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ABSTRACT 
In the present paper, a discrete event simulation model 
of a CT facility within a hospital is presented. The 
examination facility has to serve different patient 
classes with different priorities. At the strategic level, 
outpatient daily access is filtered out by means of the 
adopted appointment schedule (AS) scheme, whereas, at 
the tactical level, the decision about which patient to 
examine is taken by the established priority rule. Being 
the two levels inter-related, a comprehensive model of 
the examination process can help analyzing the different 
patient flows from a global point of view, taking into 
consideration equipment utilization and patient service 
performance, both in terms of waiting time at the 
facility and appointment interval for outpatients. 
Despite the model has been developed for a specific 
case-study, it is flexible and different data and settings 
could be easily implemented. Furthermore, some 
general considerations are drawn. 
 
Keywords: simulation, health care, outpatient 
scheduling, CT examinations 
 
1. INTRODUCTION 
Complex diagnostic services, as in the case of CT 
(Computer Tomography) scans or MRI (Magnetic 
Resonance Imaging), require expensive equipment and 
very specialized human resources, making their full 
utilization an unavoidable necessity. As a order of 
magnitude, the cost of an MRI machine ranges between 
1 and 2 million euros, depending on the magnetic field 
intensity, along with huge costs for building and 
preparing the space it will occupy. The cost of CT 
equipment is similar, essentially depending on the 
number of slices the machine is capable of producing 
for image computation. Generally, in hospitals, these 
types of resources are utilized for serving at least both 
classes of patients: inpatients (patients at the hospital 
wards) and outpatients, so that “customers” compete for 
accessing them in short periods of time. The idea behind 
is that making the resource shared is beneficial for 
reducing its idle time and achieving better utilization. In 
outpatient clinics, managers have looked to the popular 
policy of “Open Access” (“do today’s demand today”) 
as a solution for avoiding wasted capacity due to no-

shows. Alternative booking techniques, based on short 
booking window and on the optimal policy from a 
Markov Decision Process, can perform even better in 
terms of smoothing out the demand and reducing peak 
work-load, as illustrated by (Patrick 2012). In hospitals, 
being only outpatient access planned in advance, in the 
Appointment Schedule (AS) definition phase, i.e. 
defining the number of service slots per time session 
and number of appointments at the beginning of each 
slot, the scheduler has to take into account allowance 
for the random (internal) demand component. In daily 
operations, priority rules are usually implemented (i.e. 
decision about which class of patient should be served 
first when both, random and planned demand, are 
present at the facility). When the diagnostic service 
facility is also open to patients from the Emergency 
Department (ED), they generally must be served as 
soon as possible, possibly on their arrival, unless the 
resource is already busy. Similarly, priority of 
outpatients over inpatients is justified by the simple 
consideration that, in any case, inpatients have to wait 
in their wards, whereas, for outpatients, excessive 
waiting time determines overall negative service 
perception, as pointed out by Sickinger and Kolisch 
(2009). Occasionally, outpatient prolonged waiting time 
could lead to over timing the appointment admittance 
time span and to service denial or incurring additional 
costs. On the other hand, it should also be noted that too 
long inpatient waiting time, due to examination 
postponing, could lead to un-necessary longer stays in 
hospitals and increasing cost for bed occupancy (Green 
et al. 2006).  
 
2. LITERATURE SURVEY 
The first research papers on outpatient appointment 
schedule date back to the ‘50s (Bailey and Welch 1952). 
Since then, many authors have dealt with this subject in 
many different settings; an overview can be found in 
Cayirli and Veral (2003). More specifically, as regards 
to a CT scan facility, open to the above mentioned 
patient flows, Kolisch and Sickinger (2008) propose a 
mathematical model, involving a Markov Decision 
Process. In their model, it’s possible to distinguish two 
levels: an upper level which we could consider as 
“strategic”, regarding the outpatient Appointment 
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Schedule (AS) and a lower level, which we could regard 
as “tactical”, involving decisions to undertake on the 
run at a discrete number of time-points. These decision 
levels were yet characterized by (Green et al. 2006), 
who proposed a finite-horizon dynamic control model 
for the two capacity management tasks (appointment 
scheduling and real-time capacity allocation), 
highlighting their interrelation, and applied it to an MRI 
hospital facility. At the decision level, the choice at the 
beginning of each time-slot is about serving waiting 
scheduled outpatients and/or inpatients, stated that if an 
emergency patient were generated in the previous time-
slot, he must always be served. Stochasticity in the 
system is introduced by diverse probabilities associated 
to the different classes of patients: no-shows for 
outpatients and random arrival of an inpatient and/or an 
ED patient in the previous slot (the limitation to one is 
among the model assumptions). Instead, service time, 
equal to the slot time, is assumed to be deterministic. 
The underlying Markov Decision Process is determined 
by the established decision policy, which should aim at 
maximizing an expected total reward function. In 
general the latter consists of the sum, over the entire 
appointment time span, of a linear combination of 
served inpatients’ and outpatients’ reward, waiting costs 
and penalty costs for service denial at the end of the 
shift (ED patients excluded). The optimal policy can be 
found by the “backward induction algorithm” 
(Puterman 2005). However, since the authors observe 
that “the acceptance for computer-based decision rules 
in medical environments is low”, they investigate the 
performance of “simple decision rules which can be 
applied manually”. The examined rules are LCA 
(Linear Capacity Allocation) introduced by (Green et al. 
2006), FCFS (First-Come-First-Served) and Random, 
which are compared in combinations of three different 
scenarios (generated varying the problem parameters) 
and three different AS schemes from literature (2BEG, 
Block and Threshold). Even though the LCA rule 
performs better, the authors underline the importance of 
the fairness of the rule for the reduction of the perceived 
waiting time by the patients. FCFS, contrary to LCA, is 
a very simple and fair decision rule regarding its inter-
class selection behavior, so that it can be considered as 
a “fair heuristic”.     
 In successive work (Sickinger and Kolisch 2009), 
the authors focus their attention on the “strategic” level, 
on the basis of the results obtained optimally solving the 
associated stochastic dynamic program. They carry out 
an empirical study on a two CT scans examination 
service with 8 slot available, under three increasing 
system utilization levels (number of scheduled patients 
equal to 4,8,12 respectively). They compare the values 
of the objective function resulting from a proposed 
Generalized Bailey-Welch (GBW) schedule, a 
Neighborhood Search (NS) heuristic and the optimal 
scheduled (obtained by full enumeration). The authors 
find that the GBW rule and the NS heuristic generate 
optimal or near-optimal solutions for low and medium 
utilization, whereas, for high utilization, the GBW rule, 

contrary to the NS heuristic, does not provide optimal 
solutions any more. They also analyze the impact of the 
function parameters on the results (adopting NS 
schedule as reference) and highlight the gap with GBW. 
In particular, in cost structures characterized by relevant 
penalties in case of denial of service for outpatients, the 
GBW rule becomes the best choice. Anyway, it’s 
observable that, in case of high utilization, nothing 
assures that all the outpatients will be served within the 
service time period and for this reason the authors 
themselves recommend the calculation of a scheduled 
optimal number.     
 The problem arising from the co-existence of 
random urgent patients aside the scheduled ones is often 
faced by leaving some slots “open” to accommodate 
urgency. Taking this into account and treating the 
position of a couple of open slots as a decision variable, 
Klassen and Rohleder (1996) carry out a full factorial 
ANOVA analysis on a simulation model (in SIMAN IV 
simulation language) of a family medicine clinic. The 
authors adopt 10 known pre-defined AS rules as second 
decision variable and take into account two 
environment factors involving probabilistic 
considerations (3 possible mean values and 5 levels of 
percentages of clients with “low” standard deviation of 
lognormal service time distributions). They analyze the 
system performance in terms of WIT (sum of expected 
total clients’ waiting time and expected total server idle 
time costs) and other secondary measures.  In their 
model there is not a decision process and a decision 
policy (tactical level) because of the presence of only 
two patient classes (scheduled and urgent calls) and of 
the assumption that the clinic could accept at most two 
urgent patients per session (number equal to the open 
slots). According to their findings, simple rules like 
2BEG  (Bailey’s rule, with 2 clients in the first slot) and 
4BEG (4 clients at the beginning) perform worse than 
rules which take into account client’s classification into 
two possible service time variance groups (low and 
high), when assigning them to the slots. In particular, 
the LVBEG rule (low variance clients at the beginning) 
proves to be the best rule, also for its equanimity in 
balancing clients’ time and server time. However, its 
practical implementation requires the availability, at the 
clinic, of recorded information about clients’ past 
service times and more attention by the receptionist. 
The simplest rule FCFA (first-call-first-appointment) is, 
in all the examined cases, in the group of the best rules 
and should be preferred for its simplicity. In successive 
work (Rohleder and Klassen 2002), the authors modify 
and expand their model, addressing the issues of 
rolling-appointment horizon and variable demand load, 
using simulation. They carry out a full factorial analysis 
considering six demand patterns, six overloading rules 
and three rule delay periods. Results are summarized in 
a matrix that outlines good managerial choices for each 
scenario. 
 Kaandorop and Koole (2007) consider the problem 
of optimal outpatient appointment schedule, in which 
only this class of patients is present. The objective 
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function to be minimized is a linear combination of 
mean waiting time, mean doctor’s idle time and mean 
tardiness (time exceeding the given session period). 
They prove that the proposed local search algorithm 
converges to the global optimum under the problem 
stated conditions; moreover, they highlight that “for 
certain parameters value the Bailey-Welch rule is 
indeed optimal”. It should be noted that service time is 
assumed to be exponentially distributed, which is quite 
uncommon in healthcare services.   
 As seen in literature, several cases of appointment 
service systems, accounting or not for additional 
random demand, exist, which makes very difficult 
drawing out general rules, easily understandable by 
healthcare operators. Simulation in this field of study is 
deemed to be a very flexible tool, especially for the 
capability of including particular singular features of 
real-case systems, typical of the healthcare sector.  In 
the present paper, a discrete event simulation model of 
one CT examination server within a urban hospital is 
considered.     
 The remainder of the work is organized as follows: 
in Section 3, the process of CT examination demand 
generation is illustrated, in Section 4 the model is 
presented, in Section 5 simulation results are illustrated 
and commented, finally Section 6 presents the 
conclusions. 
 
3. CT PROCESS DESCRIPTION 
The CT scan is located at the radiology department of a 
large community hospital in Basilicata region (Italy); a 
schematic layout of the department is reported in Figure 
1. In the blank rooms, other type of equipment 
(traditional x-ray technique machines and ultra-sound 
scanners) or technical rooms are present, and, on the left 
part of the figure, the proximity with the ED 
department, located on the same floor, is depicted. 
 

 
 
 
 
 
 
 
 
 

 
Figure 1: Radiology Department Layout 

 
The diagnostic examination facility has to serve 
different patient classes with different priorities; 
specifically, in descending priority order: a) ED 
patients, b) urgent in-patients, c) outpatients and d) non-
urgent in-patients; each of them, except for scheduled 
patients, is characterized by a random arrival process. 
These patients flows are coexisting during the reception 
opening time (from 8 a.m. to 8 p.m., from Monday to 
Friday), whereas access for urgent cases of type a) and 
b) is possible at any time. On their arrival, patients c) 

and d) are checked-in and their data put in the 
Radiology department Information system (RIS) by 
reception staff, whereas for patients a) and b), the 
examination requests are generally sent in electronic 
form, which makes check-in possible also when the 
reception is closed. The list of waiting patients builds 
up the work-list for the technologist in the CT control 
room. Once registered, outpatients, stationing in a 
dedicated area, wait for call and generally reach the 
examination room autonomously, following signposts; 
sometimes, they are accompanied by relatives or by 
department attendants. In-patients and ED patients are 
always accompanied by attendants or by one of the 
technologists themselves, because generally they are on 
wheelchairs or wheel-beds. A relevant difference 
between outpatients and other types of patients, in 
addition to diverse priority, is that, for CT scan 
examination which require intravenous administration 
of a contrast medium by a nurse, patients have to pass 
first through a preparation room, whereas hospitalized 
and ED patients generally can access the CT room 
directly. In the remainder of the paper, the preparation 
phase for outpatients has not been taken into account for 
total process time quantification (as if it were part of 
waiting time) because the two processes (examination 
and preparation), taking place in two different rooms, 
can be regarded as independent and parallel processes 
(i.e. a patient can undergo a CT scan, while the next one 
is being prepared). The two activities can still, in rare 
cases, overlap. This happens when preparation time 
takes too long (especially with elderly persons) and, 
meanwhile, the CT room has turned free or in the case 
when, at the end of the examination, a patient pleads 
indisposition and has to be monitored by the nurse, 
who, therefore, can’t take care of the next one, causing 
delays. 
 As regards the process of examination generation, 
for inpatients (urgent and not), examination requests are 
generated by doctors in the various hospital departments 
and ED patients requests are generated, when needed, 
after their arrival at the ED. For out-patients, the 
requests are generated by family or speciality doctors. 
After that, possible points of access to health-care 
services are by phone-call to a unified regional call-
centre or by taking the paper request to a “CUP” 
(unified booking centre) office. In any case, information 
about the next available appointment slot in a health-
care structure able to dispense the requested service are 
shared in real-time. Requests are added so forth and 
build up waiting lists. For outpatients, a random 
generation process is adopted at the origin of the 
demand, whereas their daily access to the examination 
process is filtered out through the AS scheme 
established by the department director. Inpatient and ED 
patient access requests can be considered random 
generated and flow to the daily work-list; anyway, at the 
“tactical” level, the decision about which patient to 
examine is set by the mentioned priority rule. The 
described process and its integration with the 
examination process are illustrated in Figure 2, in which 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

372



the time-span within the two vertical dashed lines 
represents the time elapsed from the input of the request 
into the  “CUP” system to the appointment day.  

Figure 2: Examination Generation process and buffering 
 
The aim of the present paper is analyzing the 
performance of the system altogether in terms of 
waiting time for the different patient classes and 
machine utilization by means of simulation. Differently 
from existing literature, which generally focuses on 
patient waiting time during the appointment session, for 
outpatients it’s very important to know also the “long” 
waiting time (usually measured in weeks) to the 
appointment day. Moreover, according to recent 
regional legislation, outpatients have to be differentiated 
at the origin, in order to account for particular urgent 
cases and their waiting time must comply with specified 
limits. Three classes of outpatients have been 
characterized depending on this time limit: appointment 
within 10 days, denoted as “B”; within 30 days, denoted 
as “D”; without particular time constraint, denoted as 
“N”. Correspondingly, three different booking lists have 
been set up at “CUP” and at the radiology department. 
Outpatient waiting time in the department on the 
appointment day could be considered a secondary 
measure of performance, whereas it remains very 
important for emergency cases. Of course, the two 
aspects are strongly inter-related because, at the 
strategic level (AS), scheduling a bigger number of 
outpatients can shorten their waiting queue and “long” 
waiting time, but, on the other hand, can congest the 
system, increase unacceptably waiting time for the 
random low-priority component and eventually lead to 
lateness of the examination session (overtime), post-
poning or cancellation of scheduled patients. The 
simulation model aims at offering a global view of the 
system performance when the different patient flows are 
coexisting. 
 
4. MODELLING 

 
4.1. Patient data 
The employed data come from two different sources: 
RIS data reporting the CT examinations performed at 
the radiology department for each patient class in the 
period October 2012 – May 2013 and data of 
examination requests (classified as outpatient N, D or 
B) arrived at the “CUP” office over the same period. 
For the codification of the various types of 
examinations into the model, a national codification 
system, set up in (VV.AA. 2006), has been partially 
used. The latter system, also for accounting purposes, 
consider a single body-part CT scan as a coded 

examination. In reality, the majority part of patients 
undergo some typical CT sequences (as in the case of 
chest-abdomen, brain-chest-abdomen or “total-body” 
scan); for these examinations, aggregating the sequence 
into a whole has led to create appropriate additional 
new codes. RIS data for outpatients have not been used, 
since their access to the service is regulated by means of 
scheduling. For inpatients and ED patients RIS data 
have been filtered with the check-in time, excluding the 
examinations not within the reception opening days and 
hours of the day. The resulting examination mix is 
reported in Figure 3. Average inter-arrival time and 
throughput values of examination requests (outpatients) 
and of patients (ED and inpatients) are reported in Table 
1 (averaged over the net reception worked hours in the 
observed period). 

Figure 3: Patient Examination Mix 
 
Inpatients and urgent inpatients have not been 
differentiated with regard to the examination mix (i.e. 
any type of examination could be requested with 
urgency); their relative proportions in current data are 
78.8% and 21.2% respectively.  
 

Table 1: Patient Flow Data 
 Outp-N Outp-D Outp-B 

ta (min/pat) 105.67 1276.55 798.99 
Thrput (pat/h) 0.57 0.047 0.075 

 Inpat ED-pat Urg-Inpat 
ta (min/pat) 93.80 175.45 348.15 

Thrput (pat/h) 0.64 0.34 0.17 

 
4.2. Discrete-event simulation model 
The model is a stochastic discrete-event simulation 
model built by means of the process algebra language 
Chi 1.0 (Hofkamp and Rooda 2007). With Chi, a 
symbolic representation of a system is translated into a 
model, consisting of parallel processes, which 
communicate, in a synchronous way, one with each 
other via channels. Data exchanged on channels can 
represent physical entities (e.g. patients) or information 
contents (e.g. signals, data, etc.). Among the principal 
advantages of the language are its capability of 
preserving formalism and it’s ease of comprehension 
and transparency even to non-expert people. Process 
based language Chi has been used in manufacturing 
modeling as well as in the health-care sector. For 
example in (Jansen et al. 2012), an aggregate model of 
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an MRI department is developed employing effective 
process time (EPT) concepts.  
In the present paper, instead of aggregating examination 
data, their differentiation is maintained on the basis of 
the examination types because of the necessity, for 
future model developments, of characterizing some 
particular types, for which separated outpatient booking 
lists are currently adopted in the department (in addition 
to the three mentioned waiting lists). In Figure 4, the 
Chi model of the CT diagnostic service is depicted, 
along with two tables: one summarizing the 
correspondence between generator processes and 
classes of patients and priority rank; the other reporting 
channels and exchanged types of data. The arrowed 
lines represent the patient flows and the dashed lines 
represent exchanged data. 

Figure 4: Model and Processes 
 
The model consists of six patient generator processes 
Gi, three buffer processes BPi, the scheduling process 
SP, the daily buffer process DB, the examination 
process M and the exit process E.   
 The generators Gi (i=0,1,2) represent the arrival 
processes of examination requests arriving at “CUP”, 
for the three types of waiting queues (N, D and B). 
Examination requests (patients in the model) are then 
put in queue in the buffer processes BPi, as happens at 
the booking office. Patient data-type contains 
information regarding the code of the requested 
examination, chosen randomly on the basis of the found 
mix (see previous section) and the assigned priority. 
The arrival process is modeled as a homogeneous 
Poisson process (HPP), with mean inter-arrival time 
according to Table 1; this assumption of the model 
comes from the hypothesis that the served population 
remains constant and there is not a seasonal component. 
The generators Gi (i=3,4,5) represent generators of the 
random component of the demand, represented by 
inpatients, ED patients and urgent inpatients. For each 
of these generators also, a HPP is assumed. This 
hypothesis is indeed an approximation, because 
variability in the course of the day and eventually from 
a day of the week to another day occurs. Generators of 
inpatients and urgent inpatients utilize the same 
examination mix, but have different mean inter-arrival 
times, respecting the proportions found in current data. 
 Process SP represents the scheduling process for 
authorizing outpatient buffers BPi to release fixed 
numbers of patients to process DB in the course of the 
day, according to the established AS. This information 

is communicated to each BPi via channels b.i of integer 
numbers. The probability of no-shows is not included in 
the current model and therefore the scheduled number 
always corresponds to the number of released patients, 
unless the buffer becomes empty. SP assumes also the 
function of a cyclic clock in the model, because it takes 
care of the passing time at disposal to complete the 
daily schedule. At the end of the day, a signal is sent via 
channel f to process DB. Generators Gi (i=3,4,5) are not 
“filtered” by a scheduling process, but are directly 
linked to the DB process.     
 Process DB simulates the daily buffer of patients to 
be examined each day, sorted according to their priority 
number. This buffer is indirectly related to the SP 
process, since its filling up follows a cyclic behavior, on 
the basis of the AS; in addition, it is also subject to 
“disturbances” due to the unplanned arrival (according 
to HPPs) of the other types of patients. At the end of the 
day, a signal is received by SP via channel f and the 
remaining numbers of patients are monitored, in order 
to calculate average values. The most critical event 
which could happen is that in this buffer there are still 
outpatients; this means that the random arrival of 
patients with greater priority has prevailed, impeding 
the completion of the daily schedule. According to the 
hospital staff, this event is rarely possible, but, in any 
case, scheduled outpatients must be examined that day. 
The same could happen for inpatients, who are normally 
examined only during the reception opening time. 
However, to a limited extent, this is not a serious 
problem, considering that inpatients are in wards at the 
hospital. Patients remaining in the daily work-list are 
normally examined in overtime and this doesn’t have 
consequences on the next appointment sessions. 
Therefore, in the model, buffer DB is emptied at the end 
of each day.     
 Process M represents the examination process, in 
terms of CT room occupation time and is modeled as a 
time delay for the patient. For some examination codes, 
collection of empirical data has led to determine 
maximum likelihood estimated parameters of gamma 
probability distributions, with acceptable results of 
goodness-of-fit tests at the significance level 0.05 
(Boenzi et al. 2012). For other codes, for which 
commonly used PDFs don't fit satisfactorily, empirical 
distributions are implemented. For all the other CT 
examination codes with a scarce number of 
observations, process mean values μ are assumed on the 
basis of technologists’ esteems. Gamma PDFs are then 
adopted, assuming a worst-case approach with regard to 
the highest variability for process time. Among the 
observed examination types, the maximum found 
coefficient of variation c=σ/μ=√(1/α )=0.55 is selected 
and it is employed to calculate a common shape 
parameter α=3.3. Then, different scale parameters β are 
calculated as μ/α.  
 In the model, at last, patients are sent to the exit 
process E, in which indicators regarding patient flow 
(data deriving from time-stamps at each stage) are 
calculated.  
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5. SIMULATION RESULTS 
All the following simulation results are calculated as 
average values of five independent simulation runs, 
time-terminated at 500.000 minutes, time limit which 
corresponds to approximately 3 years of continuous 
reception time operation. In all the simulations, the 
system starts in empty conditions, i.e. preceding patient 
queues are disregarded. 
 
5.1. Current system 
The AS currently adopted at the radiology department is 
depicted in Figure 5. 

Figure 5: Current AS for CT examinations 
 
The daily schedule (Monday – Friday) follows the 
reported scheme, except for Wednesday, when only the 
first part of the schedule (till the dashed lines) is 
adopted, because in the afternoon a special health 
monitor program is in place. Consequently, in the 
simulation model, a generic cycle of the scheduling 
process SP (see Section 4.2) can be either 720 minutes 
long for a full day (8 – 20) and 420 minutes for half a 
day (8 – 15). A complete weekly cycle comprises four 
full days and one half-day, i.e. 3,300 minutes in total. It 
can be observed that, in the first part of the morning 
shift, an approach similar to the Bailey-Welch rule is 
adopted, placing three patients, with only 15 minutes 
time-elapse, in the first operative hour. This can account 
for possible no-shows (not modeled), but inevitably 
increases patient waiting time. It can also be observed 
that, in the morning, the examination slot duration is set 
to one hour, whereas in the afternoon shift it is reduced 
to half an hour. This scheduling decision is due to the 
assumption that the random demand, especially by ED 
patients, is more intense in the morning. The model 
presented in this paper, however, doesn’t take this 
aspect into consideration. Outpatient admission is 
distinguished substantially between two blocks and the 
last appointment in the morning is at 11 a.m. The 
clearance time between the two blocks is devised, 
according to the department staff, just in order to 
process the main part of inpatient examinations. 
Comparing the weekly accepted number of outpatients 
with the observed average weekly demand (Table 2), 
it’s possible to observe that, with the current schedule, 
some extra capacity is employed. This is clearly an 
effective strategy to reduce waiting queues. 
 

Table 2: Outpatient Examination Demand  
Average weekly demand 

(over 35 weeks) 
Current weekly 

schedule Extra-capacity 

Outp-N 31.23 41 1.31 
Outp-D 2.59 4 1.54 
Outp-B 4.13 5 1.21 

 

Simulation results are reported in Tables 3  and 4. The 
Appointment Interval (A.I.) represents the time-span for 
obtaining an appointment at the facility (measured in 
effective days, including Saturday and Sunday) and 
waiting time (w-time) values, instead, refer to waiting at 
the department. Utilization of the system is 0.498. 
 

Table 3: Outpatient Flow Performance  
 Outp-N Outp-D Outp-B 

Avg Thrput (pat/h) 0.572 0.048 0.077 
Avg A.I. (days) 0.31 1.79 2.96 
Min A.I. (days) 0.0001 0.0094 0.0138 
Max  A.I. (days) 2.06 10.39 15.61 

Avg w-time (min) 9.50 8.08 12.01 
Min w-time (min) 0 0 0 
Max w-time (min) 182.11 93.97 114.10 

 
Table 4: Hospital Patient Flow Performance  

 Inpat ED-pat Urg-Inpat 
Avg Thrput (pat/h) 0.63 0.34 0.17 
Avg w-time (min) 17.51 6.64 7.14 
Min w-time (min) 0 0 0 
Max w-time (min) 273.75 116.33 116.14 

 
Similar results are obtained assuming that, in the model, 
the examination process start is systematically 40 
minutes delayed, from 8 a.m. to 8.40 a.m. This is a 
pessimistic but realistic assumption, because, 
occasionally, due to organizational reasons and 
limitation of personnel resources, it could happen that 
the CT facility is not fully operational at the start of the 
shift. Waiting time results are reported in Table 5, in 
which an increase for low-priority patients can be 
observed and the minimum waiting time for B-type 
outpatients is ten minutes, as expected. The above 
assumption will be held also in the following. 
 
Table 5: Patient Flow Performance at the department 
with delayed CT room availability  

 Outp-N Outp-D Outp-B 
Avg w-time (min) 29.29 7.91 15.28 
Min w-time (min) 0 0 10 
Max w-time (min) 219.02 77.36 101.78 

 Inpat ED-pat Urg-Inpat 
Avg w-time (min) 28.05 7.60 8.71 
Min w-time (min) 0 0 0 
Max w-time (min) 297.88 112.24 137.17 

 
Since the system starts in empty conditions and an 
extra-capacity is put at disposal, outpatients are 
characterized by very brief average appointment time-
spans, also with regard to maximum values. In these 
conditions, if the examination demand remained the 
same, waiting lists would be progressively emptied and 
the strategic objectives, regarding reduced appointment 
time-span, met. Over-sizing of the current AS is also 
testified by Table 6, reporting the time average buffer 
size and the average number, at the end of a generic 
cycle, of additional patients which could have entered 
the system if the buffer could have released the 
requested number. 

 
Table 6: Outpatient Buffers and additional potential  
patients 

 Outp-N Outp-D Outp-B 
Avg Buffer size (patients) 1.83 0.93 2.17 

Avg additional patients (patients/cycle) 1.95 0.28 0.17 
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5.2. New schedule analysis 
In this and in the following sections, some scenario 
hypothesis are formulated and simulation results are 
illustrated and compared. The first hypothesis to be 
investigated assumes an increment of outpatients 
exactly equal to the current weekly scheduled number. 
Results are reported in Table 7. Utilization of the CT 
room (0.557) is only marginally improved, but the 
average A.I. for outpatients of type B (and, much worse, 
its maximum value) is above the acceptable limit and 
tends to increase in time, i.e. the system doesn’t reach a 
stationary condition. This trend is also confirmed by the 
buffer time-history reported in Figure 6 (reporting the 
results of five simulation runs) and is due to the 
variability of the arrival process. 
 

Table 7: Outpatient Flow Performance under the 
hypothesized increment and the current AS 

 Outp-N Outp-D Outp-B 
Avg Thrput (pat/h) 0.737 0.0701 0.0874 

Avg A.I. (days) 4.08 28.79 21.78 
Min A.I. (days) 0.0042 2.20 0.77 

Max  A.I. (days) 15.35 57.98 56.47 
Avg w-time (min) 30.09 9.41 14.92 
Min w-time (min) 0 0 10 
Max w-time (min) 219.71 111.16 93.09 

 

 
 
 
 
 

Figure 6: Outpatient Buffers time-history 
 
In order to accommodate the increased examination 
demand, a new AS, reported in Figure 7, is proposed 
and tested. On its basis, the weekly admitted outpatient 
numbers increase according to Table 8. 

Figure 7: New Proposed AS 
 

Table 8: Outpatient Examination Demand Increment 

 
Simulation results are reported in Table 9, showing that 
offering extra-capacity assures achieving the stated 
appointment-time objectives, also with regard to 
maximum waiting time. 

Table 9: Outpatient Flow Performance under the 
hypothesized increment and the new AS 

 
5.3. Hypothesized scenarios   
Maintaining the illustrated hypothesis of increased 
outpatient demand and employing the newly proposed 
AS, additional “what-if” scenarios take into 
consideration the eventuality of rising up of the random 
urgent patient component (ED patients and urgent 
inpatients), who are assigned greater priority ranks with 
respect to outpatients. The scenarios comprise the 
following: a1) increasing ED demand 50%; a2) 
increasing ED demand 100% (doubling the current 
figure); b) changing the percentage of urgent inpatients 
from the current figure (21.2%) to three different levels: 
b1) 50%, b2) 63.3% and b3) 75%, constant in time. The 
second level has been calculated in such a way that the 
summed throughputs of current ED patients and urgent 
inpatients is equal to the summed throughputs of current 
urgent inpatients and doubled ED patients, i.e. the 
urgent throughput is the same for a2) and b2). Scenarios 
a1) and a2), even if clearly over-estimated, could be the 
consequence, for example, of the closure of one or more 
neighboring EDs. As regards to scenarios b), they come 
from the consideration that, realistically, inpatient 
whole throughput can’t increase, because it is linked to 
the hospital bed capacity. Instead, its urgent component 
could increase, considering that hospitalized patients, as 
society, are an aging population and that employing the 
form of urgent examination request could be 
increasingly utilized by doctors at wards, in order to 
shorten their dismissal. As also pointed out in Section 
4.2, the major impact that urgent patients can have on 
the appointment schedule is not succeeding in 
examining all the planned outpatients. In order to 
monitor this, the remaining number of patients in the 
daily work-list, in the course of a simulation run, is 
summed up and average values over the total number of 
daily cycles are calculated. Therefore the average value 
can also be regarded as the probability of finding a 
certain type of patient remaining in the work-list, at the 
end of a generic daily schedule. Comparative results are 
reported in Figure 8. Urgent patients do not represent a 
serious concern because access for them is granted at 
any time: therefore they can always be present in the 
work-list. Instead, non-urgent inpatients should be 
preferentially completed during the reception opening 
time. It can be observed that in scenario a2), due to their 
low priority and the increased number of high priority 
patients, inpatients have to wait and therefore it’s more 
likely to find any of them in list at the end of a day. In 
scenarios b), this effect is mitigated, also compared to 
initial system conditions, because quantitatively their 
presence is reduced. For outpatients, the probability of 

Hypothesized outpatient 
weekly demand 

New weekly 
schedule 

Extra-
capacity 

Outp-N 41 51 1.24 
Outp-D 4 5 1.25 
Outp-B 5 8 1.6 

 Outp-N Outp-D Outp-B 
Avg Thrput (pat/h) 0.741 0.0747 0.0912 

Avg A.I. (days) 0.28 2.56 1.05 
Min A.I. (days) 0.000084 0.00926 0.00159 
Max  A.I. (days) 1.68 11.44 4.84 

Avg w-time (min) 26.40 9.47 15.11 
Min w-time (min) 0 0 0 
Max w-time (min) 242.22 105.37 122.76 
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over-timing is, in all the examined cases, very low. It 
can be observed that the impact on over-timing in 
scenario b2) is more severe, compared to scenario a2), 
even if the urgent throughput is the same. This can be 
explained considering the different examination mix of 
inpatients and ED patients and the greater variability for 
the first ones, with longer time examinations. In 
general, the impact of increasing urgent inpatient 
percentage is greater than increasing ED throughput, 
even if in the first case there is not a net increment of 
patients.  

Figure 8: Average Number of patients remaining in the 
Daily Work-list per cycle 
 
In Figure 9, average waiting time values at the 
department, along with CT room utilization, are 
summarized. It can be noticed that, in general, waiting 
time is acceptable, even though, especially for 
outpatients of type N, it could be improved changing 
the AS and taking into account, in simulation, the 
possibility of no-shows. Inpatients are, in all the 
examined cases, the most penalized service users and 
the impact of  their lowest priority is particularly 
evident on the maximum waiting time (not reported). In 
turn, this could eventually lead to the decision of 
postponing them to the next daily cycle, incurring costs 
for additional hospitalization. In all cases, utilization is 
low, ranging from around 0.5 to 0.62. 

Figure 9: Average Waiting Time and Utilization 

 
6. CONCLUSIONS 
In the present paper a discrete-event simulation model 
of a hospital CT facility has been presented. The aim of 

the model is giving a global view of the problem of 
coexisting admitted classes of patients, in terms of local 
performance (waiting time at the department for the 
different patient classes and CT equipment utilization) 
and long-term performance, represented by the average 
appointment interval for outpatients. The last is 
determined by the AS policy and, as illustrated by 
means of a case-study, the two aspects are inter-related. 
Current situation and some hypothesized scenarios, 
employing a different AS, have been illustrated and 
qualitatively compared. Even though the obtained 
simulation results refer to a particular case-study, two 
general recommendations can be drawn: 1) in schedule 
planning, setting up extra-capacity with respect to the 
current average external examination demand, instead 
of offering a capacity strictly equal to it, prevents the 
making up of appointment queues, because of the 
random nature of the process. Therefore, external 
demand should be periodically monitored by the “CUP” 
staff and eventually determine the AS redesign. 
2) It should be avoided a too rigid application of the 
priority rule for non-urgent inpatients (lowest priority) 
in order to prevent examination postponing. Therefore 
an alert system for excessive waiting time should be 
implemented, permitting in some cases overriding the 
rule at the expense of outpatients. This could in turn 
cause the increase of average outpatient waiting time, 
but, as illustrated, over-timing is a rare event. 
Future work comprises model validation, for which data 
collecting is in progress, and finding strategies for AS 
improvement.  
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