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ABSTRACT 

The Insigma project goals include traffic optimization and 

control. It is assumed that advanced functions including 

traffic monitoring and prediction, route planning, and, 

finally, traffic optimization and control, will be able to 

utilize the available road infrastructure in an optimal way 

in order to minimize traffic jams and related social and 

environmental losses. The efficiency of these mechanisms 

will be evaluated through large-scale simulation 

experiments. However, before such experiments become 

feasible, an appropriate simulation environment must be 

prepared. In the paper, we discuss the application of 

SUMO as a simulation environment and its integration 

with Insigma’s traffic control layer. 

 

Keywords: road traffic, routing, simulation, traffic 

simulator, SUMO, Open Street Map (OSM). 

1. INTRODUCTION 

The Insigma project is aiming at the development of an 

intelligent information system for global monitoring, 

detection and identification of threats. The system collects 

data from various kinds of sensors, cameras, and users, 

and processes the data to identify threats and notify 

appropriate public services. One of Insigma’s tasks is road 

traffic optimization and control, which includes traffic 

lights, information boards, and route planning. 

Insigma’s goals with respect to traffic control are 

ambitious. On one hand, they contain a number of features 

related to public security (support for emergency services 

and special vehicles, collecting and reporting events, etc.); 

on the other hand, one of goals is traffic optimization and 

control. It is assumed that all control mechanisms will be 

based either on dynamic traffic data, collected and 

updated in real time, or on traffic forecast. 

The first obvious problem is the (feasible and right) 

approach to evaluation of designed and implemented 

mechanisms. It seems that large-scale experiments are 

only possible in a simulated environment. Such an 

environment should include a road traffic simulator 

integrated with a control layer, responsible for traffic 

management. In the paper, we discuss our work on 

integration the SUMO simulator with the routing service 

we have already developed (Małowidzki et al. 2012, 

2013a, 2013b). 

The paper is organized as follows: First, we discuss 

the traffic subsystem in Insigma and the routing service’s 

architecture and functions. Then, we overview SUMO and 

its key ideas related to performing simulations. Next, we 

comment on how we have integrated SUMO with the 

routing service, include an example, and describe our 

experience. We propose simulation scenarios. Finally, we 

overview related work and end the paper with summary. 

2. THE INSIGMA’S TRAFFIC SUBSYSTEM 

The Insigma’s ultimate (and somewhat ambitious) vision 

is presented in Figure 1. Insigma’s goals with respect to 

road traffic include traffic control, traffic prediction, route 

planning, and related functions. Despite the fact that 

ongoing work includes real-world equipment (advanced 

cameras located at crossroads, collecting detailed data 

about observed traffic license plate recognition software 

(Janowski et al. 2012), etc.), the only way to verify 

control algorithms is simulation. (Drivers would not be 

pleased finding themselves to be beta testers of our ideas.) 

Thus, we integrate the SUMO road traffic simulator with 

the control layer in order to prepare a complete simulation 

environment for traffic measurements and control. 
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Figure 1.  Insigma’s traffic subsystem architecture: 

control signals (arrows pointing up or left) and data flows 

(arrows pointing down or right) 

The control layer consists of a number of 

components. Some of them have already been 

implemented (the routing service, the static and dynamic 

maps), some are under development (traffic data 

warehouse), some remain to be designed and developed 

(load balancing, traffic optimization and control). At 

present, the control layer is represented by the routing 
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service (and the maps it utilizes), which is the main 

integration target; this is the reason we focus on the 

routing service in our paper. 

There are a number of such services commercially 

available and successful on the market (with Google Maps  

as a premier example), however, specific functions that 

the service was to support as well as planned integration 

with higher-level traffic control algorithms in practice 

required implementing a new one from scratch. 

In the following section, we discuss the routing 

service’s architecture and key ideas. 

3. THE ROUTING SERVICE 

The routing service’s internal architecture is shown in 

Figure 2. The architecture has been discussed in detail in 

our previous work (Małowidzki at al. 2012) but, for the 

completeness of the discussion, we briefly summarize it 

here. 
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Figure 2.  The route server’s internal architecture 

The main elements (components) are as follows: 

− Input/output, a component responsible for handling 

messages for clients, providing optional QoS and 

security functions; 

− Database, containing the static map and dynamic data  

(traffic statistics: drive and turn times, speeds, etc.). At 

present, the static map contains the Open Street Map 

(OSM) data, although the database format has been 

significantly modified for our purposes (refer to 

Małowidzki et al. (2013b) for details). 

− Graph Builder, responsible for transforming map data 

into a graph (a set of nodes and edges) that may be 

used for route computations; 

− Adapter(s), computing graph weights. Usually, each 

route type (Fast, Short, Optimal, etc.) requires a 

separate adapter. Their implementation may be trivial 

(e.g., for a Short route) or fairly complex, as it is in 

case of a privileged route adapter, described in 

Małowidzki et al. 2013a. Note that we assume that 

weights are functions of time (the start time of the 

drive at a given edge), which allows to take into 

account dynamic (current and predicted) traffic data. 

− Algorithm(s), performing route optimizations. 

Algorithms are separated from road data by adapters; 

they only see the graph with edge weights computed 

by adapters. We have tested a number of algorithms, 

including Ant Colony Optimization (Bedi et al. 2007) 

and an adapted version of SAMCRA (Góralski et al. 

2011), but found that Dijkstra-based algorithms (an 

optimized version using a priority queue or the A* 

algorithm (Hart et al. 1968)), perform best. 

− Finally, the Dispatcher, managing the above-

mentioned elements, and providing additional 

functions (e.g., alternative routes) and debugging 

capabilities. 

The software is implemented in the Microsoft .NET 4 

framework environment. The internal architecture is 

organized around a number of interfaces. Most crucial 

elements (.NET classes implementing well-known 

interfaces) that affect the service behavior (the graph 

builder, adapters, algorithms) are dynamically loaded 

according to the server’s configuration. 

We have also developed a client, implemented in 

JavaScript/OpenLayers environment. The client’s 

capabilities allow to make use of most of the routing 

service’s functions. 

4. SUMO 

SUMO (Simulation of Urban MObility) (Behrisch at al. 

2011, Krajzewicz et al. 2012) is a microscopic traffic 

simulator that models the movement of vehicles in space-

continuous map and uses a discrete time (with one-second 

resolution). Each vehicle is modeled separately and is 

described by a departure time (the time it starts its drive) 

and a route described by a set or roads. 

SUMO has been implemented in the Institute of 

Transportation Systems at the German Aerospace Center. 

The version used in our simulation is 0.16.0 (released in 

December 2012). 

The core of simulation software is written in C++. 

There are additional software libraries that allow to affect 

the simulation with Python and Java code. 

During the selection of the simulator, we also 

considered MATSim but we found SUMO to be more 

user-friendly and contain most functions we would 

require. 

SUMO’s key features are as follows: 

− Open source code; 

− Maturity of the project; new versions appearing 

regularly; 

− Sufficient documentation and examples; 

− Usage of XML, which provides configuration 

flexibility. We successfully developed a map 

converter for SUMO (see section 6). 

− An included converter for importing OSM maps; 

− A convenient API (called TraCI; available in C++, 

Python and Java) that allows to control the simulation; 

− Last but not least, a good GUI for simulation 

visualization. 

Regarding SUMO drawbacks, it does not support 

privileged vehicles (that would not have to obey the rules 

of the road), which is important in Insigma (support for 

emergency services is one of explicit goals of the project, 

see Małowidzki et al. (2013a)). This poses a problem with 

simulating this type of vehicles. 
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5. PERFORMING SIMULATIONS IN SUMO 

This section describes key simulation issues in SUMO. In 

the next section, we comment on how our “control loop” 

affects the way simulations are performed. 

Map preparation. SUMO’s approach to modeling 

map data is quite convenient. Three separate XML files 

describe, respectively, nodes, edges and connections. 

There are additional tools for map data processing. The 

main tool, netconvert, enables to coalesce these files into a 

SUMO map. OSM data import is easy. 

Routing vehicles. SUMO provides a dedicated tool, 

activitygen, for modeling traffic demands, but we decided 

to implement our own tool. (The main reason was that we 

wanted to have a better control of the demands. 

Additionally, we found activitygen’s configuration to be 

complex and insufficiently documented.) The tool 

supports three traffic classes: driving to work, business 

traffic, and transit traffic. We assume our map covers a 

city with residential districts and some center/production 

area. Our tool, given a population of the city, uses 

heuristics to generate flows for each traffic class. The 

flows are defined by a start and an end point for each 

vehicle. Then, we are either able to use SUMO’s routing 

functions or compute the routes ourselves (section 6). 

Moving vehicles. During each simulation step, which 

equals 1 second, and for every simulated vehicle, 

SUMO’s engine checks whether the vehicle can move 

ahead and then selects an appropriate speed value. The 

value may be set to: 

− The maximum allowed for a road; 

− The previous value increased by an acceleration 

factor; 

− The previous value decreased by a braking factor, if a 

vehicle is approaching a crossroad or an obstacle (a 

slower vehicle ahead). 

 

 

 

 

 

Figure 3.  A screenshot that presents a crossroad 

simulated in SUMO (Dmowski Roundabout in Warsaw) 

Then, a vehicle is moved according to the speed 

value. 

Road sensors. SUMO provides abstract detectors 

that can be used to collect data in any place we would like 

to observe: 

- Aerial induction loops provide average speed of 

vehicles passing them; 

- Crossroads may be monitored as black boxes 

providing average times needed to pass a crossroad in 

a particular relation (direction). 

Traffic control. Traffic control may be performed 

mainly through traffic lights. Two main control types are 

considered: Configuring time slices for a green light (in a 

given direction) and synchronizing subsequent crossroads 

along selected major roads to assure a “green wave,” that 

is, uninterrupted traffic through a number of crossroads. 

6. SUMO AND ROUTING SERVICE 

INTEGRATION 

This section describes the integration of SUMO and our 

routing service. 

Map preparation. Our database model is based on 

OSM but contains important extensions. Thus, we needed 

a dedicated tool able to convert our graphs into SUMO 

maps. Through an internal Graph Handler interface, it is 

possible to intercept the graph after it has been 

constructed by the Graph Builder. The intercepted graph 

is an input to a converter component, which generates the 

three required XML files (section 5), which are finally 

converted to a SUMO map by netconvert. 

The conversion retains crucial road parameters such 

as speed limits, lane counts, etc. Database identifiers are 

preserved as well, as they are later needed to identify 

roads in computed routes. Traffic control at crossroads is 

based on either traffic lights, priorities (specified on the 

basis of road signs) or the right hand rule. 

Routing vehicles using the routing service. The 

traffic demands are prepared as usually, using our tool 

described above. Having for each vehicle the start and the 

destination points, we do not rely on SUMO but instead 

ask the service to compute routes. Note that the routes are 

based on dynamic data, which are continuously updated 

(read from SUMO sensors and delivered to the dynamic 

map, see below). The interface is implemented in Python. 

Requests to the routing service may be synchronous 

or asynchronous. The synchronous mode may cause some 

time synchronization issues – see the discussion below – 

and is supported for testing purposes. In a more realistic 

approach, with asynchronous requests, a vehicle issues a 

request and continues its drive along the previous route; as 

soon as new route is available, it is passed to the vehicle. 

In case the new route cannot be applied (e.g., a vehicle 

has just passed a place where, according to the new route, 

it should have taken a turn), it is discarded and the vehicle 

continues its drive while a new routing request is 

scheduled. 

The data flow is presented in Figure 4. Data from 

SUMO sensors feed the dynamic map, and are consumed 

by the routing service when calculating routes. The 

simulation/control loop is thus closed. 
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Figure 4.  Information flow between SUMO and the 

routing service 

Road sensors. We collect traffic data in the 

following way: 

− Aerial induction loop provide us with average speed 

values. The loops are placed on every road. 

− Multi entry/exit detectors are put on every crossroad; 

they are a source of travel times through a crossroad in 

every relation. 

− SUMO can dump data periodically to XML files and 

we do it every 15 minutes.  

− Data collection may be performed in one of the two 

modes: 

o Offline mode that only records data from 

simulation to files and allows a later “replay,” i.e., 

setting the values in the dynamic map; 

o Online mode that requires both SUMO and 

control layer services be running simultaneously. 

Vehicle sensors. Additionally, we support a 

simulated GPS Tracker sensor. Such a sensor collects raw 

GPS vehicle positions and instant speed values, and 

delivers them to a tracker service. Data are collected from 

a set of selected cars (possibly, from all cars), stored 

locally, and delivered in larger packs (for improved 

performance). A number of parameters can be configured. 

GPS data are supplemented with some debugging 

information, which allows to perform on-line analysis of  

the tracker service’s correctness. 

Traffic control. Traffic control will be performed 

using two cooperating mechanisms: 

− The routing service, guiding individual vehicles and 

applying alternative paths to distribute load. We 

assume that traffic prediction (Małowidzki et al. 

2013b) will enable such distribution and possible 

jamming of “best” routes will be eliminated. 

− Traffic lights control, performed by high-level traffic 

optimization and control algorithms; this remains to 

be implemented. 

Clock synchronization and performance. SUMO 

itself is faster than real time. It may be slowed down by 

our integration layer (and additional processing involved). 

Clock synchronization is important for most control 

mechanisms to work properly. It is easy to artificially 

slow the simulation (make 1 second of simulated time 

equal to 1 second of wall time by introducing artificial 

delays). However, a coordination in case simulation is 

slower than real time may pose some problems, although 

our current experience suggests SUMO will be fast 

enough. 

We are going to simulate tens of thousands of 

vehicles and the routing service may become a bottleneck 

(at present, a typical request takes some 3-4 seconds to 

execute, with most of the time spent on graph 

construction). Fortunately, as the simulation will be 

limited to a single city, we plan (if necessary) to build and 

store the graph in memory, which should definitely 

improve performance. 

7. EXAMPLE 

The following example demonstrates the effectiveness of 

car routing using our service. Two selected cars use 

different routes (Figure 5. ): v1 drives along the shortest 

route (the red one, shown at the top) computed by SUMO 

while v2 employs the routing service, which is supplied 

with current traffic data, to get the fastest route (the green, 

bottom one). As a result, v1 enters a severe traffic jam and 

is considerably delayed; v2 takes a lightly loaded detour 

and arrives to a destination much earlier. 

 

 

Figure 5.  The jammed (upper) and the lightly loaded 

(bottom) routes (fragments shown) 

8. CURRENT EXPERIENCE 

Running simulations using an artificial graph is simple. 

Unfortunately, a real-world map conversion is a source of 

numerous problems, especially in case of a map that is not 

precise enough or is missing important road data. 

Conversion tools are either imperfect or not documented 

sufficiently (for example, the conversion between 

geographical coordinates and SUMO positions is quite 

tricky). Serious problems are caused by “micro-

crossroads,” that is, very short road segments between 

crossroads: They often cause a car to be unable to leave 

such a segment, clogging the crossroad forever. A 

common case is a deadlock of two opposite car directions, 

both trying to take a left turn and blocking each other. 

(These problems may be caused by map inaccuracies or 
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simulator bugs.) In order to successfully run our 

simulation on the OSM map for Warsaw, we had to 

perform a simulation, analyze deadlock points, correct the 

map, and repeat these steps multiple times. That proved to 

be a time consuming and tedious work. 

Apart from the problems mentioned above, we find 

running simulations in SUMO as relatively 

straightforward and enjoying. The strong feature of 

SUMO is its GUI front end, which allows to visualize 

moving cars in a nice manner and enables a full control 

over the simulation. It is uncomplicated to analyze the 

simulation and identify problems (such as, e.g., 

deadlocked crossroads). The main API, TraCI, is also 

functional enough; it allows, among other things, to route 

cars and control the traffic lights. Thanks to the fact that 

TraCI clients may be written in Python, we could easily 

write simulation scripts with desired logic and interfaces 

to our services (the routing service, the dynamic map, the 

GPS tracker, and, in future, the traffic control service). 

9. SIMULATION SCENARIOS 

Simulation scenarios we plan to perform include the 

following ideas: 

Evaluation of control mechanisms. First of all, we 

are going to evaluate the influence (and efficiency) of 

additional, more complex and more intelligent control 

features to the overall traffic system performance. Thus, 

we are going to enable subsequent control mechanisms 

and compare results for the following cases (from 

simplest to most complex): 

− routing service based on a static map only; 

− routing service provided with current dynamic traffic 

data; 

− routing service provided with both current dynamic 

traffic data and traffic prediction; 

− as above, with load balancing enabled; 

− as above, with traffic lights control enabled (a full 

scenario). 

Reliable vs. irresponsible drivers. Simulated 

“drivers” will be offered a number (probably, two or 

three) alternative routes, with the preferred one advised by 

a load balancing function. We could compare two cases, 

when all drivers select the recommended route or when 

some of them “know better” and do not obey. 

Full data about current traffic situation vs. 

“unsurveyed areas.” We could be able to compare the 

case when precise data are available for all roads and the 

case when only main roads are monitored (or, even worse, 

some sensors fail and report erroneous values). 

Additionally, the performance of GPS Tracker component 

could be compared with accurate data from higher-level 

sensors (i.e., directly from SUMO). 

Traffic prediction accuracy. We could check what 

happens when traffic has been predicted perfectly and 

what happens if, for an unknown reason, actual traffic 

differs significantly from the forecast. 

Modeling unexpected events. We plan to model 

accidents, intended traffic jams or sudden road closures 

and observe how the control layer copes with such a 

situation. 

Modeling privileged vehicles. SUMO does not 

support privileged vehicles directly but some limited 

experiments are still possible. For example, we could try 

to control the traffic lights along a privileged vehicle’s 

route in order to assure a green light at every crossroad. 

Note that most of the above scenarios compare the 

case of an “ideal” world (cooperating drivers, full 

information available, no unexpected events) with 

scenarios when something goes wrong, which often 

happens in the real world. 

10. RELATED WORK 

During related work review, we were mostly interested in 

(possibly) large-scale urban traffic simulations. Uppoor et 

al. (2013) generate a synthetic (although realistic) dataset 

of 24-hour car traffic for a 400-km
2
 area around the city of 

Koln; the dataset could be then employed in other studies 

(e.g., research on wireless networks with on-board 

terminals in moving vehicles). They use OSM as map data 

and SUMO as the simulation tool. Another example 

includes simulating Tel Aviv Metropolitan Area in 

MATSim (Bekhor, Dobler, and Axhausen 2010) in order 

to compare and match traffic flows (of the original traffic 

model for Tel Aviv and the flow computed in MATSim). 

Balmer, Nagel, and Raney (2004) perform a large-scale, 

24-hour microscopic traffic simulation for Switzerland 

(for the whole country). Garcia-Nieto, Alba and Olivera 

(2011) report on the usage of SUMO for  finding 

successful cycle programs of traffic lights for large urban 

areas. Ben-Akiva and Davol (2002) present a case study 

of simulations employed for traffic model calibration for 

an area near Stockholm. 

In addition to the above-mentioned SUMO and 

MATSim, there are a number of other urban traffic 

simulation tools. For example, MAINSIM (Dallmeyer and 

Timm 2012), which as able to simulate not only vehicles 

but bikes and pedestrians as well (although work on 

similar features in SUMO is ongoing (Krajzewicz et al. 

2012)). DIESIS (2008) contains a categorized list of 

transportation systems simulation tools. 

11. SUMMARY 

The Insigma’s goals related to traffic optimization and 

control are ambitious and require that appropriate 

simulation environment be prepared first. We have 

developed an advanced routing service and have 

successfully integrated it with SUMO. Future work will 

include planned control layer components and large-scale 

simulations. We hope we will be able to report valuable 

results. 
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