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ABSTRACT 

Polycyclic aromatic hydrocarbons (PAHs) are 
formed during incomplete combustion in different 
production processes; exposure to PAH-containing 
substances increases the risk of cancer in humans.  
The environmental monitoring used to assess human 
exposure to airborne PAHs during work, generally 
involves the employment of diagnostic methods derived 
from analytical chemistry, characterised by an elevated 
cost and the use of a "trial and error" approach.  

The aim of this study is to develop a decision support 
tool that, through the characteristic parameters of a 
workplace and using an artificial neural network, 
simulates the concentration of different species of 
pollutants (PAHs groups) statistically present in the 
environment. In this way it is possible to perform a 
preliminary risk assessment that, besides allowing an 
immediate perception of the level of risk to which 
workers are exposed, can undertake environmental 
monitoring analysis on the detection of a limited 
number of pollutant species, in order to reduce costs and 
increase the sustainability of the production system. 
 
Keywords: model of prediction, risk assessment, 
environmental monitoring, decision support system 

 
 

1. INTRODUCTION 

There is a growing interest, both scientific and 
industrial, in the environmental management of 
production systems. Great attention is paid to activities 
that increase the sustainability of production systems.  
In this context, there is significant interest in 
workplaces in which air pollutants that are highly 
dangerous to the health of workers are emitted by 
production processes. Among the various types of 
pollutant, Polycyclic Aromatic Hydrocarbons (PAHs) 
are amongst the most harmful chemical compounds to 
human health. The carcinogenic effect of PAHs has 
been deeply investigated in the past, and is nowadays 
well known. 

Considering the large variety of production processes 
that result in the generation and dispersion of pollutants, 
there is a wide range of monitoring equipment based on 
technologies derived from analytical chemistry. So it is 

often very difficult to perform preliminary risk 
assessments of a specific workplace. In fact, in many 
cases the analytical methods used for environmental 
monitoring are expensive and use a "trial and error" 
approach. 

Forecasting the concentrations of air pollutants 
represents a difficult task due to the complexity of the 
physical and chemical processes involved. Several 
approaches have been used, branching into two main 
streams: deterministic approaches, which involve 
numerically solving a set of differential equations, and 
empirical approaches, where different functions are 
used in order to approximate the concentrations of the 
pollutants depending on the external conditions (Hrust 
et al., 2009). 
The first type of approach does not require a large 
quantity of measured data, but it demands sound 
knowledge of the pollution sources, the temporal 
dynamics of the emission quantity, the chemical 
composition of the exhaust gasses and physical 
processes in the atmospheric boundary layer. This 
crucial knowledge is often limited and also requires 
computational resources. Thus approximations and 
simplifications are often employed in the modelling 
process. On the other hand, applications of deterministic 
models are limited to a lesser extent with regard to the 
selection of the domain. A recent example of such an 
approach is the work of (Finardi et al. 2008).  
In contrast, the second type of approach usually requires 
a large quantity of measured data collected under a 
large variety of atmospheric conditions. By applying 
regression and machine learning techniques, a number 
of functions can be used to fit the pollution data in 
terms of selected predictors. One drawback of this 
technique is that the model is usually confined to the 
area and conditions present during the collection of the 
measurements (Kukkonen et al., 2003). Nevertheless, 
this approach is generally more suitable for the 
description of complex site-specific relations between 
concentrations of air pollutants and potential predictors, 
and consequently it often results in a greater accuracy, 
when compared with deterministic models (Gardner and 
Dorling, 1999). 
 
Neural network empirical approaches have been 
frequently used in recent atmospheric and air quality 
modelling studies. (Božnar et al. 1993) were the first to 
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describe the neural network modelling of hourly 
concentrations of sulphur dioxide. (Gardner and Dorling 
1998) gave a very informative review of the 
applications of artificial neural networks in science in 
general and, particularly, in atmospheric sciences. They 
emphasised the usefulness of neural networks (NN) 
when dealing with non-linear systems, especially when 
theoretical models of the system cannot be constructed. 
(Perez et al. 2000) developed a neural network model to 
predict PM10 hourly concentrations by fitting a function 
of 24-hourly average concentrations from the previous 
day. They found errors ranging between 30% and 60%. 
In order to decrease the errors, they considered noise 
reduction in the data, rearrangement, an increase in the 
learning dataset, and the inclusion of meteorological 
variables as input variables. They concluded that noise 
reduction prior to modelling is essential. A possible 
improvement can be achieved by explicitly taking into 
account the relevant meteorological variables.  
 
Karppinen et al. published two papers addressing the 
development of a modelling system for predicting NOx 
and NO2 concentrations in an urban environment in 
Helsinki. The first paper (Karppinen et al., 2000a) was 
related to the model development and its application in 
air quality prediction, as well as traffic planning. The 
system includes the following models: the estimation of 
traffic volumes and travel speeds, the computation of 
emissions from vehicular sources, a model for 
stationary source emissions, a meteorological pre-
processing model and dispersion models for stationary 
and mobile sources. Alternatively the second paper 
(Karppinen et al., 2000b) presented a comparison 
between the predicted and measured concentrations. 
According to the authors, the modelling system was 
fairly successful in predicting NOx concentrations and 
was successful in predicting NO2 concentrations. They 
also argued that none of the methods are able to forecast 
the peak values, due to the under-representation of these 
cases within the overall dataset. 
(Perez and Reyes 2006) developed a multi-layer 
perceptron (MLP) model to forecast the daily maxima 
of PM10 concentrations one day in advance. The same 
model was applied to five measuring stations in the city 
of Santiago, Chile. They compared values forecasted 
with MLP, linear and persistence models using the same 
input variables. They concluded that the MLP model 
performed well and that the relatively small differences 
between the linear and MLP models emphasised the 
importance of selecting the correct input variables. 
 
In the scientific literature there are only a few cases 
related to the use of predictive models in confined 
spaces, such as apartments, residential buildings, 
workplaces, etc.  
The aim of this work consists in defining a support 
decision tool for preliminary risk assessment in 
workplaces, where is possible to identify a narrow set of 
environmental variables, and there is a strong 
correlation between concentrations of pollutant in the 

air and the typology of the manufacturing process. For 
this scope an Artificial Neural Network (ANN) has been 
realised that is able to provide a forecast about the 
presence and concentration of the main pollutants 
released by a particular production process, in 
connection to different distances from the source of 
emission.  
 
This paper is structured as follows: section two deals 
with a taxonomic clustering of the industrial processes 
that provide the production of similar outputs, also 
characterised in many cases by the same emission 
levels. In section three a model is proposed that, 
depending on the input parameters such as the total 
PAHs, distance and categories of workplace, can 
provide prediction data for the relative concentrations of 
different pollutants. Finally, the model results are 
examined in order to evaluate the reliability of the 
forecast generated by the model. 
 

 

2. WORKPLACE: TAXONOMIC EVALUATION 
OF SOURCE PAHS 

Polycyclic aromatic hydrocarbons (PAHs) are 
formed during incomplete combustion. They occur in 
the environment as complex mixtures of many 
components with widely varying toxic potencies. 
Several compounds of this group have been classified 
by the International Agency for Research on Cancer 
(IARC) as probable (2A) or possible (2B) human 
carcinogens (Boström, 2002). Due to its high 
carcinogenic potency and its presence in the 
environment, benzo(a)pyrene (Bap) is often used as an 
indicator of human PAHs exposure (Han, 2011). Road 
paving, sintering plants, and rubber production are only 
a few of the principal workplaces where there are 
industrial processes that emit high concentrations of 
PAHs into the environment. 

The first phase of this study consists in the classification 
of workplaces into four categories. Each category 
includes industrial processes that provide for the 
production of an output that is similar or 
complementary to the same supply chain.  

The categories identified are as follows: 

• Energy activities that include all those 
processes related to the production of energy, 
including: combustion plants, oil refineries and 
gas, coke ovens, gasification plants and 
liquefaction of coal; 

• Production and processing of metals which 
include: production plants of cast iron or steel, 
plants for the processing of metals, foundries, 
sinter plants and surface metal treatment 
plants; 

• Cooking activities that include: industrial 
kitchens and restaurants; 
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• Insulation activities that include: treatments of 
roofing bitumen for buildings and road paving. 

For all categories a series of case studies from the 
literature have been analysed, and for each the measures 
of concentration of particulate-bound PAHs emitted 
into the environment have been considered.  

To assess the health-risks associated with PAHs 
exposures, it is important to know the total carcinogenic 
potency arising from the exposures of various PAHs 
compounds. In principle, the carcinogenic potency of a 
a given PAHs compound can be assessed according to 
its benzo[a]pyrene equivalent concentration (BaPeq). 
Calculating the BaPeq concentration for a given PAHs 
compound requires the use of its toxic equivalent factor 
(TEF; using benzo[a]pyrene as a reference compound) 
to adjust its original concentration. Among the 16 PAHs 
species identified as priority pollutants, we consider 
seven PAHs species absorbed on particulate matter, 
according to the carcinogenic potency factor developed 
by the US Environmental Protection Agency (Table 1), 
including: Benzo[a]anthracene (BaA), Chrysene (CHR), 
Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthene 
(BkF), Benzo[a]pyrene (BaP), Indeno[1,2,3-c,d]pyrene 
(IND), Dibenz[a,h]anthracene (DBA). 

For each case study the corresponding BaP equivalent 
concentration (BaPeq) has been calculated using the TEF 
approach recommended by the US EPA. 

Table 1: Benzo(a)pyrene Toxic Equivalent Factor  
(US EPA, 1986) 

Compound Carcinogenic 
potency 

Benzo[a]anthracene (BaA) 0.1 
Chrysene (CHR) 0.001 
Benzo[b]fluoranthene (BbF) 0.1 
Benzo[k]fluoranthene (BkF) 0.01 
Benzo[a]pyrene (BaP) 1 
Dibenz[a,h]anthracene (DBA) 1 
Indeno[1,2,3-c,d]pyrene (IND) 0.1 
Other 9 PAHs species 0 

It has been observed that categories related to activities 
relating to insulation and energy are characterised by 
the highest values of Bapeq (about 800 ng/m3). In fact 
bitumen is a complex hydrocarbon material containing 
components in many chemical forms, the majority of 
which are of high molecular weight (Posniak 2005). In 
experimental studies polycyclic aromatics with 3 to 7 
fused rings with molecular weights in the range 200 to 
450 have been shown to be biologically active 
carcinogens, in particular Benzo(a)pyrene and 
Dibenz[a,h]anthracene (present in a high percentage) 
are considered to be powerful carcinogens (Agency for 
Toxic Substances and Disease Registry, 2009). 
Moreover fumes, created when asphalt is heated, 
contain very small, solid, airborne particles that are 
easily inhaled by workers. Fumes may also contain 
hydrogen sulphide vapours, which are very toxic, as 
well as vapours generated by the solvents used to “cut” 
the asphalt (Burstyn 2000). 

In the combustion processes, for the production of 
energy, the main cause of emissions to the atmosphere 
of particulate-bound PAHs is coal. Coal in fact contains 
large quantities of organic and inorganic matter. When 
coal burns, chemical and physical changes take place, 
and many toxic compounds are formed and emitted; 
PAHs are among those compounds. The emissions, in 
this case, are limited by filtering systems present along 
the lines of the process (Boström 2002). 

The category for the production and processing of 
metals is characterised by the intermediate values of 
Bapeq (of the order of 50 ng/m3). The mechanisms 
associated with the generation of PAHs in the high-
temperature combustion process of the smelters works, 
followed three major pathways, including pyro-
synthesis, direct emission of unburned fuel, and thermal 
destruction of fuel components (Tsai, 2001). The PAHs 
formed and released by pyrolysis in a limited oxygen 
supply can appear free in gaseous form and are 
adsorbed onto dust particles (Tsai, 2000). For the iron 
and steel industries, PAHs are released from coke 
manufacturing, sintering, iron making, casting, 
moulding, cooling, and steel making processes (Lin, 
2008). The average emission levels are lower than the 
values of the preceding categories, because this process 
requires a lower percentage of organic matter, compared 
to the activities of insulation and energy. 

The category that includes cooking activities is the least 
dangerous when compared to the other categories; in 
fact emissions of PAHs in this workplace are in the 
order of 10 ng/m3. In industrial kitchens or in the 
restaurants, the emission of PAHs is related to frying at 
high temperatures. The levels of the (PAHs) pollutants, 
from the process of cooking, are strongly related to 
cooking style, lipid content of the food, and the 
quantities of food cooked. Another variable that 
significantly affects the level of PAHs emission is the 
type of cooker, in fact frying on a gas stove caused 
significantly higher amounts of ultrafine particles 
compared with frying on an electric stove (Li, 2003). If 
on the one hand this category includes workplaces with 
smaller dimensions compared to the workplaces of the 
other categories, on the other hand the rate of natural 
ventilation is higher than in non-residential buildings. 

 

3. MODEL OF PREDICTION FOR PAHS 
EMISSIONS  

The second step in this work consists of defining 
the input and output parameters of the model.  

The model includes indoor workplaces or those 
activities that imply a direct contact among the sources 
of emission and the worker (e.g. workers employed in 
road paving, manufacturing and laying of bituminous 
mixtures, etc.). The input variables of the model are as 
follows:   

Total PAHs: it is a numeric variable given by the sum 
of the concentration (only the particulate matter phase) 
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of all priority compounds, belonging to PAHs groups, 
that are the most dangerous to human health; 

Distance: it is a qualitative variable that as a function of 
the distance between the sources of PAHs emission and 
the position of devices for environmental monitoring 
can assume three different parameters: 

1. First Line: distance between the source of 
PAHs emission and the device for 
environmental monitoring is less than 2 metres; 

2. Second Line: the distance between the source 
of PAHs emission and the device for 
environmental monitoring is between 2 and 10 
metres; 

3. Third Line: the distance between the source of 
PAHs emission and the device for 
environmental monitoring is over 10 metres. 

Categories of workplace: this is a qualitative variable 
that consider the type of manufacturing process or 
activity from which the PAHs emissions are generated. 
This variable can assume four types corresponding to: 
energy activities, production and processing of metals, 
cooking activities or insulation activities, as already 
described in the previous paragraph. 

The core of the prediction model consists of a system 
based on an Artificial Neural Network (ANN). This 
learning technique, that mimics the biological learning 
process occurring in the brain, has been used. Neural 
networks present a robust way to predict real-value 
concentrations after learning from a supplied sample 
set. Such networks connect a number of individual 
elements, each of which take a set of inputs and produce 
a single real number. The learning algorithm determines 
the numeric weights to be applied between each of these 
neurons to obtain the desired output. One main 
advantage of this technique is that it can produce good 
results, even when supplied with noisy and incomplete 
data (Aquilina, 2010). 
The network architecture provides: three nodes in the 
input; three hidden layers consisting, respectively, of 2-
12-21 neurons and seven nodes of output (Fig. 3). Each 
input signal is weighted, it is multiplied by the weighted 
value of the corresponding input line (by an analogy to 
the synaptic strength of the connections of the biologic 
neurons). The artificial neuron will combine these 
weighted inputs by determining their sum, and with 
reference to a threshold value and an activation function 
it will determine its output. In this case a Gaussian 
distribution is used for assigning the weights to each 
variable. 
 
The ANN works with a data set identified by a sample, 
i.e. a subset of the population representing the 
phenomenon studied. To be more precise, given the 
ANN three types of subset of the available sample can 
create the forecasting model: the training set, the test 
set, and the validation set: 

• training set, the group of data constituted by a 
sample of 60% (percent of total data) that train 

the network, i.e. by which the network adjusts 
its parameters (thresholds and weights), 
according to the gradient descent for the error 
function algorithm, in order to achieve the best 
fit of the non-linear function representing the 
phenomenon;  

• testing set, the group of data constituted by a 
sample of 20% (percent of total data), given to 
the network still in the learning phase, by 
which the error evaluation is verified in order 
to effectively update the best thresholds and 
weights; 

• validation set, the group of data constituted by 
a sample of 20% (percent of total data) used to 
evaluate the ANN generalisation, i.e. to 
evaluate whether the model has effectively 
approximated the general function 
representative of the phenomenon. 

 
The network has been trained using the back-
propagation routine. This typology of algorithm is used 
to train a network for a desired output. This method 
minimises the squares of the residuals (differences 
between desired outputs and network outputs) by 
modifying the network weights. It approximates the 
desired output using the gradient descent technique.  

The validation data set has been used to monitor the 
alteration in the training error during the learning 
progress (Fig. 1) of the neural network. 

 
Figure 1: Alteration of the training error 

 
In order to minimise the overtraining problem, the 
training phase is stopped when the mean square error 
(MSE) assumes values lower than 0.01.  

To evaluate the accuracy of this ANN, the correlation 
coefficient between the measured data (training set) and 
the data predicted by the trained neural network (Fig. 2) 
has been calculated. 
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Figure 2: Forecast of the ANN (on training set) 

 
According to US EPA guidelines, among the 16 PAHs 
species identified as priority pollutants, the model 
includes only seven PAHs species absorbed on 
particulate matter, that are considered powerful 
carcinogens (Tab. 1). The concentration, measured in 
the environment, of this species representing the output 
variables of the model (Fig. 3): 
 

 
Figure 3: Scheme of the model 

 
Based on this model it is possible to determine the level 
of concentration of individual PAHs pollutants, 
considered the most dangerous, in the environment. 
According to TEF defined by the US EPA, for each 
species of the PAHs group (Tab. 1) it is possible to 
calculate the concentration of B(a)peq in a specific 
workplace.  

In this way, we have a direct perception about for the 
health risk assessment of workers exposed to PAHs 
particulate matter in the air. 
 
3.1. Analysis of results 

The model is tested using a series of data: for each 
category two set of data were collected for each of the 
three input variables that identify the distances between 
the sources of PAHs emission and the position of the 
devices for environmental monitoring.  
Therefore, for each category and for every PAHs 
species identified as priority pollutants, the values of the 
concentration measured by analytical methods (shown 
as “real” in the following graphs) and those obtained by 
the prediction model (shown as “forecast”) have been 
compared. 

For energy activities (Fig. 4) it is observed that the gap 
between the real and forecasted values increases for 
higher levels of concentration. In fact, a Mean Squared 
Error (MSE) of about 0.02 has been calculated for 
values of concentration lower than 1 ng/m3, on the 
other hand for values of concentration higher 1 ng/m3 a 
MSE of approximately 2 has been calculated. 

 

Figure 4: Comparison between real and forecasted 
values of concentration for single species of PAHs 
groups, in different scenarios of the "energy activities" 
category, in: first line (a-b); second line (c-d) and third 
line (e-f). 
 
In order to evaluate the reliability of the forecast, the 
Mean Absolute Percentage Error (MAPE) has been 
calculated. For the first category of workplace the 
MAPE equals 24.65%. 
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The MAPE obtained for the category identified as 
Production and processing of metals amounts to 
29.33%. In the following charts (Fig. 5) it is possible to 
assess the gap between value of the concentration 
measured by analytical methods (real), and the values 
generated by the prediction model (forecasts). Naturally 
these cases, like in the previous category of workplaces, 
are not included in the data set used for the training of 
the ANN. 
 

 

 
Figure 5: Comparison between real and forecasted 
values of concentrations for single species of PAHs 
groups, in different scenarios of the "production and 
processing of metals" category, in: first line (a-b); 
second line (c-d) and third line (e-f). 
 
The evaluation of the forecasts for cooking activities 
(Fig. 6) shows that the prediction model reported a 
MAPE with a similar value as the other categories, in 
fact it calculated a MAPE equal to 23.03%.  
For this category no measure of the concentration is 
available, with analytical methods, for a distance 
(between the source of PAHs emission and the device 
used for environmental monitoring) of over 10 metres.  
 

 
Figure 6: Comparison between real and forecasted 
values of concentrations for single species of PAHs 
groups, in different scenarios of the "cooking activities" 
category, in: first line (a-b) and second line (c-d). 
 
The forecast generated by the model, for the last 
category, Insulation activities (Fig. 7), is more reliable 
compared to the predictions obtained for the other 
categories; in fact for this category of workplace a 
MAPE equal to 10.79% has been calculated. It is 
believed that this is due to the types of work process 
that fall in the category of insulation activities. In fact, 
in this category the activities are very similar to each 
other, all all characterised by the same temperatures, 
raw materials, combustion processes and boundary 
conditions. Indeed, this is not true for the activities 
belonging to the other categories whose work processes 
and boundary conditions may vary significantly from 
one working environment to another. 
 

 
Figure 7: Comparison between real and forecasted 
values of concentrations for single species of PAHs 
groups, in different scenarios of the "insulation 
activities" category, in: first line (a-b) and second line 
(c-d). 
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Besides the evaluation of the MAPE for each category 
of workplace, the MAPE for all species of pollutants, 
independent of the type of industrial process (Tab. 2), 
has been calculated. 
 
Table 2: Mean absolute percentage error for compounds 
considered most dangerous to human health 

Compound Carcinogenic 
potency 

MAPE 
(%) 

Benzo[a]anthracene 0.1 27.84 
Chrysene  0.001 23.26 
Benzo[b]fluoranthene 0.1 23.87 
Benzo[k]fluoranthene 0.01 19.58 
Benzo[a]pyrene 1 19.21 
Dibenz[a,h]anthracene 1 14.66 
Indeno[1,2,3-c,d]pyrene 0.1 25.22 

 
It is possible to observe from the previous table that, 
according to carcinogenic potency determined by the 
US EPA (Tab. 1), the most dangerous compound to 
human health, among the PAHs components, are 
Benzo[a]pyrene and Dibenzo[a,h]anthracene (TEF 
equal to 1). The forecast of the model of these 
compounds is characterised by a MAPE of about 17% . 

Calculating the B(a)peqfor each category of workplace 
using the values of concentration, both real and 
forecasted (Fig. 8), it has been observed that a higher 
gap has been detected between “B(a)peqreal” and 
“B(a)peq forecast” for a distance, among the sources of 
PAHs emissions and devices for environmental 
monitoring, of over 2 metres (second and third line). 
 

 

 
Figure 8: Comparison between real and forecasted 
values of concentrations of B(a)peq for different 
distances, in cases of: Energy activities (a); Production 
and processing of metals (b), Cooking (c) and Insulation 
activities (d). 
 
The evaluation of the MAPE, for different distances of 
each category, is summarised in the following table: 
 

Table 3: Mean absolute percentage error for different 
distances and categories of workplace 
Workplace First Line 

(%) 
Second Line 

(%) 
Third Line 

(%) 
Energy (a) 13.45 9.14 28.95 
Prod. (b) 20.62 40.58 30.83 
Cook. (c) 14.44 26.29 - 
Insulat. (d) 8.54 6.04 - 
Average 14.26 20.51 29.89 
 
A lower MAPE has been calculated for "first line"; 
namely when the distance between the source of PAHs 
emission and the device for environmental monitoring 
is less than 2 metres. This is the most dangerous case 
for human health; because the level of the concentration 
of the pollutants to which the workers are exposed is the 
highest. The model, in this case, is able to ensure the 
best reliability of the forecast. 
Significant MAPE values are due to a limited number of 
case studies from the scientific literature. However, the 
‘learning’ capability of the ANN will provide more and 
more reliable results, provided that new training cases 
are available. To this end, simulated cases by 
specialised software (e.g. NIST [x]) could also represent 
a good opportunity to enrich the ‘knowledge’ of the 
ANN. Under this perspective the computer-based tool is 
found to be even more effective in predicting PAHs 
concentration values, thus avoiding or reducing time-
consuming and expensive field investigations for the 
preliminary assessment of work environments as well as 
continuous monitoring. 
 
CONCLUSIONS 

The model is an efficient and economically 
sustainable tool: efficient because it can improve the 
performance with learning in time through the increase 
in the training data set. It is indispensable for a 
preliminary risk assessment and the environmental 
monitoring of a specific workplace. 

It is economically sustainable because the model can 
orientate the decision making process toward the 
identification of a limited number of PAHs compounds 
(whose presence is statistically noted). In this way it is 
possible to reduce the costs of monitoring 
environmental performance with analytical techniques. 
In fact, if the prediction of the model does not indicate 
the presence of a single compound it is not necessary to 
measure its concentration with analytical techniques. In 
doing so the costs can be reduced by 20% for each 
compound not detected. Assuring, however, a high level 
of protection to the workers' health. 

Moreover, performing environmental monitoring in 
parallel with the forecasting model and analytical 
methods, it is possible to reduce, in time, the sampling 
frequency of the analytical method. Reducing, once 
again, the costs of environmental monitoring and 
ensuring that the control of health in the workplace is 
efficiently and economically sustainable. 
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