
TOWARDS LARGE SCALE ROAD TRAFFIC SIMULATION EXPERIMENT

Marek Małowidzki, Tomasz Dalecki, Przemysław Bereziński, Michał Mazur

Military Communication Institute

Zegrze, Poland

{m.malowidzki,t.dalecki,p.berezinski,m.mazur}@wil.waw.pl

ABSTRACT

The Insigma project goals include traffic optimization and

control. It is assumed that advanced functions including

traffic monitoring and prediction, route planning, and,

finally, traffic optimization and control, will be able to

utilize the available road infrastructure in an optimal way

in order to minimize traffic jams and related social and

environmental losses. The efficiency of these mechanisms

will be evaluated through large-scale simulation

experiments. However, before such experiments become

feasible, an appropriate simulation environment must be

prepared. In the paper, we discuss the application of

SUMO as a simulation environment and its integration

with Insigma’s traffic control layer.

Keywords: road traffic, routing, simulation, traffic

simulator, SUMO, Open Street Map (OSM).

1. INTRODUCTION

The Insigma project is aiming at the development of an

intelligent information system for global monitoring,

detection and identification of threats. The system collects

data from various kinds of sensors, cameras, and users,

and processes the data to identify threats and notify

appropriate public services. One of Insigma’s tasks is road

traffic optimization and control, which includes traffic

lights, information boards, and route planning.

Insigma’s goals with respect to traffic control are

ambitious. On one hand, they contain a number of features

related to public security (support for emergency services

and special vehicles, collecting and reporting events, etc.);

on the other hand, one of goals is traffic optimization and

control. It is assumed that all control mechanisms will be

based either on dynamic traffic data, collected and

updated in real time, or on traffic forecast.

The first obvious problem is the (feasible and right)

approach to evaluation of designed and implemented

mechanisms. It seems that large-scale experiments are

only possible in a simulated environment. Such an

environment should include a road traffic simulator

integrated with a control layer, responsible for traffic

management. In the paper, we discuss our work on

integration the SUMO simulator with the routing service

we have already developed (Małowidzki et al. 2012,

2013a, 2013b).

The paper is organized as follows: First, we discuss

the traffic subsystem in Insigma and the routing service’s

architecture and functions. Then, we overview SUMO and

its key ideas related to performing simulations. Next, we

comment on how we have integrated SUMO with the

routing service, include an example, and describe our

experience. We propose simulation scenarios. Finally, we

overview related work and end the paper with summary.

2. THE INSIGMA’S TRAFFIC SUBSYSTEM

The Insigma’s ultimate (and somewhat ambitious) vision

is presented in Figure 1. Insigma’s goals with respect to

road traffic include traffic control, traffic prediction, route

planning, and related functions. Despite the fact that

ongoing work includes real-world equipment (advanced

cameras located at crossroads, collecting detailed data

about observed traffic license plate recognition software

(Janowski et al. 2012), etc.), the only way to verify

control algorithms is simulation. (Drivers would not be

pleased finding themselves to be beta testers of our ideas.)

Thus, we integrate the SUMO road traffic simulator with

the control layer in order to prepare a complete simulation

environment for traffic measurements and control.

historical

datatraffic data

warehouse

plain

vehicles

emergency

services

traffic lights
sensors

(cameras etc.)

S
im

u
la

ti
o

n
 l
a
y

e
r

traffic optimization

& control
dynamic maprouting service

traffic lights

controlrouting,

alternative

routes

traffic prediction,

load balancing

data from

sensors

C
o

n
tr

o
l
la

y
e
r

Figure 1. Insigma’s traffic subsystem architecture:

control signals (arrows pointing up or left) and data flows

(arrows pointing down or right)

The control layer consists of a number of

components. Some of them have already been

implemented (the routing service, the static and dynamic

maps), some are under development (traffic data

warehouse), some remain to be designed and developed

(load balancing, traffic optimization and control). At

present, the control layer is represented by the routing

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

184

service (and the maps it utilizes), which is the main

integration target; this is the reason we focus on the

routing service in our paper.

There are a number of such services commercially

available and successful on the market (with Google Maps

as a premier example), however, specific functions that

the service was to support as well as planned integration

with higher-level traffic control algorithms in practice

required implementing a new one from scratch.

In the following section, we discuss the routing

service’s architecture and key ideas.

3. THE ROUTING SERVICE

The routing service’s internal architecture is shown in

Figure 2. The architecture has been discussed in detail in

our previous work (Małowidzki at al. 2012) but, for the

completeness of the discussion, we briefly summarize it

here.

Input/

Output

Client

database/

QoS

Dispatcher

Request

Response

Algorithms Adapters

Graph

Builder

Dynamic

data

Map

Services

Static

Map

Figure 2. The route server’s internal architecture

The main elements (components) are as follows:

− Input/output, a component responsible for handling

messages for clients, providing optional QoS and

security functions;

− Database, containing the static map and dynamic data

(traffic statistics: drive and turn times, speeds, etc.). At

present, the static map contains the Open Street Map

(OSM) data, although the database format has been

significantly modified for our purposes (refer to

Małowidzki et al. (2013b) for details).

− Graph Builder, responsible for transforming map data

into a graph (a set of nodes and edges) that may be

used for route computations;

− Adapter(s), computing graph weights. Usually, each

route type (Fast, Short, Optimal, etc.) requires a

separate adapter. Their implementation may be trivial

(e.g., for a Short route) or fairly complex, as it is in

case of a privileged route adapter, described in

Małowidzki et al. 2013a. Note that we assume that

weights are functions of time (the start time of the

drive at a given edge), which allows to take into

account dynamic (current and predicted) traffic data.

− Algorithm(s), performing route optimizations.

Algorithms are separated from road data by adapters;

they only see the graph with edge weights computed

by adapters. We have tested a number of algorithms,

including Ant Colony Optimization (Bedi et al. 2007)

and an adapted version of SAMCRA (Góralski et al.

2011), but found that Dijkstra-based algorithms (an

optimized version using a priority queue or the A*

algorithm (Hart et al. 1968)), perform best.

− Finally, the Dispatcher, managing the above-

mentioned elements, and providing additional

functions (e.g., alternative routes) and debugging

capabilities.

The software is implemented in the Microsoft .NET 4

framework environment. The internal architecture is

organized around a number of interfaces. Most crucial

elements (.NET classes implementing well-known

interfaces) that affect the service behavior (the graph

builder, adapters, algorithms) are dynamically loaded

according to the server’s configuration.

We have also developed a client, implemented in

JavaScript/OpenLayers environment. The client’s

capabilities allow to make use of most of the routing

service’s functions.

4. SUMO

SUMO (Simulation of Urban MObility) (Behrisch at al.

2011, Krajzewicz et al. 2012) is a microscopic traffic

simulator that models the movement of vehicles in space-

continuous map and uses a discrete time (with one-second

resolution). Each vehicle is modeled separately and is

described by a departure time (the time it starts its drive)

and a route described by a set or roads.

SUMO has been implemented in the Institute of

Transportation Systems at the German Aerospace Center.

The version used in our simulation is 0.16.0 (released in

December 2012).

The core of simulation software is written in C++.

There are additional software libraries that allow to affect

the simulation with Python and Java code.

During the selection of the simulator, we also

considered MATSim but we found SUMO to be more

user-friendly and contain most functions we would

require.

SUMO’s key features are as follows:

− Open source code;

− Maturity of the project; new versions appearing

regularly;

− Sufficient documentation and examples;

− Usage of XML, which provides configuration

flexibility. We successfully developed a map

converter for SUMO (see section 6).

− An included converter for importing OSM maps;

− A convenient API (called TraCI; available in C++,

Python and Java) that allows to control the simulation;

− Last but not least, a good GUI for simulation

visualization.

Regarding SUMO drawbacks, it does not support

privileged vehicles (that would not have to obey the rules

of the road), which is important in Insigma (support for

emergency services is one of explicit goals of the project,

see Małowidzki et al. (2013a)). This poses a problem with

simulating this type of vehicles.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

185

5. PERFORMING SIMULATIONS IN SUMO

This section describes key simulation issues in SUMO. In

the next section, we comment on how our “control loop”

affects the way simulations are performed.

Map preparation. SUMO’s approach to modeling

map data is quite convenient. Three separate XML files

describe, respectively, nodes, edges and connections.

There are additional tools for map data processing. The

main tool, netconvert, enables to coalesce these files into a

SUMO map. OSM data import is easy.

Routing vehicles. SUMO provides a dedicated tool,

activitygen, for modeling traffic demands, but we decided

to implement our own tool. (The main reason was that we

wanted to have a better control of the demands.

Additionally, we found activitygen’s configuration to be

complex and insufficiently documented.) The tool

supports three traffic classes: driving to work, business

traffic, and transit traffic. We assume our map covers a

city with residential districts and some center/production

area. Our tool, given a population of the city, uses

heuristics to generate flows for each traffic class. The

flows are defined by a start and an end point for each

vehicle. Then, we are either able to use SUMO’s routing

functions or compute the routes ourselves (section 6).

Moving vehicles. During each simulation step, which

equals 1 second, and for every simulated vehicle,

SUMO’s engine checks whether the vehicle can move

ahead and then selects an appropriate speed value. The

value may be set to:

− The maximum allowed for a road;

− The previous value increased by an acceleration

factor;

− The previous value decreased by a braking factor, if a

vehicle is approaching a crossroad or an obstacle (a

slower vehicle ahead).

Figure 3. A screenshot that presents a crossroad

simulated in SUMO (Dmowski Roundabout in Warsaw)

Then, a vehicle is moved according to the speed

value.

Road sensors. SUMO provides abstract detectors

that can be used to collect data in any place we would like

to observe:

- Aerial induction loops provide average speed of

vehicles passing them;

- Crossroads may be monitored as black boxes

providing average times needed to pass a crossroad in

a particular relation (direction).

Traffic control. Traffic control may be performed

mainly through traffic lights. Two main control types are

considered: Configuring time slices for a green light (in a

given direction) and synchronizing subsequent crossroads

along selected major roads to assure a “green wave,” that

is, uninterrupted traffic through a number of crossroads.

6. SUMO AND ROUTING SERVICE

INTEGRATION

This section describes the integration of SUMO and our

routing service.

Map preparation. Our database model is based on

OSM but contains important extensions. Thus, we needed

a dedicated tool able to convert our graphs into SUMO

maps. Through an internal Graph Handler interface, it is

possible to intercept the graph after it has been

constructed by the Graph Builder. The intercepted graph

is an input to a converter component, which generates the

three required XML files (section 5), which are finally

converted to a SUMO map by netconvert.

The conversion retains crucial road parameters such

as speed limits, lane counts, etc. Database identifiers are

preserved as well, as they are later needed to identify

roads in computed routes. Traffic control at crossroads is

based on either traffic lights, priorities (specified on the

basis of road signs) or the right hand rule.

Routing vehicles using the routing service. The

traffic demands are prepared as usually, using our tool

described above. Having for each vehicle the start and the

destination points, we do not rely on SUMO but instead

ask the service to compute routes. Note that the routes are

based on dynamic data, which are continuously updated

(read from SUMO sensors and delivered to the dynamic

map, see below). The interface is implemented in Python.

Requests to the routing service may be synchronous

or asynchronous. The synchronous mode may cause some

time synchronization issues – see the discussion below –

and is supported for testing purposes. In a more realistic

approach, with asynchronous requests, a vehicle issues a

request and continues its drive along the previous route; as

soon as new route is available, it is passed to the vehicle.

In case the new route cannot be applied (e.g., a vehicle

has just passed a place where, according to the new route,

it should have taken a turn), it is discarded and the vehicle

continues its drive while a new routing request is

scheduled.

The data flow is presented in Figure 4. Data from

SUMO sensors feed the dynamic map, and are consumed

by the routing service when calculating routes. The

simulation/control loop is thus closed.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

186

Figure 4. Information flow between SUMO and the

routing service

Road sensors. We collect traffic data in the

following way:

− Aerial induction loop provide us with average speed

values. The loops are placed on every road.

− Multi entry/exit detectors are put on every crossroad;

they are a source of travel times through a crossroad in

every relation.

− SUMO can dump data periodically to XML files and

we do it every 15 minutes.

− Data collection may be performed in one of the two

modes:

o Offline mode that only records data from

simulation to files and allows a later “replay,” i.e.,

setting the values in the dynamic map;

o Online mode that requires both SUMO and

control layer services be running simultaneously.

Vehicle sensors. Additionally, we support a

simulated GPS Tracker sensor. Such a sensor collects raw

GPS vehicle positions and instant speed values, and

delivers them to a tracker service. Data are collected from

a set of selected cars (possibly, from all cars), stored

locally, and delivered in larger packs (for improved

performance). A number of parameters can be configured.

GPS data are supplemented with some debugging

information, which allows to perform on-line analysis of

the tracker service’s correctness.

Traffic control. Traffic control will be performed

using two cooperating mechanisms:

− The routing service, guiding individual vehicles and

applying alternative paths to distribute load. We

assume that traffic prediction (Małowidzki et al.

2013b) will enable such distribution and possible

jamming of “best” routes will be eliminated.

− Traffic lights control, performed by high-level traffic

optimization and control algorithms; this remains to

be implemented.

Clock synchronization and performance. SUMO

itself is faster than real time. It may be slowed down by

our integration layer (and additional processing involved).

Clock synchronization is important for most control

mechanisms to work properly. It is easy to artificially

slow the simulation (make 1 second of simulated time

equal to 1 second of wall time by introducing artificial

delays). However, a coordination in case simulation is

slower than real time may pose some problems, although

our current experience suggests SUMO will be fast

enough.

We are going to simulate tens of thousands of

vehicles and the routing service may become a bottleneck

(at present, a typical request takes some 3-4 seconds to

execute, with most of the time spent on graph

construction). Fortunately, as the simulation will be

limited to a single city, we plan (if necessary) to build and

store the graph in memory, which should definitely

improve performance.

7. EXAMPLE

The following example demonstrates the effectiveness of

car routing using our service. Two selected cars use

different routes (Figure 5.): v1 drives along the shortest

route (the red one, shown at the top) computed by SUMO

while v2 employs the routing service, which is supplied

with current traffic data, to get the fastest route (the green,

bottom one). As a result, v1 enters a severe traffic jam and

is considerably delayed; v2 takes a lightly loaded detour

and arrives to a destination much earlier.

Figure 5. The jammed (upper) and the lightly loaded

(bottom) routes (fragments shown)

8. CURRENT EXPERIENCE

Running simulations using an artificial graph is simple.

Unfortunately, a real-world map conversion is a source of

numerous problems, especially in case of a map that is not

precise enough or is missing important road data.

Conversion tools are either imperfect or not documented

sufficiently (for example, the conversion between

geographical coordinates and SUMO positions is quite

tricky). Serious problems are caused by “micro-

crossroads,” that is, very short road segments between

crossroads: They often cause a car to be unable to leave

such a segment, clogging the crossroad forever. A

common case is a deadlock of two opposite car directions,

both trying to take a left turn and blocking each other.

(These problems may be caused by map inaccuracies or

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

187

simulator bugs.) In order to successfully run our

simulation on the OSM map for Warsaw, we had to

perform a simulation, analyze deadlock points, correct the

map, and repeat these steps multiple times. That proved to

be a time consuming and tedious work.

Apart from the problems mentioned above, we find

running simulations in SUMO as relatively

straightforward and enjoying. The strong feature of

SUMO is its GUI front end, which allows to visualize

moving cars in a nice manner and enables a full control

over the simulation. It is uncomplicated to analyze the

simulation and identify problems (such as, e.g.,

deadlocked crossroads). The main API, TraCI, is also

functional enough; it allows, among other things, to route

cars and control the traffic lights. Thanks to the fact that

TraCI clients may be written in Python, we could easily

write simulation scripts with desired logic and interfaces

to our services (the routing service, the dynamic map, the

GPS tracker, and, in future, the traffic control service).

9. SIMULATION SCENARIOS

Simulation scenarios we plan to perform include the

following ideas:

Evaluation of control mechanisms. First of all, we

are going to evaluate the influence (and efficiency) of

additional, more complex and more intelligent control

features to the overall traffic system performance. Thus,

we are going to enable subsequent control mechanisms

and compare results for the following cases (from

simplest to most complex):

− routing service based on a static map only;

− routing service provided with current dynamic traffic

data;

− routing service provided with both current dynamic

traffic data and traffic prediction;

− as above, with load balancing enabled;

− as above, with traffic lights control enabled (a full

scenario).

Reliable vs. irresponsible drivers. Simulated

“drivers” will be offered a number (probably, two or

three) alternative routes, with the preferred one advised by

a load balancing function. We could compare two cases,

when all drivers select the recommended route or when

some of them “know better” and do not obey.

Full data about current traffic situation vs.

“unsurveyed areas.” We could be able to compare the

case when precise data are available for all roads and the

case when only main roads are monitored (or, even worse,

some sensors fail and report erroneous values).

Additionally, the performance of GPS Tracker component

could be compared with accurate data from higher-level

sensors (i.e., directly from SUMO).

Traffic prediction accuracy. We could check what

happens when traffic has been predicted perfectly and

what happens if, for an unknown reason, actual traffic

differs significantly from the forecast.

Modeling unexpected events. We plan to model

accidents, intended traffic jams or sudden road closures

and observe how the control layer copes with such a

situation.

Modeling privileged vehicles. SUMO does not

support privileged vehicles directly but some limited

experiments are still possible. For example, we could try

to control the traffic lights along a privileged vehicle’s

route in order to assure a green light at every crossroad.

Note that most of the above scenarios compare the

case of an “ideal” world (cooperating drivers, full

information available, no unexpected events) with

scenarios when something goes wrong, which often

happens in the real world.

10. RELATED WORK

During related work review, we were mostly interested in

(possibly) large-scale urban traffic simulations. Uppoor et

al. (2013) generate a synthetic (although realistic) dataset

of 24-hour car traffic for a 400-km
2
 area around the city of

Koln; the dataset could be then employed in other studies

(e.g., research on wireless networks with on-board

terminals in moving vehicles). They use OSM as map data

and SUMO as the simulation tool. Another example

includes simulating Tel Aviv Metropolitan Area in

MATSim (Bekhor, Dobler, and Axhausen 2010) in order

to compare and match traffic flows (of the original traffic

model for Tel Aviv and the flow computed in MATSim).

Balmer, Nagel, and Raney (2004) perform a large-scale,

24-hour microscopic traffic simulation for Switzerland

(for the whole country). Garcia-Nieto, Alba and Olivera

(2011) report on the usage of SUMO for finding

successful cycle programs of traffic lights for large urban

areas. Ben-Akiva and Davol (2002) present a case study

of simulations employed for traffic model calibration for

an area near Stockholm.

In addition to the above-mentioned SUMO and

MATSim, there are a number of other urban traffic

simulation tools. For example, MAINSIM (Dallmeyer and

Timm 2012), which as able to simulate not only vehicles

but bikes and pedestrians as well (although work on

similar features in SUMO is ongoing (Krajzewicz et al.

2012)). DIESIS (2008) contains a categorized list of

transportation systems simulation tools.

11. SUMMARY

The Insigma’s goals related to traffic optimization and

control are ambitious and require that appropriate

simulation environment be prepared first. We have

developed an advanced routing service and have

successfully integrated it with SUMO. Future work will

include planned control layer components and large-scale

simulations. We hope we will be able to report valuable

results.

ACKNOWLEDGMENTS

The work has been co-financed by the European Regional

Development Fund under the Innovative Economy

Operational Program, INSIGMA project no.

POIG.01.01.02-00-062/09.

REFERENCES

Balmer, M., Nagel, K., Raney, B. 2004. Large–scale

multi-agent simulations for transportation

applications. Journal of Intelligent Transportation

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

188

Systems: Technology, Planning, and Operations 8, 4

(2004), 205–221.

Bedi, P., Mediratta, N., Dhand, S., Sharma, R., Singhal,

A., 2007. Avoiding Traffic Jam Using Ant Colony

Optimization - A Novel Approach. Conference on

Computational Intelligence and Multimedia

Applications.

Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.

2011. SUMO - Simulation of Urban MObility: An

Overview. SIMUL 2011, The Third International

Conference on Advances in System Simulation, 2011.

Bekhor, S., Dobler, C., Axhausen, K. W. 2010.

Integration of activity-based with agent-based

models. An example from the Tel Aviv model and

MATSim. ETH Zürich, Institut für Verkehrsplanung,

Transporttechnik, Strassen- und Eisenbahnbau (IVT)

(2010).

Ben-Akiva, M. E., Davol, A. 2002. Calibration and

Evaluation of MITSIMLab in Stockholm.

Transportation Research Board Meeting, January

2002.

Dallmeyer, J., Timm, I. J. 2012. MAINSIM - MultimodAl

INnercity SIMulation. 35th German Conference on

Artificial Intelligence (KI-2012).

DIESIS. 2008. D2.3 Report on available infrastructure

simulators. Design of an Interoperable European

federated Simulation network for critical

InfraStructures (DIESIS) project report, 2008.

Garcia-Nieto, J., Alba, E., Olivera, A. C. 2011. Enhancing

the Urban Road Traffic with Swarm Intelligence: A

Case Study of Córdoba City Downtown. Intelligent

Systems Design and Applications (ISDA).

Google Maps Developer Documentation:

https://developers.google.com/maps/documentation/

Góralski, W., Pyda, P., Dalecki, T., Batalla, J. M.,

Śliwiński, J., Latoszek, W., Gut, H. 2011. On

Dimensioning and Routing in the IP QoS System.

Journal of Telecommunications and Information

Technology, nr 3, p. 21-28.

Hart, P. E., Nilsson, N. J., Raphael, B. 1968. A Formal

Basis for the Heuristic Determination of Minimum

Cost Paths. IEEE Transactions on Systems Science

and Cybernetics. SSC4 4 (2): 100–107.

Janowski, L., Kozłowski, P., Baran, R., Romaniak, P.,

Glowacz, A., Rusc, T. 2012. Quality assessment for

a visual and automatic license plate recognition.

Multimedia Tools and Applications.

Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.

2012. Recent Development and Applications of

SUMO – Simulation of Urban Mobility.

International Journal on Advances in Systems and

Measurements, vol 5 no 3 & 4, 2012.

Małowidzki, M., Bereziński, P., Dalecki, T., Mazur, M.

2012. Advanced Road Traffic Service Demonstrator.

MCC’2012, Gdańsk, Poland.

Małowidzki, M., Dalecki, T., Bereziński, P., Mazur, M.

2013a. Traffic Routes for Emergency Services.

Accepted for EUROSIM’2013.

Małowidzki, M., Mazur, M., Dalecki, T., Bereziński, P.

2013b. Route Planning with Dynamic Data.

Accepted for MCC’2013.

MATSim: Agent-Based Transport Simulations:

http://www.matsim.org/

OpenGTS™ - Open GPS Tracking System:

http://opengts.sourceforge.net/

OpenLayers: http://openlayers.org

OpenStreetMap: http://www.openstreetmap.org/

SUMO: Simulation of Urban Mobility:

http://sumo.sourceforge.net/

Uppoor, S., Trullols-Cruces, O., Fiore, M., Barcelo-

Ordinas, J. M.. 2013. Generation and Analysis of a

Large-scale Urban Vehicular Mobility Dataset. IEEE

Transactions on Mobile Computing, 2013.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

189

https://developers.google.com/maps/documentation/
http://www.matsim.org/
http://opengts.sourceforge.net/
http://openlayers.org/
http://www.openstreetmap.org/
http://sumo.sourceforge.net/

