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ABSTRACT 
 The aim of this work is to create a framework of 
definitions and notations to hide part of a Petri net, 
facing a possible delivery, maintaining the privacy of 
the critical, secret, or complex parts of the system.  
From these definitions and notations we work with the 
incidence matrices and we analyze the implications of 
hiding. In this work only the structure of the network is 
processed. The study of markings and properties of 
networks with hidden pieces will we analyzed in further 
works. 

 
1. INTRODUCTION 
 Petri nets are widespread for modeling many 
classes of systems, such as manufacturing, logistics, 
processes and services [3] [5], and in general discrete 
concurrent systems [4]. However, all these nets are 
described in a comprehensive manner and must have the 
information of the entire net to determine their 
evolution. It would be interesting to take a Petri net and 
hide a part of it. This can be useful, for example, when 
distributing a process with some secret [6], or simply to 
be a part of complex net that is not interested to be 
handle globally for any reason [5]. 
In advanced work, we studied the possibilities of Petri 
nets reduction [10], grouping in one place or transition a 
subnet, so that what happens on this subnet is 
encapsulated in a single point of execution. However, 
we want to go further by defining parts of the net that 
are hidden, not clustered, and even the implications 
within the network properties. The aim of this work is 
the creation of the theoretical basis for a further study of 
Petri nets in which certain parts are hidden. 
 So we setup a generic framework of definitions and 
notations that allows us to deepen in the study of the 
characteristics and properties of Petri nets. We will 
expand the vision of Petri nets, providing them with 
greater functionality in an interesting way for practical 
applications. 
 The first part of this paper studies the state the art 
in this field. We are going to deepen in the basic Petri 

nets definitions and properties [7] related with hidden 
information. All this will be necessary to create the 
framework that allows us to study occultation in PN. 
 For this paper we will always deal with ordinary 
networks and pure, unless otherwise expressly. 

 
2. PETRI SUBNETS. DEFINITIONS AND 

PROPERTIES 
Let be P and T the non-empty finite sets of places and 
transitions, respectively. Let |P| = n (the number of 
places network) and |T| = m (number of transitions).  
Let be α and β pre and post incidence matrices 
respectively. Let R = P, T, α, β be a Petri net and let C 
the incidence matrix of  R 
 Definition 1 (Subnet [8]). A subnet of  

 ,,,TPR  is a net  ,,,TPR   such that 

PP   and TT  ,    and   are restrictions of α and 
β over TP . 
 In other words, a subnet is a subset of places and 
transitions with their arcs, joined together. 
 Let’s look at the implications of the latter definition 
since it is one of the most important with regard to this 
work. 
 A subnet corresponds [6], from the matrix point of 
view, with the resulting submatrix obtained by keeping 
only the rows corresponding to transitions and places 
columns for the selected subnet.  
Example 1. We take the Petri net which has the 
following incidence matrix:  

 
 

 If we stay with places p1, p3, and p5 P4 and 
transitions t1, t2, and  t3 we have the subnet defined by 
this incidence matrix.  
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In  [6]  is  shown  that  the  set  of  all  possible
permutations  of  rows  and/or  columns  of  a  matrix  of
incidence  corresponding  to  a  network,  either  the
previous or subsequent actual Incidence call, make an
equivalence relation. In other words, given an incidence
matrix can be rearranged both rows and columns and
this  rearrangement  end  is  perfectly  describing  the
original network.

In  this way, we can study the incidence  matrices
reordering rows and columns as  preferred one  at  any
time, without loss of generality.

From all these definitions and proofs we can draw
several trivial conclusions:

1. A subnet, like generic network does not have to be 
square.

2. If a row or column of the incidence matrix is all  
zeros, no mean that that place or that transition is 
isolated. this only occur with pure networks.

3. It  does not matter the number of places and / or  
transitions are chosen for the subnet, if they are not 
empty sets.

3. SPLITTING A NETWORK INTO SUBNETS
Let  R =  〈P,  T,  α, β〉 a Petri net where |P| =  n and

|T| = m. So P = {p1, p2•••pn} and T = {t1, t2•••tm}.
Select two subsets P'  ⊆ P and T'  ⊆ T so that |P'| = r ≤ n
and |T'|  =  s ≤  m. With these premises divide into two
subnets the original one.

We have seen that  we can identify a subnetwork
simply removing rows and columns (places/transitions)
of  an  incidence  matrix.  Taking  advantage  of  the
equivalence  relation  defined  in  [6],  we  reorder  the
incidence matrix so that they are in the top places and
transitions  of  the  subnet  defined.  Rename  also  the
places  and transitions (without loss  of  generality, and
for  convenience)  so  that  the  incidence  matrix  is  as
follows:

We now have the network divided into two disjoint and
complementary subnets. They are disjoint because there
is  no  place  and  no  common  transition,  and
complementary because the union of the two we gives
the  complete  network.  At  this  point  note  that  the
incidence  matrix  is  divided  into  four  blocks

C=(A B
C D) . The interpretation is as follows:

• A subnet made up of places p1•••pr and transitions
t1•••ts

• D subnet is complementary to A, made up of the 
places pr+1•••pn and transitions ts+1•••tm.
• B is the matrix that defines the interaction of the 
places of A with D transitions
• C is the matrix that defines the interaction of D 
places with A transitions

This  can  be  generalized  to  multiple  disjoint  and
complementary subnets without further to re-apply the
same  process  to  any  of  the  subnets  already  defined.
Thus,  generically  we  can  divide  a  network  into  i
subnetworks, so we’ll have a matrix of this style:

In this situation, if we select two subnets  SNj and
SNk  ,  we  locate  the  zones  of  influence  of  each  with
respect to the other:

Thus,  the  submatrix  IM1 represents  the  arcs  that
connect places of the submatrix SNj with SNtransitionsk
and  the  matrix  IM2 represents  the  arcs  that  connect
places of SNk to Sntransitionsj.
Arcs that are in one way or another indicates the sign of
the corresponding element of A or B.

Definition  2 (Partition of a network into subnets). We
say that a set P = {R1R2•••Rk} is a partition into subnets
of R if the following holds:

• R1  ∪ R2  ∪ •••  ∪ Rk = R
• ∀i, j|1  ≤  i, j  ≤  k  ⇒ Ri ∩ Rj = ∅

ie, the binding of the total network subnets and subnets
are pairwise disjoint.
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4. DESCRIPTION  OF  THE  PARTS  OF  A
MATRIX ONCE DEFINED THE SUBNETS
As  can  be  reordered  places  and  transitions

smoothly, we study a network N divided into 2 subnets,
for simplicity and without loss of generality.

For  consistency  with  [6]  we  will  follow  this
notation:

where
• H (Hidden Subnet)  is  the  subnet  you want to  
hide.
• V (Visible Subnet) is the subnet that is visible.
•  HT  (Hidden  Transitions  Submatrix)  are  the  
relationships between places of V and H transitions
• HP (Hidden Places Submatrix) are the relations 
between transitions of V and H sites

Note.  Following  this  notation  can  be  convenient
because  it  is  clear  what  is  each  of  the  submatrices.
However, elsewhere in the document be referenced as
R1 and  R2 for be more clarifying or being something
generic  and  independent  networks  concealment.
However, using  R1 and  R2 the notation of subnets of
influence with respect to the other is more diffuse.

Example  2. Consider the Petri net of the figure 2 with
the next incidence matrix:

The subnet we want to hide is formed by sites 1and 2
and 1 and 2 transitions. Graphically, separate places and
transitions to hide (H) from the rest of the   network (V)

The  incidence  matrix  is  already  sorted  by  the
places and transitions to the top of it. Here’s the four
parts described above.

In this matrix we can see the four described parts:

•   is the subnet we want to hide.

•   is the subnet that is visible.

•   are the relationships between  

transitions of  V and H places.
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•   are the relationships between 

places of  V and H transitions.

Example 3. In the previous example we have seen
a  fairly  simple  option  selection  subnet  and  we  have
chosen the locations 1 and 2 and the transitions 1 and 2.
However, we can choose any other subset of places and
transitions. In this example we will select locations 2, 3
and 5 and the transitions 1 and 3. Thus, in the graph of
the previous example move the locations and transitions
to hide on one side and the rest on the other.

Although more confusing, can be seen that the graph is
the same as the incidence matrix is the same (not just
part of the equivalence class, it is exactly the same).
Now, in this matrix move places 2, 3 and 5, and 1 and
3 transitions at the beginning of the matrix:

Interpreting  each  of  the  chunks  of  the  matrix  is
similar to the previous example.

5. HIDING THE SUBNET
Once you select the subnet to hide we proceed to the
occultation as  such  [6].  Graphically, it  seems simple.
Just  replace  the  subnet  to  hide  by  a  black  box  and
modify some arcs according to the following rules: 

1. The arcs originating in a place or transition within the
black box, and target a place or transition out of it will 
have the black box as the source.
2. The arcs originating in a place or transition out of the 
black box, and target a place or transition within it, are 
replaced by the black box as a destination.

Example 4. We consider the Petri net of the Figure 2. 
The result of hiding the part of the graph H is the 
following:

In  the  associated  incidence  matrix  also  replace  the
subnetwork H by a black box:

However,  in  this  matrix  notation  is  given
information  should  also  be  hidden:  it  gives  us
information about the number of places and transitions
of the hidden subnet, besides indicating hidden places
and  transitions  with  which  it  interacts.  To solve  this
problem we proceed as follows. We can group all rows
for the screened subnet into one. In each row position
examine all elements of the original rows corresponding
to that position, and will put:

• If all these elements are zero, in the grouped row 
will be a zero.

• If one and only one of those elements is nonzero, 
will put that item.

• If there are several non-zero elements, we will post 
a list of these items separated by commas, creating 
a d-dimensional element (in d dimensions).

In  the  same  way  we  have  done  with  the  rows,
proceed with columns. Thus, if the hidden subnet has i
columns and j rows, we will get a matrix like this:

Where ∀p, ∀q|i + 1 ≤ p ≤ m ∧ j + 1 ≤ q ≤ n

 0 if  ∀r|1 ≤   r  ≤  j,crp = 0
  crp if  ∃!r,1 ≤   r  ≤  j|crp ≠  0   

a1p =  (cr1p,  cr2p, …) if  ∃!r1 ≠ r2≠ …,1≤ r1,r2,…≤  j
 |cr1p, cr2p, … ≠  0
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 0 if  ∀s|1 ≤   s  ≤  i,cqs = 0
  cqs if  ∃!s,1 ≤   s  ≤  i|cqs ≠  0   

aq1 =  (cqs1,  cqs2, …) if  ∃!s1 ≠ s2≠ …,1≤ s1,s2,…≤  s
 |cqs1, cqs2, … ≠  0

So we hide the number of places and transitions of 
the hidden subnet and their relationships. Yes, some 
information is given about the hidden network. Really if
this resulting matrix some node that is d-dimensional, at
least in the hidden network must exist d nodes of this 
type.

Example  5.  We consider  the Petri  net  defined by  the
following incidence matrix, separated into H,V ,HT and
HP .

After applying the above steps for the group, we would 
have the following:

Here we see that the information about the number
of hidden places and transitions is  minimized.  So we
know that  at  least  there  is  a  hidden  transition and at
least  three  hidden  places  (there  is  a  transition  of
dimension  3).  However,  we  do  not  know  the  exact
number of either.

6.  HIDING VS. REDUCTION
Both Silva works [8] [9] as in the article by Xia [10] 
discusses possible Petri nets reductions for grouping 
and simplifying, under certain circumstances, places 
and / or transitions. These reductions can be structural 
(only dependent on the structure and initial marking of 
the net) or depending on the interpretation of the Petri 
net.

Should be clear that these reductions are not the 
same thing we are describing. We do not try to simplify 
the network together elements to have more or fewer 
places or transitions or to make it easier. What we want 
is to hide part of the network, regardless of how simple 
or complicated it is.

Here we have an example of what a reduction is.
Example 6 (Reduction of an implicit place [8]). In a 
marked Petri net, an implicit place is one that meets the 
following:
1. its marking can be calculated from other points 

marking
2. never is the only place that prevents the enabling of
its output transitions

If we consider the following Petri net

we can notice that  p2 is  an implicit  place because its
marking can be calculated as a function of p3 y p4:

M (p2 ) = M (p3) + M (p4)

Moreover,  by  this  same  formula,  it  is  clear  that
M  (p2) ≥  M (P4) (marking cannot be negative) so the
only place that can prevent enabling of  T3 is  P4 . Thus
eliminating  p2 does  not  alter  the  behavior  of  the
network, which would be as follows:

In  this  network  elements  have  been  removed,  no
hidden.  This  example  helps  us  to  see  the  difference
between hiding and a reduction.

7. CLASSIFICATION  BY  TYPE  OF  SUBNET
HIDING
We have seen how to hide part of a network. We

have also studied how to make relations between the
visible  and  hidden  parts  of  the  network  providing
minimal  information  about  the  network  structure.

Then we see occultation special cases with special
features. Suppose we take a pure network and want to
hide part of it. Depending on how they are each of the
four pieces of matrix (H, V, HP and HT) we can see
some special cases.

7.1. Disjointed subnets
Suppose that in the incidence matrix divided into

the four pieces explained, are H or V be a null matrix.
In this case the interpretation is that there arcs between
places  and  transitions  of  the  subnet,  which  would
simply  places  and  /  or  no  transitions  related  to  each
other but with the  additional  subnetwork. Subnet talk
then  disjointed.
Definition 3  (Disjointed  subnet).  Pure  subnet  said
disjointed  if  there  is  no  arc  between  places  and
transitions of that  subnet,  ie if  its  incidence matrix is
zero.
Example  7.  Consider  the  Petri  net  of  figure  2.  The
incidence matrix is:
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We assume that we select as subnet formed by 4th and
5th places and transitions 1 and 2. Then the graph and
the incidence matrix are thus:

Here we can see that although really p4, p5, t1 and t2

are  not  isolated,  there  is  no  arc  that  connects  them
together.  In  the  incidence  matrix,  the  corresponding
submatrix is the zero matrix. Therefore, whether or not
there  are  elements  isolated  in  the  net,  total  subnet
formed by p4, p5 , t1 and t2 is a disjointed net.

7.2. Macroplace
Suppose now that the incidence matrix divided into

the  four pieces  explained,  HT appears  to  be  the  zero
matrix.  Then  we  conclude  that  the  subnet  H  is  only
related by arcs with places of subnet V. All arcs entering
H come from transitions of V and all arcs coming out
from H go to transitions of V. Stated another way, the
subnet V behaves like a spot,  but  may contain places
and transitions.

Definition 4 (Macroplace). A macroplace is a subnet H
or V that meets the following:
1. arcs  entering  any  node  of  the  subnet  from  an  

external node  come  from  a  transition.
2. arcs leaving any node on the subnet to an external 

node go to a transition.

Note  that  this  is  not  really  a  place,  and  that  the
subnet has not marked as such. The marking is on the
places within the subnet and depend on the arches of
arrival.

7.3. Macrotransition
Another  option  that  can  happen  is  that  in  the

incidence  matrix,  HP appears  to  be  the  zero  matrix.
Then we conclude that the subnet H is only related by
arcs with transitions of subnet V. All  arcs  entering H
come from places of V and all arcs coming out from H
go  to  places  of  V. Stated  another  way, the  subnet  V
behaves  like  a  transition,  but  may  contain  places
andtransitions.

Definition 5  (Macrotransition).  A macrotransition is  a
subnet H or V that meets with the following:
1. arcs  entering  any  node  of  the  subnet  from  an  

external node come from a place.
2. arcs leaving any node on the subnet to an external
node go to a place.

Like macroplaces,  macrotransitions are  not  transitions
as such, it is not necessary that all entries are marked to
fire  the macrotransition, and not all  output places are
marked  after  entering  it.  Everything  depends  on  the
inner workings of the macrotransition.

7.4. Sinkhole subnet and Source subnet
Another thing that  can happen is that  the  hidden

subnet reach only arcs. We then find that you can not
leave the subnet. We speak then of a sinkhole subnet. 

Definition 6 (Sinkhole subnet). It is said that a subnet is
a sinkhole subnet if no arc has its origin in an internal
node  (place  or  transition)  of  the  subnet.

It is easy to see that a subnet is sinkhole if and only
if all elements of HP are greater or equal to zero and all
elements of HT are less than or equal to zero.

H is sinkhole  ⇔ ∀aij ∈ HP, aij ≥ 0 ∧ ∀apq  ∈ HT, apq ≤ 0

If instead of this what happens is no arc gets into
the subnet, we have a source subnet. In a source subnet
we can not enter.
Definition 7 (Source subnet). It is said that a subnet is a
source subnet if no arc has its destination in an internal
node (place or transition) of the subnet. 

It is easy to see that a subnet is a source if and only
if all elements of HT are greater than or equal to zero
and all elements of HP are less than or equal to zero. 

H is source  ⇔ ∀aij ∈ HT, aij ≥ 0 ∧ ∀apq  ∈ HP, apq ≤ 0

8. FRONT-END  INTERACTION  WITH  THE
SUBNET. INPUT AND OUTPUT FUNCTIONS
Once  you have  defined  all  this  environment,  we

will try to go a little further. Let’s assume that we want
to export a subnet we have hidden in another network,
like a black box. Our intention is to connect this hidden
network  to  another  network,  and  can  thus  be  reused
subnets.  For  example,  let’s  assume  that  we  have  a
process modeling with Petri  net  modeling and in this
there is a subnet we want to hide, but, at the same time,
we want to reuse it in other Petri nets.
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In this case we have a problem, and once hidden
net work disappears half the information input or output
arcs  of  the  same.  In  particular,  we do  not  know the
source nodes and arcs that leave the target nodes of the
arcs that enter the network until no visible again. But if
we want to reuse it on other networks, can not wait to
make it  visible.  Should remain hidden,  but should be
able to connect to other networks.

We will try to solve this problem. This way we can
reuse  hidden  networks like  plug-in  modules  on  other
networks.  However,  we  will  not  need  the  actual
implementation of the source or destination nodes of the
arcs that leave or enter the network, respectively. The
solution  is  to  define  a  facade  or  front-end  input  and
output of the network. This front-end will contain the
information needed to interact with the network hidden,
but hide the specifics of implementation. To define this
behavior going from some assumptions.

8.1. Previous definitions
Let  R =  〈P,  T,  α,  β〉 be  a  Petri  net  and  let  

P = {R1, R2} be a partition of  R.

Definition 8 (Input place). Let pi a place of R1.  pi   is an
input place of  R1 if it is the destination of an arc coming
from a R2  transition, ie,

pi  is an input place of  R1 if ∃tj ∈  R2 |cij > 0

Definition 9 (Input transition).  Let ti a transition of R1 .
ti is an input transition of R1  if it is the destination of an
arc coming from a R2  place, ie,

ti  is an input place of  R1 if ∃pj ∈  R2 |cji < 0

Definition 10 (Input node). An input node of  R1  is an
input place or transition of  R1 .
Definition 11 (Output place). Let pi be  a  place  of R1  .
pi is an output place of R1   if an arc leaves it towards a
transition of  R2 , ie,

pi  is an output place of  R1 if ∃tj ∈  R2 |cij < 0

Definition 12 (Output transition). let ti be a transition of
R1  .  ti is an output transition of  R1   if an arc leaves it
towards a place of R2 , ie,

ti  is an output place of  R1 if ∃pj ∈  R2 |cji > 0

Definition 13 (Output node). An output node of R1  is an
output place or transition of R1 .

After  defining  these  concepts,  we can  define  the
sets thereof.

Notation.  We denote the sets  of  the elements  defined
above:
• Let  IP (R)  ⊆ P (Input Places) be the set of input
 places of a subnet.
• Let  IT (R)  ⊆ T   (Input Transitions) be the set of
 input transitions of a subnet.
• Let  IN (R)  ⊆ P ∪ T (Input Nodes)  be the set  of

input nodes of a subnet.
• Let  OP (R)  ⊆ P (Output Places) the set of output

places of a subnet.
• Let  OT (R)  ⊆ T (Output  Transitions)  be  the  set

of output transitions of a subnet.
• Let  ON (R)  ⊆  P ∪ T (Output Nodes)  be the set

of output nodes of a subnet.

Note.  Recall  that  a node in a Petri net  can be both a
place and a transition, depending on the context.

Notation. Denote as ni to a node of a Petri net.

As we have generic definitions, no problem in applying
to a network divided into H,  V,  HN and HT, as the set
{ H, V } is a partition of  R.

8.2. Subnet Front-end
Once  all  these  concepts,  we create  the  front-end

input/output of a Petri subnet. A front-end of the Petri
net  will  be  a  intermediate  facade  that  allows  us  to
physically divide that subnet from the rest of the net.
Thus, in order to enter or leave the subnet, you need to
make it through this front-end.

Let  IA (input  arcs)  the  set  of  arcs  that  enter
the subnet  R1 and let  OA  (output arcs) the set of arcs
leaving R1 .

Definition 14 (Input gate of a net). Let ai  ∈ IA an arc of
entrance to R1. We define an input gate to R1, and denote
by igi , as a new logical node that is identified with an
arc of entrance to the net. For each input arc, defines an
input gate,  regardless of the origin and destination of
the arc. If the source is a transition, we denote igti and if
a place, igpi.

Definition 15 (Output gate of a net). Let ai inOA output
arc  R1. We define an output gate of  R1, and denote by
ogi, as a new logical node that is identified with an exit
arc of  the net.  For each exit  arc is  defined an output
gate, regardless of the origin and destination of the arc.
If the source is a transition, we denote ogti and if it is a
place, ogpg .

In this way we can divide the input arcs and output
into two parts: a  R1   internal and external to  R1  . If we
take an arc of entrance ai that has an origin in  nj and
destination  in  nk,  we  define  an  input  gate  through  a
point of entry so that the original arc ai is divided into
two parts.

•  ai1 (external  to  R1)  with  origin  in  nj and  
destination in  igti or  igpi depending on if  nj is a  
transition or a place.
• ai2 (internal to R1) with destination in igti or igpi 
depending  on  if  nj is  a  transition  or  a  place  
respectively.

Similarly, if we take a exit arc ai that has an origin
in nk and destination in nj, we define an output gate ogi

so that the original arc ai is divided into two parts:

•  ai1 (internal  to  R1)  with  origin  in  nk and  
destination in  igti or  igpi depending on if  nj is  a  
transition or a place.
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•  ai1 (internal  to  R1)  with  origin  in  nk and  
destination in  igti or  igpi depending on if  nj is  a  
transition or a place.
•  ai2   (external  to  R1)with  destination  in  nj and  
origin  in  igti or  igpi  depending  on  if  nj  is  a  
transition or a place respectively.

Example 8. Consider the net in figure 5. In this network
we have three arcs entering and leaving three arcs. For
each of  those  emerging define  output  gates  and each
coming, we define input gates. The subnet  R1 becomes:

and in the complete net, arcs entering and leaving are
divided into two pieces:

Definition 16  (Input  Front-end  of  a  net).  The  input
front-end (or input interface) of a subnet R1 is the set of
all input gates of  R1. We denote by IF of  R1.
Definition 17 (Output Front-end of a net).  The output
front-end (or output interface)of a subnet R1 is the set of
all output gates of  R1. We denote by OF of  R1. 
Definition 18  (Front-end  of  a  net).  The  front-end  (or
interface) of a net R1 is the pair of  IF and OF of  R1.
We denote by F of  R1.

F = 〈IF, OF〉
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Example 9.  Taking  the  net  of  the  example  8  and
applying these new definitions, we would have  R1 net
along with its front end as shown in Figure 6.

8.3 Input/output functions
Once all these input and output concepts defined,

we will introduce a few key concepts for our purpose.

Let R a Petri net and let {R1,  R2 } a partition of R. Let
F= 〈IF, OF〉 the front-end of  R1.

Definition 19 (Petri net Input function). We define the
input function fi  of  R1 as:

 fi  : F → IN
such that for each input gate igti you mapped one or no
input place R1 and each input gate igpj  you mapped one
or no input transition R1.

fo : ON → F
such that each output place  R1 you mapped one or no
output gate ogti of  R1 and each output transition R1 you
mapped one or no output gate ogpj to R1

The input function can be defined for all the input
gates  and  the  output  function  should  be  surjective
because  if  not,  some  door  would  not  be  connected.
Anyway that is not essential. If a front-end door is not
connected with any element of your network, simply by
solving  the  final  network,  the  arcs  connected  to  that
door disappear. Note also that the input function is not
necessarily  injective:  Multiple  input  gates  can  be
associated to the same node of  R1.

Example 10.  Consider  the  net  R1 in  figure  5 with its
front-end in  figure  6.  The  input and output functions
are:

• Input function: 

F igp1 igt1 igp2

IN t1 p3 t2

• Output function: 

ON p1 t1 p3

F ogt1 ogp1 ogt2

8.4. Attachable net
By joining the subnet  R1 along with its  front-end

and its input and output functions fi and fo we grouped
both the internal network with external communication.
This way we can ” extract” a subnet and ”implant” it in
another net. You only need this destination network is to
communicate with the front-end.  So naturally  appears
the following definition.

Definition 21  (Attachable  Petri  net).  An  [Attachable
Petri net is a quadruple Ra = 〈R, F, fi, fo〉

From  these  definitions,  it  is  clear  that  you  can
create  attachable  subnets  taking  a  subnet  of  another
given and applying the whole process we have defined.
But it  is  also possible to create from scratch, starting

from a network, defining a front end for that network
and declaring  the  input and output  functions.  So you
can  create  Petri  nets  modules  providing  functionality
and out through a front-end without requiring the actual
implementation.

Example 11. The attachable net in figure 5 would be the
next:

It can be seen as a private black box with visible input
and  output  connectors  that  are  ”plugged”  to  other
networks. In a attachable net, the private part would be
R, fi and fo . The public part of the front-end would be F .
All a net need to know is the input/output front-end.

A utility of these nets is that its definition is simple,
since  only  the  front-end  is  needed  to  define  its
operation.  This  makes  possible  to  create  nets  using

attachable nets in certain areas where they do not know
their  actual  implementation,  but  its  behavior.
Additionally,  it  is  possible  to  use  different
implementations of   “network providers”  of the same
attachable  nets,  using  at  each  moment  the  most
appropriate one.

Example 12. Consider now the following Petri net

to which we want to connect an attachable net in the
black box. Let’s assume we have two equivalent alter
natives described in Example 6:
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We  Can  ”plug”  either  because  their  front  ends  are
equivalent and remains in figure 7. 

In  this  case,  the  behavior  of  the  net  will  be  the
same, but does not have to be.  That will  decide  who
connects nets. For example, you could create a ” silly”
net that does nothing at first and replace it later by the
real one.

9. CONCLUSIONS
Throughout this paper we have presented Petri nets

with definitions and basic properties. From this initial
presentation, a series of elements have been building as
a basis for further investigation. In particular, a type of
subtents  has  been  defined,  the  subnets  classifications
have been studied,  and the  front-ends  (interfaces)  for
those subnets have defined.

From this  point  a  further  study of  these  subnets
(their  properties,  utilities,  ....)  is  possible,  and
constitutes  the  line  of  continuity  of  this  piece  of
research. 

Therefore, the main contribution of this work has
been to establish the basis for the methodological study
of hiding parts of Petri nets.
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