that can be 
formed by permuting or swapping the rows and the 
columns. This paper constitutes such a basis, by means 
of the analysis of this equivalence class.    

 
Keywords: Petri nets, Incidence matrix, equivalence 
classes 

 
1. INTRODUCTION 

The decisions on discrete event systems under 
design and alternative structural configurations can be 
addressed by applying a family of formalisms based on 
Petri nets (Silva, 1993; Alla and David, 2005; Jensen 
and Kristensen, 2009) that include a set of mutually 
exclusive entities. This decision-making can be 
addressed through an optimization process based on 
simulation of the system model under different valid 
configurations. The optimization process efficiency 
depends on the speed with which the simulation is 
performed, that in the case of a model expressed by the 
formalism of Petri nets requires the solution of the state 
equation. Simulation therefore be the more efficient the 
smaller the system model, and in particular the size of 
the incidence matrices (Zimmermann et al., 2001; 
Tsinarakis et al. 2005;Jimenez et al., 2006, 2009; 
Latorre et al., 2013a). 

Given a discrete event system modeled by an 
alternatives Petri net system, the identification of 
common patterns is required in the incidence matrices 
in order to transform this model into another minimum 
one necessary to develop a more efficient optimization 
(Berthelot, 1987; Haddad and Pradat-Peyre, 2006). 
Transformations of set of the alternatives Petri nets to 
be considered are two: aggregation and fusion (Latorre 
et al., 2009, 2011a). 
 a) Aggregation: 

The aggregation of alternative Petri nets is used to 
obtain an alternatives Petri net, and aggregation is 
performed by means of the following operations: 
a.1) Identifying shared subnets on alternative Petri Nets 
(matching columns in various incidence matrices). At 
this stage it is possible to exchange between two rows 
and between two columns for optimal arrangement of 
the elements of each incidence matrix. 

a.2) Identification of the binding transitions 
(columns that do not match with other incidence 
matrices having some nonzero element in the same row 
in which a shared subnet of the same incidence matrix 
has nonzero elements). 

a.3) unshared blocks (other columns, ie columns 
mismatched with other incidence matrices having non-
zero elements only, in which the matching columns in 
various matrices have nulls). 

a.4) Aggregation: Building an aggregate incidence 
matrix as follows: 

* The first block in the aggregate matrix is the first 
incidence matrix assembly. 

* For each new incidence matrix of the set, they are 
added to the aggregate matrix binding their transitions, 
placing the non-zero elements in the matrix rows 
correspond to aggregate shared subnets. 

* Also unshared blocks are added so that the non-
zero elements in rows match corresponding to the 
nonzero elements and link transitions or new rows 
inserted in the same way as in the original array. 

* The aggregate matrix voids are filled with zeros. 
b) Fusion. 
Merging alternative Petri nets used for obtaining a 

composed Petri net is made by means of the following 
operations. 
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b.1) Application of swaps to two rows or two 
columns to achieve an optimal configuration of the 
elements of each of the incidence matrices. 

b.2) Overlay of matrices to obtain the merged 
matrix, element by element. Each element of the 
resulting array will be associated with a single value if 
overlapping elements coincide (this element is called 
defined parameter) or a set of possible values that will 
have many elements with different values coming from 
the original elements (this element is called undefined 
parameter). 

To manage efficiently those types of 
transformations on Petri nets, some intermediate goals 
are required, in concrete: 

Algorithm 1 (optimization): search for common 
patterns in a set of matrices for minimizing the size of 
the aggregate matrix. 

Algorithm 2 (multiobjective optimization): 
minimization of aggregate array size and the number of 
transitions link (decision variables). 

Algorithm 3 (optimization) search for common 
patterns in a set of matrices to minimize the number of 
undefined parameters of the resulting array. 

Algorithm 4 (multiobjective optimization): minim-
ize the number of undefined parameters of the resulting 
matrix and the size of the containing sets of possible 
values for each parameter of the resulting matrix. 

In addition, to developing the algorithms mentioned 
and provide evidence of correct operation (eg statistics) 
is included within the objectives to determine the 
computational complexity of the system. 
Regarding distributed optimization, given a set of m 
matrices and a set of processors p, with p<m, the 
development of the following algorithms is tacked: 
Algorithm 5 (optimization): determination of exchange 
operations pairs of rows and columns needed and the 
optimal partition of all the m matrices in p sets, to 
minimize the average size of the aggregate incidence 
matrices in each class partition and its variance. 
Algorithm 6 (optimization): determination of exchange 
operations pairs of rows and columns needed and the 
optimal partition of all the m matrices in p sets, to 
minimize the average size of the incidence matrices 
resulting from the incidence matrices in each class of 
the partition and its variance. 

Any of those algorithms constitute a goal and an 
advance in the state of the arte, with immediate 
applications and being the basis of other interesting 
issues. And all of them are based on the equivalence 
class of the equivalent matrices, that is, the equivalence 
class of the incidence matrices that can be formed by 
permuting the rows and the columns. This paper 
constitutes such a basis, by means of the analysis of the 
equivalence class of the incidence matrices ().    

 
2. EQUIVALENCE CLASSES 

 
2.1. Operations of incidence matrices 

A decision problem based on an undefined Discrete 
Event System (DES) can be stated as an optimization 

problem based on an undefined Petri net. The 
performance of the optimization process can be 
influenced in a dramatic way by the representation 
considered for the undefined Petri net. Some operations 
allow transforming an alternative Petri net into another 
one that has an equivalent state space to the original PN 
and might be more appropriate for representing an 
undefined Petri net in an efficient optimization process. 
This relation of equivalence will guarantee that the 
equivalent Petri nets have isomorphous reachability 
graphs and the same set of reachable significant 
markings (Latorre et al., 2011b, 2013b, 22013c). 
The transformation of one alternative Petri net into an 
equivalent one will be performed by means of the 
application of certain matrix-based operations to the 
incidence matrix. In fact, by the application of these 
operations to the alternative Petri nets it is possible to 
obtain adequate incidence matrices for their merging 
into a more compact compound Petri net. This 
compound Petri net will be equivalent representations 
of the same undefined PN in decision problems.  
As a consequence, the equivalent Petri net of a certain 
alternative PN verifies that its incidence matrix can be 
obtained from the transformation of any other from the 
same set by means of the application of certain matrix-
based operations. Any alternative Petri net of a well-
constructed set define an equivalence class. This 
equivalence class is created by the application of the 
different feasible sequences of matrix-based operations 
to the incidence matrix of the alternative Petri net that 
creates it. From this alternative Petri net the equivalent 
Petri nets that can substitute a given alternative Petri net 
can be taken. 
Definition 1. Operation of swapping two rows of a 
matrix. 
The operation of swapping two rows of a matrix is 
defined as the following function: 
swapr: Mmn  {1, 2, …, m}  {1, 2, …, m}  Mmn  
 (A, i, j)  B  Mmn 
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□
In other words, definition 1, describes the swapping of 
the i-th and j-th rows in a matrix A. This operation is 
denoted by swapr(A, i, j). 
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Definition 2 . Operation of swapping two columns of a 
matrix. 
The operation of swapping two columns of a matrix is 
defined as the following function: 
swapc: Mmn  {1, 2, …, n}  {1, 2, …, n}  Mmn  
 (A, i, j)  B  Mmn 
where,   

A = 
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□
In other words, definition 2, describes the swapping of 
the columns i and j in matrix A, which is denoted by 
swapc(A, i, j) 
 
Remark 1. The state equation of a Petri net requires 
representing the characteristic vector that summarizes 
the information contained in the sequence of transitions 
fired. The characteristic vector (also called firing count 
vector) contains elements that are different to zero in 
the positions that correspond to the transitions fired. If 
an operation swapc is applied to an incidence matrix 
and the state equation is represented, the characteristic 
vector should be modified according to this same swapc 
operation. 
 
Definition 3. Operation of adding a row of zeros to a 
matrix. 
The operation of adding a row of zeros to a matrix is 
defined as the following function: 
addr: Mmn  M(m+1)n  
 A  B, such that 
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□
The operation described in definition 3 is denoted by 
addr(A) and adds a row of zeros to the matrix A. 
 
Remark 2. The operation addr applied to the incidence 
matrix of a Petri net implies the addition of a new place 
with a particular property: every input and output arc 
has weight zero. In other words, this new place is an 
isolated node of the Petri net. 

 
The marking of the Petri net that results from the 
application of this operation should include the marking 
of the new place, which will occupy the last position of 
the vector. However, being isolated, the place cannot 
experience any variation of its initial marking in the 
evolution of the Petri net. Furthermore, the marking of 
other places will not be influenced by the added place, 
hence the marking of the new Petri net, excluding the 
added place, will be the same to the original one. If the 
new place is considered in this comparison it is possible 
to say that the significant marking is the same in both 
Petri nets; hence the graphs of reachable markings are 
isomorphous. 
 
Definition 4. Operation of removing a row of zeros of a 
matrix. 
The operation of removing a row of zeros of a matrix is 
defined as the following function: 
removr: S  M(m-1)n  
 A  B, such that 
S = {A  Mmn | am* = (0 0 … 0) }, in other words, S is 
the set of matrices whose m-th (last) row is a row of 
zeros.  
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□
The operation described in definition 4 is denoted by 
removr(A) and removes the last row of a matrix A, 
which should contain only zeros. 
 
Definition 5. Operation of adding a column of zeros to 
a matrix. 
The operation of adding a column of zeros to a matrix is 
defined as the following function: 
 
addc: Mmn  M m(n+1)  
 A  B, such that 
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□
The operation described in 5 is denoted by addc(A) and 
adds a column of zeros to a matrix A. 
 
Remark 3. The operation addc applied to the incidence 
matrix of a Petri net implies the addition of a new 
transition with a particular property: every one of its 
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input and output arcs has weight zero. In other words, 
this new transition is an isolated transition of the Petri 
net. Moreover, the added transition will be associated to 
the last column of the incidence matrix. 
 
Any characteristic vector associated to R should be 
modified before being associated as well to the Petri net 
R’ that results from the application of the operation 
addc to its incidence matrix. This modification of the 
characteristic vector consists of the addition of a zero as 
the new last element. Thanks to this modification the 
size of the vector will fit with the one of the incidence 
matrix B in the state equation. 
 
Definition 6. Operation of removing a column of zeros 
of a matrix. 
The operation of removing a column of zeros of a 
matrix is defined as the following function: 
 
removc: S  M(m-1)n  
 A  B, such that 
 
S = {A  Mmn | a*n = [0 0 … 0]T }, in other words, S is 
the set of matrices whose nth (last) column is a column 
of zeros.  

Given A = 
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□
The operation described in definition 6 is denoted by 
removc(A) and removes the last columns of a matrix A, 
which should contain only zeros. 
 
It can be proven that none of the matrix-based 
operations defined in this section modify the form of the 
reachability graph of the Petri net, when thay are 
applied to its incidence matrix. Furthermore, the 
significant markings are the same. 
 
Proposition 1. 
Let R be a Petri net with an incidence matrix given by A 
 Mmn and let swapr(A, i, j) = B  Mmn. The Petri net 
associated to B is R’. The initial markings of R and R’ 
are respectively m0 and m0’. 

rg(R, m0) = rg(R’, m0’) 
□

Proposition 2. 
Let R be a Petri net with an incidence matrix given by A 
 Mmn. and let swapc(A, i, j) = B  Mmn. The Petri 
net associated to B is R’. The initial markings of R and 
R’ are respectively m0 and m0’. 
 

rg(R, m0) = rg(R’, m0’) 
□

Proposition 3. 
Let R be a Petri net with an incidence matrix given by A 
 Mmn and let addr(A) = B  M(m+1)n. The Petri net 
associated to B is R’. The initial markings of R and R’ 
are respectively m0 and m0’. 
 
rg(R, m0) = rg(R’, m0’) for the marking of the connected 

places. 
□

Proposition 4. 
Let R be a Petri net with an incidence matrix given by A 
 Mmn and let removr(A) = B  M(m-1)n. The Petri net 
associated to B is R’. The initial markings of R and R’ 
are respectively m0 and m0’. 
 
rg(R, m0) = rg(R’, m0’) for the marking of the connected 

places. 
□

Remark 4. What proposition 3 and proposition 4 
mean in fact is that the graphs of reachable markings are 
isomorphous. They are only the same for the significant 
marking or more specifically for the marking of the 
connected places. Furthermore, the isolated places are 
associated to constant markings and they do not 
influence the evolution of the Petri net (the valid 
sequences of transition firing and the markings of the 
connected places). For this reason this relation between 
the graphs of reachable markings of the original Petri 
nets and the ones resulting from the application of the 
operations addr and removr is approximated with a high 
degree of reliability and usefulness in the applications 
for decision problems as being the same: rg(R, m0) = 
rg(R’, m0’). 
 
Proposition 5. 
Let R be a Petri net with an incidence matrix given by A 
 Mmn and let addc(A) = B  Mmn+1). The Petri net 
associated to B, obtained from R is R’. The initial 
markings of R and R’ are the same, in other words m0 = 
m0’. 

rg(R, m0) = rg(R’, m0’) 
□

 
Proposition 6. 
Let R be a Petri net with an incidence matrix given by A 
 Mmn such that a*,j = 0 (the elements of the last 
column are zeros) and let removc(A) = B  Mmn-1). 
The Petri net associated to B is R’. The initial markings 
of R and R’ are the same (m0 = m0’). 

rg(R, m0) = rg(R’, m0’) 
□ 

 
3. WELL-CONSTRUCTED SETS OF ALTERN-

ATIVE PN AND EQUIVALENCE CLASSES 
 
The matrix-based operations described in the previous 
section may be used to substitute one or several 
alternative Petri nets to find more convenient 
representations for solving the optimization problem in 
a more efficient way. 
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In order to proceed as described in the previous 
paragraph it is interesting to classify the sets of 
alternative Petri nets into two categories, which will be 
called the well-constructed sets and the redundant sets. 
It is possible to describe a well-constructed set as the 
one containing alternative Petri nets able to define 
equivalence classes from the equivalence relation given 
by the application of the matrix-based operations. In 
this case, the alternative Petri nets of the original set 
cannot be transformed into another Petri net of the same 
set, since they belong to different equivalence classes, 
which verify the property of being disjoint sets. This 
property of exclusiveness is associated to the idea of set 
of exclusive entities, which is the signature of the 
decision problems where there are structural alternatives 
as feasible solutions. 
 
The name “redundant” arises from the fact that at least 
one alternative Petri net can be transformed into another 
one from the same. subsequently both of them belong to 
the same equivalence class. As a consequence, the 
couple of PN is related to the same solution of the 
decision problem. 

 
3.1. Well-constructed sets of alternative PN and 

equivalence classes: definitions 
 
Definition 7. Set of equivalence operations. 
The set of equivalence operations is SOP = { swapr, 
swapc, addr, removr, addc, removc } set of all matrix-
based operations defined previously in this chapter. 

□
Definition 8. Feasible sequence of operations. 
A feasible sequence of operations is a finite set of the 
form 

Ssecop = { op1, op2, …, opnop | opi  SOP , 1  i  nop } 
□

Definition 9. Set of feasible sequence of operations. 
The set of feasible sequence of operations is  
SSOP = { Ssecop } 

□
Definition 10. Application of a sequence of operations 
to an incidence matrix. 
Let Wa be the incidence matrix of a Petri net. 
Let Ssecop be a feasible sequence of operations such that 
Ssecop  SSOP . 
The application of Ssecop to Wa is called Ssecop(Wa) and is 
performed in the following way 

Ssecop(Wa) = opnop(…op2(op1(Wa))) 
 
The way of applying this sequence of operations is the 
following: first of all it is calculated the operation 
op1(Wa) = Wa’, in a second step it is calculated the 
operation op2(Wa’) = Wa’’ = op2(op1(Wa)) and so on 
until the last operation opnop is applied. 

□
Definition 11. Equivalence relation between two Petri 
nets. 
Let us consider the Petri nets Ra and Rb , whose 
incidence matrices are Wa and Wb respectively. 

The equivalence relation ~ is defined in the following 
way: 

Ra ~ Rb iif  Ssecop  SSOP such that Ssecop(Wa) = Wb. 
□

Definition 12. Equivalence class defined by an 
alternative Petri net. 
Given a set of alternative Petri nets SR = { R1, R2, …, Rnr}, 
the binary equivalent relation ~ , defined in definition 
6.21, allows to create an equivalence class for every 
alternative Petri net, such that 
 
Let Ri  SR , the equivalence class created by Ri is [Ri] = 
{ R PN | Ri ~ R }. 

□
Definition 13. Well-constructed set of alternative Petri 
nets. 
Given a set of alternative Petri nets SR = { R1, R2, …, Rnr}. 
SR is said to be well constructed iif  Ri , Rj  SR , i  
j,it does not exist any sequence of operations Ssecop  
SSOP such that Ssecop(Wi) = Wj.  

□
In other words, for a set of alternative Petri nets to be 
well constructed set it is a necessary and sufficient 
condition that none of the Petri nets of the set has an 
incidence matrix that can be transformed, by means of 
equivalence operations, into the incidence matrix of 
another Petri net of the same set. 
 
On the other hand, it has been mentioned before as well 
that the definition of this category of well-defined sets 
of alternative Petri nets do not compromise the 
applicability of the methodologies developed in this 
thesis to real cases. On the contrary, the correct models 
developed for undefined DES will not contain isolated 
places or transitions (which do not contribute to the 
evolution of the system) or different order of the rows 
or columns between them (due to the assignment of 
different names for the same real items modelled by 
nodes in the PN). Subsequently, this condition do not 
prevent the representation of most of the different 
possible real or academic cases that can arise in a 
decision problem, but it is a guarantee of the correct 
development of a model of an undefined DES for a 
decision problem. Furthermore, this small restriction 
will have important implications in the improvement of 
the efficiency of the algorithms to solve decision 
problems in the scope of this thesis. 
 

3.2. Sufficient conditions for a set of alternative 
Petri nets to be well constructed. 

The next topic to be considered is how to check that a 
set of alternative Petri nets is a well-constructed one 
and, hence, able to create so many different equivalence 
classes as the cardinality of the set. 
 
Proposition 7. Sufficient condition to identify a well-
constructed set of alternative Petri nets. 
Let D be a DES. 
Let RU be an undefined Petri net developed as model for 
D. 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

469



Let SR = { R1, R2, …, Rnr} be a set of alternative Petri nets 
developed as representation of RU. 
 
If the following conditions are verified 
 
a)  Ri  SR   pj  Pi it is verified that pj is a 
connected place. 
b)  Ri  SR   tj  Ti it is verified that tj is a 
connected place. 
c)  Ri, Rj  SR   pk1  Pi , pk2  Pj such that X(pk) is 
the item in D modelled by pk1 and pk2 then k1 = k2 . 
d)  Ri, Rj  SR it is verified that W(Ri)  W(Rj). 
 
Then SR is a well-constructed set of alternative Petri 
nets. 

□
A sufficient condition for a set of alternative Petri net to 
have incidence matrices that cannot be transformed one 
into another by means of “add” or “remov” operations 
is that there is not any isolated place or transition in any 
of the alternative Petri nets. As it has been mentioned 
before, this is a usual case in the application of PN 
found in the literature so far, since in the definition of 
PN it is usually imposed the condition of connectivity in 
every node. A way to detect this situation is to search 
for rows or columns of zeros. 
 
A sufficient condition for a set of alternative Petri net to 
have incidence matrices that cannot be transformed one 
into another by means of “swap” operations is to give in 
the model the same reference name to the same physical 
item that is modelled as a place or transition, to 
associate an alias to every reference name with the same 
subindex and to compare the incidence matrices 
element by element. If there is a pair (or more) elements 
which are different in the incidence matrices of different 
Petri nets, the set of alternative Petri nets is well 
constructed. 
 
Another sufficient condition for a set of alternative Petri 
net to be well constructed is given below. 
 
Proposition 8. Sufficient condition to identify a well-
constructed set of alternative Petri nets. 
Let SR = { R1, R2, …, Rnr} be a set of alternative Petri 
nets, where Wk is the incidence matrix of Rk  SR , Wk 

 Mmknk and k
jia ,  = Wk[i,j]  

Let sumtk = 





k

k

ji

nj
mi

ji

ka
1,

,
 

If  Rk1, Rk2  SR , sumtk1  sumtk2  SR is well 
constructed 

□
As it has been proven, a sufficient condition for a set of 
alternative Petri nets to be well constructed is that the 
sums of all the elements of the incidence matrix are 
different for the different alternative Petri net. 
 

3.3. Redundant set of alternative Petri nets. 
It has been explained previously that a set of alternative 
Petri nets that is not well constructed may lead to the 
creation of the same equivalence class by several 
different alternative PN of the set. 
 The detection of this fact by means of the sufficient 
conditions described earlier can allow the removal of 
the redundant alternative Petri nets and hence the 
simplification of the statement of the decision problem 
based on a reduced set of alternative PN. A 
simplification in the representation of an undefined 
Petri net may lead to a more efficient optimization 
process based on a model of reduced size. 
 In case that a redundant set of alternative Petri net 
is not detected and used to state an optimization 
problem, the different alternative Petri nets that create 
the same equivalence class will be treated as if their 
respective equivalence classes were different. The 
behaviour and the structure of the Petri nets will not be 
different from one of these alternative PN and the others 
that create the same equivalence class. As a 
consequence, the optimization algorithm might 
duplicate the computational effort by considering twice 
the same alternative Petri net. 

 
4. CONCLUSIONS 

 
Given a discrete event system modeled by an 

alternatives Petri net system, the identification of 
common patterns is required in the incidence matrices 
in order to transform the model into another minimum 
one necessary to develop a more efficient optimization. 
Transformations of set of the alternatives Petri nets to 
be considered are two: aggregation and fusion.  

This paper has analyzed the equivalence class of 
the incidence matrices, that is, of matrices that can be 
obtained by swapping rows and columns. This 
knowledge, and the basis of the definitions and 
properties, constitute the starting point to analyze the 
optimization of several incidence matrices that are 
wanted to be merged, as it happens with alternatives 
Petri nets.  
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