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ABSTRACT 
Agent-based models (ABMs) are used to model 
infectious diseases and disease-transmitting vectors. 
Malaria is a deadly infectious disease in humans, 
transmitted by Anopheles mosquito vectors. Although 
geographic information system (GIS) has been used 
before with ABMs, no ABM-based malaria study 
showed the usage of custom-built spatial outputs 
integrated within a modeling framework. In this paper, 
we show how to effectively integrate a malaria ABM 
with GIS-based, spatially derived parameters. For a 
specific study area, we process GIS data layers, create 
hypothetical scenarios, produce maps, and analyze 
biological insights. Results indicate that availability of 
resources and relative distances between them are 
crucial determinants for malaria transmission. The maps 
also reveal potential hotspots for the measured 
variables. We argue that such integrated approaches, 
which combine knowledge from entomological, 
epidemiological, simulation-based, and geo-spatial 
domains, are required for the identification of 
relationships between spatial variables, and may have 
important implications for malaria vector control. 

 
Keywords: agent-based model, malaria, Anopheles 
gambiae, geographic information system 

 
1. INTRODUCTION 
Malaria is one of the oldest and deadliest infectious 
diseases in humans, transmitted by female mosquitoes 
of the genus Anopheles, which are regarded as the 
primary vector for transmission. Agent-based models 
(ABMs) can play important roles in malaria modeling, 
and answer interesting research questions. For example, 
ABMs can assist in selecting appropriate combinations 
of vector control interventions to interrupt malaria 
transmission, and in setting response timelines and 
expectations of impact.  
 Earlier, we developed a spatial ABM of the 
mosquito vector Anopheles gambiae for malaria 
epidemiology (Arifin, Davis, and Zhou 2011a; Arifin, 
Davis, and Zhou 2011b). Following a biological core 
model that describes the mosquito vector population 

dynamics, the ABM simulates the life-cycle of 
mosquito agents by tracking attributes of each 
individual mosquito. 

A geographic information system (GIS) is a system 
designed to capture, store, manipulate, analyze, manage, 
and present all types of geographical data. The idea of 
integrating GIS with ABMs is not new. Several studies, 
ranging across multiple domains, have shown such 
integration. For example, Brown et al. (2005) addressed 
the coupling of GIS-based data models with agent-
based process models, and analyze different 
requirements for integrating ABM and GIS 
functionality. They illustrate the integration approach 
with four ABMs: urban land-use change, military 
mobile communications, dynamic landscape analysis 
and modeling system, and infrastructure simulations.  

GIS has also been used in various epidemiological 
studies. For example, Gimnig, Hightower, and Hawley 
(2005) discussed the application of GIS to the study of 
mosquito ecology and mosquito-borne diseases, 
including malaria. Khormi and Kumar (2011) presented 
a review of mosquito-borne diseases, with examples of 
the use of spatial information technologies to visualize 
and analyze mosquito vector and epidemiological data. 

However, no model-based malaria study has yet 
shown how to integrate an ABM with GIS, and thereby 
harness the full power of GIS, especially by utilizing 
custom-built spatial outputs. There is also a vacuum of 
knowledge in building robust integration frameworks 
that can guide the use of ecological, geo-spatial, 
environmental, and other types of features (related to 
malaria transmission) as model inputs, as opposed to 
simply use these features as cartographic outputs from 
the models (as done by most previous studies). 

In this paper, we show how to effectively integrate 
a spatial ABM of malaria vector mosquitoes with a GIS. 
For a specific study area (Asembo, Kenya), we identify 
the relevant data layers, and collect, analyze, and 
prepare the data for the ABM. We rank different aquatic 
habitat types based on their characteristics. Then, we 
assign relative carrying capacities to the habitats, and 
build two hypothetical scenarios. Once the ABM is run 
with both scenarios, we analyze custom spatial variables 
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(outputs of the ABM), which include adult abundance 
by location, cumulative biomass per aquatic habitat, 
cumulative number of females oviposited per aquatic 
habitat, and cumulative number of bloodmeals per 
house. Lastly, we produce GIS maps by overlaying the 
spatial variables on top of the relevant data layers, and 
analyze important biological insights as discovered 
from the maps. 

The organization of this paper is as follows: 
Section 2 describes some relevant studies. Section 3 
briefly describes the ABM, the study area, and the GIS-
ABM Workflow. In Section 4, we describe, in details, 
the processing steps of the GIS data layers. Section 5 
describes two hypothetical scenarios created for the 
ABM. Section 6 describes the assumptions of the 
simulations, and defines the four custom spatial 
variables produced as outputs of the ABM. Section 7 
describes our results, and Section 8 concludes. 

 
2. LITERATURE REVIEW 
In this section, we discuss several malaria-related 
studies that use GIS, Global Positioning System (GPS), 
spatial statistical methods, geo-spatial features, etc. In 
general, GIS has been extensively used in 
epidemiological studies. In particular, for malaria as a 
disease, GIS has been used for measuring the 
distribution of mosquito species, their habitats, the 
control and management of the disease, etc. GIS and 
spatial statistical methods are regarded as important 
tools in epidemiology to identify areas with increased 
risk of diseases, and determine spatial association 
between disease and risk factors (Mmbando et al. 
2011). 

Mbogo et al. (2003) studied the seasonal dynamics 
and spatial distributions of Anopheles mosquitoes and 
Plasmodium falciparum parasites along the coast of 
Kenya. Using hand-held GPS, they recorded latitude 
and longitude data at each site, and produced the spatial 
distribution maps for three Anopheles species. Li, Bian, 
and Yan (2006) presented a spatially distributed 
mosquito habitat modeling approach, integrating a 
Bayesian modeling method with Ecological Niche 
Factor Analysis (ENFA) using GIS. They used data for 
seven environmental variables to represent the 
environmental conditions of larval habitats in the Kenya 
highlands. The Malaria Atlas Project (MAP) developed 
the science of malaria cartography by modeling the 
global spatial distribution of P. falciparum malaria 
endemicity (Hay and Snow 2006). Focusing on the 
spatial heterogeneity of malaria transmission intensity, 
they effectively produced and used maps as essential 
tools for malaria control (Hay et al. 2009).  

Zhou et al. (2007) used GIS layers of larval 
habitats, land use type, human population distribution, 
house structure, and hydrologic schemes, overlaid with 
adult mosquito abundance, to investigate the impact of 
environmental heterogeneity and larval habitats on the 
spatial distribution of adult Anopheles mosquitoes in 
western Kenya. Mmbando et al. (2011) conducted a 
study of four cross-sectional malaria surveys in 14 

villages located in highland, lowland, and urban areas of 
northeastern Tanzania during the rainy seasons. Their 
results show a significant spatial variation of P. 
falciparum infection in the region, identifying altitude, 
socio-economic status, high bednet coverage, and 
urbanization as important factors associated with the 
spatial variability in malaria. Ndenga et al. (2011) used 
a GPS unit to classify aquatic habitats within highland 
sites in western Kenya. They recorded the latitude, 
longitude, and altitude of the habitats, and classified 
them as natural swamp, cultivated swamp, river fringe, 
puddle, open drain or burrow pit, and showed that the 
productivity of malaria vectors from different habitat 
types are highly heterogeneous.   

 
3. ABM, STUDY AREA, AND WORKFLOW 
In this section, we describe the study area, the GIS-
ABM Workflow, and the selected GIS data layers, 
which can be broadly classified into two categories:  
aquatic habitats and houses.  

 
3.1. The Agent-based Model (ABM) 
The agent-based model (ABM) was described earlier in 
(Zhou, Arifin, Gentile, Kurtz, Davis, and Wendelberger 
2010). It is derived from a core entomological model of 
the dominant malaria vector species An. gambiae. The 
core model, essentially conceptual in nature, is 
governed by the biology underlying An. gambiae, and 
describes the vector population dynamics. The 
verification and validation processes for the ABM were 
described in (Arifin, Davis, and Zhou 2010a; Arifin, 
Davis, Kurtz, Gentile, and Zhou 2010b). For this study, 
we use a spatial extension of the ABM, which was 
described in detail in (Arifin, Davis, and Zhou 2011a; 
Arifin, Davis, and Zhou 2011b).  
 In the spatial ABM, each aquatic habitat is 
associated with a finite carrying capacity (CC), which 
is treated as a soft limit on the aquatic mosquito 
population that the aquatic habitat can sustain. The 
combined carrying capacity (CCC) for a given 
landscape (with one or more aquatic habitats) represents 
the sum of the CCs of all aquatic habitats. 

 
3.2. The Study Area 
For this study, a village cluster in Kenya’s Rarieda 
Division in Nyanza Province, known locally as Asembo, 
is chosen as the study area (see Figure 1). Asembo is 
located within a subsection of the Siaya and Bondo 
Districts in western Kenya. According to estimates from 
the 1989 Kenya Government census statistics, it covers 
an area of 200 km2 and had a population of 
approximately 60,000 persons (Phillips-Howard et al. 
2003). Asembo includes a study site of 15 villages (with 
an area of approximately 70 km2 near Asembo Bay, and 
experiences intense, perennial malaria transmission 
(Nahlen, Clark, and Alnwick 2003). 

The primary reason for selecting Asembo as our 
study area is the availability of data from the Asembo 
Bay Cohort Project (McElroy et al. 2001) and the 
Asembo ITN project (Phillips-Howard et al. 2003), 
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which, in a series of 23 articles, report important public 
health findings from a successful trial of insecticide-
treated bednets (ITNs) in western Kenya (Kazura 2003). 
Their research findings provide substantial evidence 
that high coverage of ITNs in the study area will result 
in significant health benefits for affected communities 
(Nahlen, Clark, and Alnwick 2003).  
 

 
Figure 1: The Study Area of Village Clusters in 
Asembo, Kenya 

 
3.3. The GIS-ABM Workflow 
The GIS-ABM workflow is shown in Figure 2. The GIS 
module, using the ArcGIS software (ArcGIS Desktop 
2011), produces, processes, and analyzes the relevant 
data layers, and converts them into plain-text ASCII 
format. The ASCII files are then converted into XML 
format by using a customized Java program (the Input 
Formatter), and fed as input to the spatial ABM. Once 
the ABM completes the simulations, the outputs are 
analyzed by using a custom-built Perl module (the 
Output Analyzer). Plots and other figures are then 
produced from the analyzed output. To perform the 
spatial analysis, we produce ASCII files from the 
analyzed output, and feed those into the GIS module. 
The GIS module then produces spatial maps with 
relevant information portrayed on top of the data layers.  
 

 
Figure 2: The GIS-ABM Workflow 

4. GIS DATA LAYERS 
The GIS data layers represent several thematic layers of 
the study area that are relevant to our spatial ABM. 
These layers fall into two categories: aquatic habitats 
and houses. The aquatic habitat types include two types 
of mosquito breeding sites (type-1 breeding site and 
type-2 breeding site), boreholes, pit latrines, and 
wetland. A type-2 breeding site is composed of a type-1 
breeding site and several other data points (e.g., 
compounds, boreholes etc.). Boreholes, also known as 
borrow pits, have great potentials as breeding sites in 
this area, and represent holes or pits made in the ground 
when local people use clay or soil for building houses, 
making pots, etc., thereby leaving depressions in the 
ground that easily get filled with rain water. Pit latrines 
are very common to households in the study area. The 
wetland represents a stretch of waterbody lying to the 
northwest corner of the study area. Human houses serve 
as bloodmeal locations for the mosquitoes, and include 
houses, huts, etc.  
 
4.1. Processing the Data Layers with GIS 
We start with the feature identification and extraction 
process for the whole of Kenya; then, we describe the 
scale down process to the study area of Asembo, 
followed by the selection of a subset of villages within 
Asembo, and finally, to the selection of a polygon 
within the village clusters, which is used as input to our 
spatial ABM. 
 We first identify and extract different water 
features (rivers, wetlands, and several water-points) and 
villages (including human houses) for all over Kenya, 
as shown in Figure 3. Different water features (rivers, 
wetlands, etc.) and villages are projected to the 
projection system Arc 1960 UTM Zone 36S. In Figure 
3, the figure on the left shows different water features 
(rivers, wetlands and several water-points) all over 
Kenya, and the figure on the right shows villages for 
Kenya. 

 

 
Figure 3: Water Sources and Villages Projections for 
Kenya 

 
4.2. Selecting Aquatic Sites for the Study Area 
We collect water features data for different types of 
aquatic sites. Each water source is assigned a unique ID 
(IDdata-feature).  

Once we thoroughly examine the water sources’ 
data layers, we encounter some overlapping problems. 
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To overcome these, we provide precedence ranking for 
the data layers, by sub-grouping water source layers 
based on their attributes, and creating new shapefiles. In 
the process, we combine similar types of water features 
in the same data layer. 

Figure 4 shows the selected data layers for 
different water features. We use the Select By Attributes 
tool (with SQL query) to select features, and export the 
selected features to create new shapefiles. We also 
assign new IDs for each water feature type by using the 
Field Calculator tool to calculate value for the IDdata-

feature field. 
 

 
Figure 4: Selected Water Features for Kenya 

 
4.3. Scaling Down to Village and Household Level 
Since for the spatial ABM we need household level data 
that include water features available near the houses, we 
scale down the data to selected village cluster area from 
the entire Kenya boundary area.  
 We select a village cluster in Asembo, based on 
higher frequency of aquatic sites availability near 
households (than other clusters in Asembo). After 
analyzing the water features for all over Kenya, we also 
discover some wetlands and rivers features in the 
selected area. Figure 5 shows the selected village cluster 
area with houses and all water features located in the 
study area. 
 For reasons of performance and complexity (for 
example, large number of features), we further select a 
subset of villages from the village cluster area. The 
ABM, without explicit parallelization or multiple runs, 
can handle a landscape with maximum dimensions of 
95 columns * 96 rows. To reflect the available field data 
that points to limited flight ability and perceptual ranges 
of Anopheles mosquitoes, each cell in the landscape is 
set to 50 m * 50 m, yielding a total area of ≈ 25 km2. 
Hence, we further scale down the area, and select a 25 
km2 polygon, as outlined in magenta in Figure 5.  
 

 
Figure 5: The Selected Polygon, Outlined in Magenta, 
within the Village Clusters in Asembo, Kenya 

 
Next, we clip (crop) the aquatic habitats and 

houses within the outside boundary of the polygon. The 
clipped features include wetlands, streams, boreholes, 
breeding sites, and pit latrines. We eliminate the stream 
and river features, which, being moving (non-stagnant) 
water sources, are usually not considered as prospective 
breeding sites for Anopheles mosquitoes. 
 
4.4. Conversion of Data Formats 
Since the ABM needs data in the ASCII format, we first 
convert the selected layers to raster grid format. The cell 
size is set to 50 m * 50 m, with the value field set to 
IDdata-feature. All point feature data layers for type-1 
breeding sites, type-2 breeding sites, boreholes, pit 
latrines, and houses are converted using the Point to 
Raster tool. The data layer for pit latrines is created 
from the data layer for houses (since pit latrines are 
usually found inside household boundaries).  

Due to the resolution (cell size), more than one 
feature type may fall in a single cell. In these cases, to 
calculate the number of features (of each type) in each 
cell, we set the Cell Assignment Type as SUM, since it 
sums the attributes of all points in the cell. Thus, it 
acquires the summation of the value fields (of IDdata-

feature), and helps us to determine the number of features. 
Next, we set the extent for the conversion as the 
boundary coordinates of the polygon area shapefile (see 
Figure 5), and convert the raster files to ASCII format.  

 
4.5. Generating the Study Area 
Finally, we generate the study area for the ABM, which 
is shown in Figure 6: Map 1 shows the study area 
polygon for the ABM, outlined in magenta. The same 
polygon, within the village cluster area of Asembo, is 
shown in Map 2. In Map 3, the village cluster is marked 
in red circle within the map of Kenya. The figure 
clearly identifies the comparative scale down process of 
the area, as described previously in this section. 
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Figure 6: Study Area for the Spatial ABM 

 
We reserve the use of shades of blue for all aquatic 

habitats, and square brown symbols for the houses. To 
aid in visualization, gridlines are also added to the map 
to every tenth point (starting from 1), using the Hawth’s 
Tool (Hawth 2013), which we import into ArcGIS. The 
output map is shown in Figure 7. 

 

 
Figure 7: Study Area with Selected Data Layers and 
Gridlines for the Spatial ABM 
 
4.6. Generating the Feature Counts for the ABM 
From the GIS data layers described above (i.e., houses 
and aquatic habitats), we generate the feature counts to 
use as inputs to our ABM. The feature counts, as shown 
in Table 1, appear as 1976 (982 aquatic habitats of 
different types, and 994 houses). 

 
 

Table 1: GIS Feature Counts For The ABM 
Feature Type Feature Count 

Type-1 breeding site 4 
Type-2 breeding site 14 
Borehole 4 
Pit latrine 401 
Wetland 559 
House 994 
Total 1976 

 
5. CREATING SCENARIOS FOR THE ABM 
To run simulations with the selected data layers, we 
create two hypothetical scenarios with different 
combined carrying capacities (CCCs, see Section 3.1).  

We assign carrying capacities to the selected GIS 
layers that represent the aquatic habitats. However, 
since we cannot obtain absolute CC values for the 
habitats (due to the lack of habitat data), we assign 
relative CC values to the habitats based on the available 
spatial data, ensuring that the relative magnitudes of 
CCs are in accordance with: 1) the malaria vector 
productivity among distinct habitat types, and 2) the 
biological reality of the environment. For example, 
considering different cells in the spatial grid, a large 
breeding site cell would have higher CC than that of a 
wetland cell, although both cells represent the same 
surface area. 

In terms of the magnitudes of the assigned CCs, we 
arbitrarily order the different aquatic habitat types in 
decreasing order of CC per cell: 1) type-1 breeding site, 
2) type-2 breeding site, 3) borehole, 4) pit latrine, and 5) 
wetland. For wetland, which covers multiple cells in the 
northwest corner of the study area (see Figure 7), we 
assign the same CC value for each cell. In the future, 
when the data is available, the order, as well as the 
assigned CC values (to different aquatic habitat types), 
can be readily changed, and the ABM is ready to run 
with the newly assigned values. 

To run the ABM with the selected data layers, we 
create two hypothetical scenarios with different CCCs 
by assigning relative CCs to the different aquatic habitat 
types, keeping the order of magnitudes intact. The 
CCCs for the scenarios appear as 21K and 150K, as 
shown in Tables 2 and 3. 
 

Table 2: Dry Season Scenario 21K 
Feature Type Feature 

Count 
Assigned 

CC 
Total 

Type-1 
breeding site 4 1000 4000 

Type-2 
breeding site 14 500 7000 

Borehole 4 100 400 
Pit latrine 401 10 4010 
Wetland (each 
cell) 559 10 5590 

Total (CCC) 21000 
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Table 3: Rainy Season Scenario 150K 
Feature Type Feature 

Count 
Assigned 

CC 
Total 

Type-1 
breeding site 4 5000 20000 

Type-2 
breeding site 14 2000 28000 

Borehole 4 1500 6000 
Pit latrine 401 100 40100 
Wetland (each 
cell) 559 100 55900 

Total (CCC) 150000 
 
 The two scenarios, depicted in Tables 2 and 3, may 
effectively represent two ecological settings with low 
(21K) and high (150K) potentials for mosquito 
populations, resembling the dry and rainy weather 
seasons, respectively, for the study area. 
 
6. SIMULATIONS 
We assume the following for the spatial ABM: the 
model starts with 1000 initial female adult mosquito 
agents (no male agents). All new agents (entering as 
eggs) are female. For each initial female agent, the state 
is set to Gravid, the age is set to 120 hours (for being in 
the Gravid state), and the agent is assigned to an aquatic 
habitat chosen at random. Since available field data 
points to limited flight ability and perceptual ranges of 
mosquitoes, the speed and range of movement (of 
mosquitoes) in our spatial ABM are controlled by 
special agent-level variables. Unlike other traditional 
malaria transmission models, we assume senescence 
(biological aging) of the mosquitoes, and the ABM 
implements age-specific mortality rates for the adult 
mosquitoes and the larvae (i.e., the probability of death 
for mosquito agents increases with their age).  

In order to seek for resources (aquatic habitats or 
houses), and hence to complete the gonotrophic cycles, 
the adult female mosquito agents move only while they 
are in Bloodmeal Seeking and Gravid states. At any 
point in the resource-seeking process, a mosquito’s 
neighborhood is modeled as an eight-directional Moore 
neighborhood. The landscape is assumed to have a non-
absorbing boundary, modeled topologically as 2D torus 
spaces). For details, see (Arifin, Davis, and Zhou 
2011a; Arifin, Davis, and Zhou 2011b).  
 
6.1. Spatial Variables 
For the two scenarios (21K and 150K), the output of our 
spatial ABM includes four custom spatial variables: 
  

1. Adult abundance by location: shows the 
distribution of the adult mosquitoes over the 
entire landscape at the end of the simulation. 

2. Cumulative biomass per aquatic habitat: 
overlaid on top of the aquatic habitats, it 
represents the sum of biomass (eggs, larvae, 
and pupae) present in an aquatic habitat. 

3. Cumulative number of females oviposited per 
aquatic habitat: also overlaid on top of the 

aquatic habitats, it represents the sum of the 
number of times female adults oviposited in 
the aquatic habitat. 

4. Cumulative number of bloodmeals per house: 
overlayed on top of the houses, it represents 
the sum of the number of times female adults 
obtained bloodmeals in the house. 

 
 The last three spatial variables are sampled across 
all daily timesteps throughout the entire simulation. The 
output GIS maps, described in the next section, are 
produced by overlaying the above spatial variables on 
top of the relevant data layers. These variables allow us 
to analyze spatial correlations and find spatial patterns 
from the outputs of the ABM. 

We use a special GIS map symbolizing technique 
known as graduated symbols. Graduated symbols, used 
to compare quantitative values, vary in size according to 
the relative magnitudes of the values. In all output 
maps, we use graduated symbols as hollow circles, 
where the relative radii of the circles are determined by 
the output values generated by the ABM. 
 
7. RESULTS 

 
7.1. Mosquito Abundance (Non-spatial) 
In the ABM, mosquito abundance depends, among 
other factors, on the carrying capacities of the aquatic 
habitats. Hence, not surprisingly, the 150K scenario 
yields much higher abundance than the 21K scenario, as 
shown in Figure 8. This also validates the abundance 
patterns usually observed in the dry and rainy seasons. 
 

 
Figure 8: Mosquito Abundance (Non-spatial) 

 
 However, the output maps from all four spatial 
variables indicate that the relative distances between the 
aquatic habitats and the houses play a crucial role in 
determining the variables of interest, as shown in the 
following.  
 
7.2. Adult Abundance by Location 
Adult abundances by location are shown in Figures 9 
and 10 for scenarios 21K and 150K, respectively. They 
indicate that higher abundances are associated with 
type-1 breeding sites, followed by type-2 breeding sites. 
Out of the four and 14 breeding sites (of type-1 and 
type-2, respectively), highest abundances are observed 
in locations where type-1 sites are in close proximity 
with type-2 sites, surrounded by human houses.  
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Figure 9: Adult Abundance by Location for 21K 
 

  
Figure 10: Adult Abundance by Location for 150K 

 
We also observe very low (1-3 mosquitoes per 

cell) abundance in the wetland, which may be attributed 
to reduced human habitation around the wetland, and 
low carrying capacities associated with the wetland 
cells. 
 
7.3. Cumulative Biomass and Females Oviposited 
Figures 11 and 12 show the cumulative biomass per 
aquatic habitat for scenarios 21K and 150K, 
respectively.  

 
Figure 11: Cumulative Biomass for 21K 

 

 
Figure 12: Cumulative Biomass for 150K 

 
 Figures 13 and 14 show the cumulative number of 
females oviposited per aquatic habitat for scenarios 
21K and 150K, respectively.  
 Both of these metrics (Figures 11-14) show that 
higher abundances are associated with type-1 breeding 
sites, followed by type-2 sites, which are close to 
boreholes. However, an interesting insight reveals that 
two (out of 14) type-2 sites, suitable to yield high 
outputs (like other type-2 sites), yield only 0.07%-0.8% 
cumulative biomass, and only 0.005%-1% cumulative 
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number of females oviposited, when compared to other 
type-2 sites. 

 

 
Figure 13: Cumulative Number of Females for 21K 

 

  
Figure 14: Cumulative Number of Females for 150K 

 
 Closer inspection of the corresponding output maps 
(Figures 11-14) reveals that the nearest human houses 
around these two type-2 breeding sites are situated 
much further than other type-2 sites. Since there are not 
enough houses in the close proximity, the female 
mosquitoes, ovipositing in these breeding sites, cannot 
find bloodmeals, and hence are forced to search longer 
distances. Since the mortality rate of mosquitoes 

increases with their age (recall that the ABM 
implements age-specific mortality rates that incorporate 
senescence, or biological aging), the additional delays 
in obtaining bloodmeals actually reduce abundance 
around these sites, causing much lower cumulative 
biomass and cumulative number of females oviposited. 
 
7.4. Cumulative Number of Bloodmeals 
Lastly, Figures 15 and 16 show the cumulative number 
of bloodmeals per house for scenarios 21K and 150K, 
respectively.  
 

 
Figure 15: Cumulative Number of Bloodmeals for 21K 

 

 
Figure 16: Cumulative Number of Bloodmeals for 150K 
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 Figures 15 and 16 depict that higher values 
(number of bloodmeals) are associated with houses that 
have nearby type-1 and type-2 breeding sites, and 
moderate values are found in houses that have nearby 
aquatic habitats (of different types) with at least some 
carrying capacities. Interestingly, a large number of 
houses, located at the lower left quadrant of the study 
area, show no bloodmeals, due to the absence of aquatic 
habitats around them. 
 
8. CONCLUSION 
As our findings suggest, availability of the ecological 
resources, i.e., the aquatic habitats and houses, and the 
relative distances between these distinct resource types, 
are two crucial determinants for the female mosquitoes 
to complete their gonotrophic cycles. From the 
viewpoint of mosquito agents, these resources directly 
define landscape features such as spatial heterogeneity, 
host availability, etc., the importance of which for 
vector control have been demonstrated by several 
studies. Reduced availability of either type of these 
spatial resources would prolong the gonotrophic cycle 
of the female mosquito, and potentially affect malaria 
transmission. 
 In our study, spatial analysis of the output variables 
generated by the ABM reveals important biological 
insights. The use of maps and spatial statistical methods 
allows readily identifying and displaying interesting 
spatial patterns, which, without the maps, are difficult to 
detect. The output maps also reveal potential hotspots 
with higher rates for the measured variables of interest. 
 The proposed robust integration framework also 
allows easy parameterization of the model. For 
example, the arbitrary order of the different aquatic 
habitat types, and the assigned CC per habitat, can be 
readily changed to suit new scenarios and/or new areas 
of study. This will allow the ABM to produce site-
specific outputs (without the need of modifying the 
ABM itself). The simplicity in the scenario-based 
approach allows to feed in different scenarios to the 
ABM by using different CCCs for various aquatic 
habitat types, without requiring to change the data 
layers, features, etc., for future simulation runs. 

Our results also indicate that disease-specific maps 
can play important roles in disease control activities, 
including monitoring the changes of malaria 
epidemiology, guiding resource allocation for malaria 
control, and identifying hotspots for further 
investigation. For example, the results highlight the 
importance of eliminating the aquatic habitats close to 
human habitations by means of environmental 
modifications and manipulations, supporting the 
arguments presented by several malaria control studies 
(e.g., Fillinger and Lindsay 2011). 

Although in this pilot study we handled a 
comparatively small study area of ≈ 25 km2 (which 
transforms to a 95 columns * 96 rows landscape for the 
spatial ABM), the methodology described here can be 
readily extended to include larger areas (e.g., the whole 
Asembo area). For the new regions to be modeled, 

either real data can be used, or synthetic/predicted data 
can be interpolated from a few point regions (on which 
the described methodology is applied first). 
 We conclude that such integrated approaches, 
which combine knowledge from entomological, 
epidemiological, simulation-based, and geo-spatial 
domains, are required for the identification and analysis 
of relationships between various transmission variables, 
as demonstrated by our study. Eventually, such 
integration efforts may facilitate the Integrated Vector 
Management (IVM) agenda, promoted by the World 
Health Organization (WHO), to achieve improved 
efficacy, cost-effectiveness, ecological soundness, and 
sustainability of malaria vector control. 
 
ACKNOWLEDGMENTS 
Partial support for this work came from the Bill & 
Melinda Gates Foundation under the Vector Ecology 
and Control Network (VECNet) Project. We also wish 
to acknowledge helpful comments from Dr. Frank H. 
Collins and Dr. Neil F. Lobo at the University of Notre 
Dame. 
 
REFERENCES 
ArcGIS Desktop (Release 9.3) [Computer software]. 

(2011). Environmental Systems Research Institute 
(ESRI). Available from: http://www.esri.com/ 

Arifin, S. M. N., Davis, G. J., and Zhou, Y., 2010a. 
Verification & Validation by Docking: A Case 
Study of Agent-Based Models of Anopheles 
gambiae. Summer Computer Simulation 
Conference (SCSC), 236-243, Jul. 2010, Ottawa, 
ON, Canada. 

Arifin, S. M. N., Davis, G. J., and Zhou, Y., 2011a. A 
Spatial Agent-Based Model of Malaria: Model 
Verification and Effects of Spatial Heterogeneity. 
International Journal of Agent Technologies and 
Systems, 3(3):17–34. 

Arifin, S. M. N., Davis, G. J., and Zhou, Y., 2011b. 
Modeling Space in an Agent-Based Model of 
Malaria: Comparison between Non-Spatial and 
Spatial Models. Proceedings of the 2011 
Workshop on Agent-Directed Simulation, 92–99, 
Apr. 2011, Boston, Massachusetts. 

Arifin, S. M. N., Davis, G. J., Kurtz, S. J., Gentile, J. E., 
and Zhou, Y., 2010b. Divide and Conquer: A 
Four-fold Docking Experience of Agent-based 
Models. Winter Simulation Conference (WSC), 
575 - 586, Dec. 2010, Baltimore, Maryland, USA. 

Brown, D. G., Riolo, R., Robinson, D. T., North, M., 
and Rand, W., 2005.   Spatial process and data 
models: Toward integration of agent-based models 
and GIS. Journal of Geographical Systems, 7:25-
47. 

Fillinger, U. and Lindsay, S., 2011. Larval source 
management for malaria control in Africa: myths 
and reality. Malaria Journal, 10:353. 

Gimnig, J. E., Hightower, A. W., and Hawley, W. A., 
2005. Application of geographic information 
systems to the study of the ecology of mosquitoes 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

319

http://www.esri.com/


and mosquito-borne diseases. In: Wageningen UR 
Frontis Series, 9, 27-39. 

Hawth’s Analysis Tools for ArcGIS [Website]. (2013). 
Available from: http://www.spatialecology.com/ 

Hay, S. I. and Snow, R. W., 2006. The Malaria Atlas 
Project: Developing Global Maps of Malaria Risk. 
PLoS Med, 3(12). 

Hay, S. I., Guerra, C. A., Gething, P. W., Patil, A. P., 
Tatem, A. J., Noor, A. M., … Snow, R. W., 2009. 
A world malaria map: Plasmodium falciparum 
endemicity in 2007. PLoS Med, 6(3). 

Kazura, J. W., ed. The American Journal of Tropical 
Medicine and Hygiene, (2003). 68(4 suppl). 

Khormi, H. M. and Kumar, L. 2011. Examples of using 
spatial information technologies for mapping and 
modelling mosquito-borne diseases based on 
environmental, climatic and socio-economic 
factors and different spatial statistics, temporal risk 
indices and spatial analysis: A review. Journal of 
Food, Agriculture & Environment, 9(2):41-49. 

Li, L., Bian, L., and Yan, G. 2006. An Integrated 
Bayesian Modelling Approach for Predicting 
Mosquito Larval Habitats. In: UCGIS 2006 
Summer Assembly. 

Mbogo, C. M., Mwangangi, J. M., Nzovu, J., Gu, W., 
Yan, G., Gunter, J. T., … Beier, J. C., 2003. 
Spatial and temporal heterogeneity of Anopheles 
mosquitoes and Plasmodium falciparum 
transmission along the Kenyan coast. The 
American Journal of Tropical Medicine and 
Hygiene, 68(6):734-742. 

McElroy, P. D., ter Kuile, F. O., Hightower, A. W., 
Hawley, W. A., Phillips-Howard, P. A., Oloo, A. 
J., … Nahlen, B. L., 2001. All-cause mortality 
among young children in western Kenya. VI: the 
Asembo Bay Cohort Project. The American 
Journal of Tropical Medicine and Hygiene, 64:18-
27. 

Mmbando, B., Kamugisha, M., Lusingu, J., Francis, F., 
Ishengoma, D., Theander, T., ... Scheike, T., 2011. 
Spatial variation and socio-economic determinants 
of plasmodium falciparum infection in 
northeastern Tanzania. Malaria Journal, 
10(1):145. 

Nahlen, B. L., Clark, J. P., and Alnwick, D., 2003. 
Insecticide-treated bed nets. The American Journal 
of Tropical Medicine and Hygiene, 68:1-2. 

Ndenga, B. A., Simbauni, J. A., Mbugi, J. P., Githeko, 
A. K., and Fillinger, U., 2011. Productivity of 
Malaria Vectors from Different Habitat Types in 
the Western Kenya Highlands. PLoS ONE, 6(4). 

Phillips-Howard, P. A., Nahlen, B. L., Alaii, J. A., ter 
Kuile, F. O., Gimnig, J. E., Terlouw, D. J., ... 
Hawley, W. A., 2003. The efficacy of permethrin-
treated bed nets on child mortality and morbidity 
in western Kenya I. Development of infrastructure 
and description of study site. The American 
Journal of Tropical Medicine and Hygiene, 68:3-
9. 

Vector Ecology and Control Network (VECNet) 
[Website]. (2013). Available from: 
http://www.vecnet.org/ 

Zhou, G., Munga, S., Minakawa, N., Githeko, A. K., 
and Yan, G., 2007. Spatial Relationship Between 
Adult Malaria Vector Abundance and 
Environmental Factors in Western Kenya 
Highlands. The American Journal of Tropical 
Medicine and Hygiene, 77(1):29-35. 

Zhou, Y., Arifin, S. M. N., Gentile, J. E., Kurtz, S. J., 
Davis, G. J., and Wendelberger, B. A., 2010. An 
Agent-based Model of the Anopheles gambiae 
Mosquito Life Cycle. Summer Computer 
Simulation Conference (SCSC), 201-208, Jul. 
2010, Ottawa, ON, Canada. 

 
AUTHORS BIOGRAPHY 
S. M. Niaz Arifin is a PhD student in the Department 
of Computer Science and Engineering at the University 
of Notre Dame. His research interests include Data 
Warehousing, Agent-Based Modeling & Simulation, 
Geographic Information Systems, etc. He received his 
MS from the University of Texas at Dallas in 2006, and 
BS from Bangladesh University of Engineering and 
Technology (BUET) in 2004. He served as a software 
developer at Xcision Medical Systems, California and 
the Rails Online Database project at Sabre Holdings 
Corporation, Texas. Rumana Reaz Arifin is a PhD 
student in the Department of Civil & Environmental 
Engineering and Earth Sciences at the University of 
Notre Dame. Her research interests include 
Environmental Engineering and Geographic 
Information Science.  She received her MSs in Civil 
Engineering (Notre Dame) and Geographic Information 
Science (University of Texas Dallas). She provides GIS 
support for Center for Research Computing (CRC) at 
Notre Dame. Dilkushi de Alwis Pitts is an Adjunct 
Research Assistant Professor at the University of Notre 
Dame. She earned a PhD in Environmental Engineering 
(specializing in Hydrology) at Cornell University, NY 
and a MS in Remote Sensing at the Rochester Institute 
of Technology, NY. She has nearly 17 years of 
experience assimilating spatial and attribute data at 
different spatial and temporal scales and up/down-
scaling spatial data for integration into mathematical 
models and validation of model output. Gregory R. 
Madey is a Research Professor in the Department of 
Computer Science and Engineering at the University of 
Notre Dame. His research interests include Agent-
Based Modeling & Simulation, Cyberinfrastructure, 
Open Source Software, Data Warehousing, Emergency 
Operations Management, Bioinformatics, Modeling 
Epidemiology, and Health Informatics. His recent 
research grants include a VECNet Cyberinfrastructure 
grant from the Bill & Melinda Gates Foundation, and 
Open Sourcing of the Civil Infrastructure Design grant 
from the US National Science Foundation. 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

320

http://www.spatialecology.com/
http://www.vecnet.org/

