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ABSTRACT 
In this paper we consider  flow networks, which is an  
important class of networks, and which includes, for 
example, communication  networks, transportation and 
supply networks, oil and power supply systems, etc. In 
our model, the edges are subject to failure, which may 
be caused by "enemy attack", earthquakes, disruption of 
communication channels etc. Each edge is characterized 
by its failure probability and  flow capacity. The 
network reliability is defined as the probability that the 
flow between the source node and sink node is not less 
than some given threshold. Our approach to flow 
network reliability evaluation is based on  estimating by 
means of an efficient Monte Carlo simulation,  the 
network topological invariant called network 
destruction spectrum (D-spectrum).  We consider also   
a design problem on flow network, namely its edge  
reinforcement in order to increase in an "optimal" way 
the network reliability.   

 
Keywords: flow network, Monte Carlo simulation,  
D-spectra, network reliability design  

 
1. INTRODUCTION 
The maximum flow problem is a standard problem in 
operations research first solved by Ford and Fulkerson 
(Ford and Fulkerson 1962). They assumed that edges 
(and nodes) have some given nonrandom flow 
capacities. In stochastic flow network, it is assumed that 
edge (and/or node) capacities are random, which greatly 
complicates the problem and its solution.  

There is a vast literature on stochastic flow 
networks, see (Lin 2004, 2001, Ramirez-Marquez and 
Coit 2005, Younes and Hassan 2011) and references 
there. Typically, the reliability of a stochastic flow 
network is measured by the probability ( )P M   that 
the maximal flow M which can be delivered from 
source s to sink t will be no less than some critical value 

.  
When network edges may be in two states 

(up/down), and 0,   the reliability of the network 
reduces to so-called s-t connectivity which, contrary to 

the classical maximum flow problem, is already NP-
complete since its solution is based on enumeration of 
all s-t paths. Quite sophisticated methods have been 
developed to solve this problem by applying Monte 
Carlo methodology, see e.g. (Elperin, Gertsbakh and 
Lomonosov 1991). 

Further development in network reliability studies 
has been made by assuming that edges capacity is an 
integer-valued random variable (Lin 2001). The 
proposed solution method is based on finding all 
boundary points (i.e. all such path sets) which allow to 
deliver the minimal demand flow ,  and on applying 
the inclusion-exclusion techniques to compute the 
desired reliability. The applicability of this method is 
limited to rather small networks. The work (Ramirez-
Marquez  and Coit 2005) deals with a similar multistate 
model and introduces Monte Carlo (MC) approach. The 
MC is based on comparing already identified elements 
of the set of all multistate minimal cut vectors with 
randomly generated system state vectors.  

Also genetic algorithms have been applied for 
reliability evaluation of stochastic flow networks, see 
e.g. (Younes and Hassan 2011). 

The purpose of this paper is to demonstrate how a 
new methodology based on so-called D-spectra and 
BIM-spectra can be used for analysis and design of flow 
network reliability. 
 
2. BASIC NOTIONS AND DEFINITIONS 
 

2.1. Flow Network 
We define flow network N as a pair (V, E), where V is a 
node-set and  E  is a set of directed edges. In our model, 
nodes can never fail, while edges can. If an edge fails, 
we say it is down; otherwise it is up. For each edge e, 
the probabilities ( )p e  of being up and 

( ) 1 ( )q e p e  of being down are defined. Edges are 
assumed to be stochastically independent. In addition, 
for each edge e=(a,b)  directed from the node a to the 
node b, we define the maximal flow  ( )c e  which can be 
delivered from a to b along this edge. 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 68



Also let | | , | | .V n E m   By state of a network we 

call a binary vector 1 2( , , ..., ),mx x x  where 1,ix   if an 

edge is up and 0,ix   otherwise. We say that the 
network state is UP  if the maximal flow from source to 
sink is not less than some given value , and the state 
is DOWN, otherwise. 

Example 1.  Figure 1 below represents very simple 
flow network with 4 nodes and 4 edges. 

 

 
Figure 1: Flow Network with 4 Nodes and 4 Edges 

 
It is easy to check that the maximal flow from 

source s=1  to sink t= 3 equals 5. For example, it may 
be obtained by the following flows ( , )w i j  ( (i, j) is an 
edge defined by the nodes i and j):  

(1, 2) 2, (1, 4) 3, (2, 3) 2, (4, 3) 3.w w w w     
Suppose that we define the UP state for this 

network as a state with maximal flow no less than 3. 
Then, if for example the edge (1,4) is down, the 
maximal flow equals 2, and the network is in the 
DOWN state. 

 
2.2. D-Spectrum 
Let us now introduce the so-called destruction spectrum 
(D-spectrum), which will play a central role in our 
further network flow analysis. 

It is important to stress that the D-spectrum is a 
purely topological characteristic of the network which 
depends only on its structure and network DOWN  state 
definition. D-spectrum is completely separated from 
any information regarding the real stochastic 
mechanism which governs system failure appearance. 

Definition 1. (Gertsbakh and Shpungin 2009) 
Let  

1
( , ..., )

mi ie e   be a permutation of network 
edges. Suppose that initially all edges are up. Start 
turning them from up to down by moving along from 
left to right. Fix the first element 

ri
e when the network 

state becomes DOWN. The ordinal number of this edge 
in the permutation is called the anchor of  and 
denoted ( ).r    

Consider now the set of all !m  permutations and 
assign to each permutation probability 1 / !.m  Define 
the probability of the event ( ) { ( ) }A i r i   as 

 
# of permutations with ( )  

( ( ))
!i

r i
f P A i

m
 

 
  

        (1) 

Definition 2. (Gertsbakh and Shpungin 2009) 
The discrete density function { }, 1, 2,..., ,f i mi  is called 
the system  destruction spectrum (D-spectrum). 

1
,( ) 1, ...,

x

i
i

F x f x m


 
 

 is called the cumulative D-

spectrum.  
Example 1 (continued).  Let us demonstrate the 

notion of D-spectrum on a network given in Figure 1. 
Suppose that 3.  The total number of permutations 
of 4 edges in the network is 24. Let 

((1, 2), (2, 3), (4, 3), (1, 4)).   We see that the first 
index such that the network state becomes DOWN (that 
is the maximal flow is less than 3) is 3. Therefore 

( ) 3r   is the anchor of this permutation. After going 
over all permutations we arrive at the following D-
spectrum of the given network: 

1 2 3
1 1 1

, , .
2 3 6

f f f   The cumulative D-spectrum is 

therefore: 
1 5

(1) , (2) , (3) (4) 1.
2 6

F F F F     

Theorem 1. (Gertsbakh and Shpungin 2009) 
Suppose that all network edges have equal down 
probabilities, i.e. .iq q Then the probability that 
network is in the DOWN state is given by the following 
formula: 

  

1

!
( ) ( )

!( )!

m i m i

i

m
P DOWN F i q p

i m i



 


                      (2) 

 
Rather surprising relationship (2) established in 

this theorem follows from the fact that  the number of 
network failure sets ( )C x  of size , 1, ...,x x m  can be 
expressed via the D-spectrum ( )F x by means of the 
following simple combinatorial relationship:  

 
( )

( )
!/ ( !( ) !)

C x
F x

m x m x



                                             (3) 

 
Formula (3) says that ( )F x  is the ratio of the 

number of failure sets of size x among all possible sets 
of size x constructed from m different  elements.  This 
fact, in turn, follows from the definition of the 
cumulative D-spectrum ( )F x .  

It follows from (3) and independence of network 
edges that the probability  associated with failure sets of 
size x  equals ( ) (1 ) .x m xC x q q     Now (2) follows 
from the fact that the network is DOWN if and only if it 
is in one of its failure states. 

Example 1 (continued). Returning to our example 
1, we calculate from (3) that there are C(1)=2 failure 
sets of size  1,   C(2)=5 failure sets of size 2, C(3)=4 
failure sets of size 3 and one failure set of size 4.  For 
example, the failure sets of size 2 are all pairs of edges 

1 

2 

3 

c=2 c=2 

c=3 c=3 

4 
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except of the pair ((1,2), (2,3)). We have by the 
theorem:  3 2 2 3 4( ) 2 5 4 .P DOWN qp q p q p q     

Now we will introduce so-called Birnbaum 
Importance Measure (BIM) (Barlow and Proschan 
1975) for system components. In simple words, BIM of 
edge j (denoted BIM j ) is the gain of network reliability 
obtained by replacing down edge j by an absolutely 
reliable one. Formally, BIM j   is defined as follows. 

Definition 3.  

1 1BIM ( , ...0 , ..., ) ( , ...,1 , ..., ),j j m j mG p p G p p  where

1( , ...0 , ..., )j mG p p is the probability that the network is 

DOWN when edge j is down, and 1( , ...,1 , ..., )j mG p p is 
the probability that the network is DOWN when the 
edge j is up.  

The important role played by  jBIM  follows from 

the fact that jBIM  equals the partial derivative of 
system reliability function 

1 1( , ..., ) 1 ( , ..., )m mR p p G p p   with respect to ,jp  see 
(Barlow and Proschan 1975).  

The knowledge of edge BIMs is the key element in 
finding the optimal network reinforcement strategy. The 
use of BIM in reliability practice was very limited since 
typically the system reliability function 1( , ..., )mR p p  is 
not available in explicit form. 

It turns out that in the case of equal component 
reliability there is a surprising connection between the 
BIMs and the network D-spectrum and its modification 
called BIM-spectrum which allows estimating and 
ranking the component BIMs without knowing the 
analytic form of system reliability function. 

Definition 4. (Gertsbakh and Shpungin 2009) 
Let ( ;0 )jN x  be the number of permutations satisfying 
the following two conditions: 

 
(i) If the first x edges in the permutation are 

down, then the network is DOWN; 
(ii)  Edge j is among  the first x elements of the 

permutation. 
 
The collection  

{ ( , ) ( ; 0 ) !( )!/ !}jz x j N x x m x m  
 

for a fixed j and 1, 2, ...,x m is called the 
BIM j  spectrum of edge j. 

The collection of all { ( ; ), 1, 2, ..., }z x j x m for 
1, ...,j m  is called the network BIM-spectrum. 
Let ( )N x be the number of permutations satisfying 

(i) only. Denote by ( ;1 ) ( ) ( ; 0 ).j jN x N x N x   
Theorem 2. (Gertsbakh and Shpungin 2009)  Let 

, 1 .ip p q p    Then 
 

1

1

1
(

!( )!
( ; 0 ) (1 )

m x m x
j j

x x m x
BIM N x q q 





    

1 )( ;1 ) (1 )x m x
jN x q q                                                 (4)                      

 
The hint to the  proof of this theorem is the 

following : the first sum in (4) equals the first term 

1( , ...0 , ..., )j mG p p in the expression of jBIM   
(Definition 3), and the second sum in (4) – to the 
second term in jBIM   in the same Definition 3. 

Theorem 3. (Gertsbakh and Shpungin 2009)  
If for all  1 x m   the inequality ( , ) ( , )z x i z x j  

holds  then ,i jBIM BIM  no  matter what the values 
of q are. 

Suppose that the previous condition does not take 
place. Than let the k be the maximal index  such that 

( , ) ( , ).z x i z x j  Suppose that ( , ) ( , ).z k i z k j  

Then there exists some value 0p  such that for all 

0p p  the inequality i jBIM BIM  holds. 
Example 1 (continued). Let us take the edge (1,2) 

from the network in Figure 1 and compute 2,(1,2)z . It is 
easy to see that there are 8 permutations  such that the 
network is DOWN when the two first edges of   are 
down, and the edge (1,2) is one of them. So 

2,(1,2)z =8/24. We have for this edge the following BIM-
spectrum:  

1,(1,2) 2,(1,2) 3,(1,2) 4,(1,2)
8 18

0, , , 1.
24 24

z z z z     

For  edge (2,3) we have the same BIM-spectrum, and 
for  edges (1,4) and (4,3) the BIM-spectrum is the 
following  (x stands for the edge (1,4) or the edge (4,3)). 

1, 2, 3, 4,
6 12 18

, , , 1.
24 24 24x x x xz z z z     

We see from this example that by Theorem 3, the BIMs 
of the edges (1,4) and (4,3) are greater than those of the 
edges (1,2) and (2,3) for all values of q. 
 
3. MONTE CARLO FOR D-SPECTRA AND 

BIM-SPECTRA 
Exact computation of  D-spectra and BIM-spectra is an 
NP-hard problem.   The  practical way to calculate the 
spectra is approximating them using Monte Carlo (MC) 
methodology.   The books (Gertsbakh and Shpungin 
2009, 2011a)  contain a series of efficient MC 
algorithms and examples of spectra calculation. 

We give here a non-formal explanation of MC 
algorithms adopted to our purpose.   

To estimate F(x), simulate M random permutations 

1 2( , ,..., )mi i i  of edge numbers and imitate a 
sequential destruction of edges by moving along a 
permutation from left to right and by remembering the 
number iN  of such permutations that the system went 
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DOWN on the i-th step of the destruction process. 
Afterwards, as an MC estimate of F(x) take the ratio 

1
ˆ ( ) ( ... ) / .xF x N N M    

Note  that in order to check  the state of the 
network  on certain  step of the destruction process, we 
use the Ford-Fulkerson algorithm (Cormen, Rivest, 
Leicerson, and Stein 2009) for calculating the maximal 
flow. If it turns out that  the maximal flow is less than 

,  we say that the network is DOWN.  
An important fact is that there is no need to check 

the network state on each step of the destruction 
process. The position of the  anchor in a given 
permutation 

1
( ),...,

mi ie e    can be efficiently found 
by applying bisection search algorithm,  which works as 

follows. Erase the first 
2

m 
  

edges of the permutation. 

Check the state of the network using  Ford-Fulkerson 
algorithm. If the network is already DOWN, the anchor 

should be among the first
2

m 
  

positions. If  the network 

is UP, the anchor is among the remaining part of the 
permutation. Proceed in a similar way by bisecting the 
relevant part of the permutation until the position of the 
anchor is located. On the average, the number of flow 
checks is of magnitude 2(log ( )).O m  

To approximate BIM-spectra, modify the above 
procedure and count the number of 
permutations ( ; 0 )jM x equal to the number of 
permutations such that the system went DOWN during 
the first x failures and edge  j was among these x 
components. 

Example 1 (continued). Let us illustrate the  D-
spectrum calculation on the network in Figure 1. Take 
the number of permutations M=5. Denote the network 
edges: (1,2)=1, (1,4)=2, (2,3)=3, (4,3)=4. Suppose that 
the generated permutations are: 1 (1, 2,3, 4),   

2 3 4(4, 3, 2,1), (1, 3, 2, 4), (2,1, 3, 4),      

5 (3,1, 2, 4).   We see that in these five permutations 
the network went DOWN twice on the first step,  once 
on the second step, and twice on the third step. So the 
estimators for ( )F x  are the following: 

2 3
5 5

(1) , (2) , (3) (4) 1.F F F F   
   

 Naturally, these 

values are far from the exact values (calculated above), 
because the number M of replications is too small. 

Remark. Suppose that edge up probability p is not 
known exactly (as it usually takes place in practice) and 
lies in the interval  min max[ , ].p p p  Since network 
reliability is a monotone function of its component 
reliability, we have the following bounds on 

( ) :R p min max( ) ( ) ( ).R p R p R p   These bounds may 
be quite valuable in case of "fuzzy" information about 
the q values.     

4. NUMERICAL EXAMPLES 
 

4.1. Network Reliability as a Function of p 
Let us consider the network from Figure 2. This 
network has 15 nodes (two of which are terminals, 1   
and 2) and 35 edges.  

 

 
   Figure 2: Flow Network with 15 Nodes and 35 Edges 

 
The edge capacities ( , )c a b  are given by the Table 

1.  In the case two nodes, say x and y are connected by 
some parallel edges, we denote them by (x,y)1, (x,y)2  

and so on.  We consider also edges  ( , )a b  with flow  
going from a to b and in opposite direction. For 
example, we see in the table the edges (4,8) and (8,4). 

 The initial maximal flow for the given capacities 
equals 22.  

            Table 1:  Edge Capacities 
a,b c(a,b) a,b c(a,b
1,3 8 (8,9)3 3 
1,8 9 8,11 4 

1,10 8 9,5 6 
3,4 6 9,6 4 
3,7 6 9,2 5 
4,5 6 9,11 4 
4,8 6 9,12 5 

(4,13)1 5 10,11 5 
(4,13)2 2 11,9 4 

5,6 6 (11,12)1 4 
5,14 5 (11,12)2 2 
6,2 6 12,2 6 
6,9 3 12,15 5 
7,4 5 13,14 5 
7,8 4 13,5 5 
8,4 4 14,2 5 

(8,9)1 5 15,2 5 
(8,9)2 4   

5 

3 4 13 14 

6 7 

8 

9 

10 
11 12 15 

1 2 
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The most important  characteristic of the network 
is its  reliability ( ) 1 ( ; )R p P DOWN q  as a function of 

, 1p p q  . Let us demonstrate how this characteristic 
is computed using D-spectrum, for two values of the 
threshold:  =10 and  =12. Table 2 presents the edge 
cumulative spectra obtained by means of Monte Carlo 
simulation of 45 10  edge permutations. For example, 
the row for x=6 gives the probabilities 0.12924 and 
0.20202 that the anchor for  =10 and  =12, 
respectively, is on one of the first six positions in 
random edge permutations. 

 
       Table 2:  Edge Cumulative Spectrum 
x ( )F x  

  =10  
( )F x  

 =12 
x ( )F x  

 =10 
( )F x  

 =12 
1 0 0 14 .81732 .93196 
2 .00874 .01144 15 .88206 .96366 
3 .02532 .0363 16 .92814 .98202 
4 .05094 .0759 17 .96014 .992 
5 .0851 .13134 18 .9795 .99692 
6 .12924 .20202 19 .9903 .99916 
7 .18566 .28702 20 .99608 .99968 
8 .25376 .387 21 .9984 .99998 
9 .33694 .49746 22 .99938 1 
10 .43354 .61082 23 .99976 1 
11 .53428 .7172 24 .9999 1 
12 .63944 .81052 25 1 1 
13 .735 .88198 26 1 1 
       
With probability ≈ 0.92 the anchor is greater than 

5, for 10.   So, with probability close to 0.92 
network failure takes place after 5 edges have failed. 
For 12,   with probability close to 0.92 network 
failure occurs after 4 edges have failed. 

Table 3 presents network UP state probabilities for 
various values of p. The calculations were performed 
using formula (2). 

 
                          Table 3: R(p) 

p R(p) 
 =10 

R(p) 
 =12 

0.1 0 0 
0.2 .000032 .000002 
0.3 .001121 .000159 
0.4 .0129 .0034 
0.5 .0725 .0286 
0.6 .2375 .1309 
0.7 .5095 .3669 
0.8 .7819 .6826 

0.85 .8809 .8206 
0.9 .9485 .9223 

0.95 .9872 .9816 
0.975 .9968 .9956 

 
We see from the table that if, for example,  we 

want to guarantee that the network is UP with 

probability greater than 0.95, it is enough to demand 
that  edges be up with p>0.9, for  =10.  

 
4.2. Edge Reinforcement Problem 
By reinforcing an edge we mean  replacing it by a more 
reliable one. This operation can be applied to a given 
number k of edges. The problem is  to achieve the 
maximal network reliability by "the best possible" 
choice of the candidates for this replacement. In the 
case of equal edge probabilities we suggest the 
following method (Gertsbakh and Shpungin 2009, 
2011a). 

 
1. Estimate the BIM-spectra for all edges. 
2. Range the edges by their BIM's spectra. 
3. Take the first k edges with the highest BIM 

values and replace them by more reliable ones. 
 
Note that this method is based on Theorem 3 from 

the Section 2.  
Let us consider the network  from Figure 2 and let 
10.    Suppose  that we can reinforce 3 edges. We 

skip here the intermediate results of the calculations. 
The final results are the following. The edges (1,3), 
(1,8), and (10,11) must be reinforced (they are marked  
bold in Figure 2). This conclusion may seem to be 
intuitively obvious, but for larger and more complicated 
networks similar conclusions are not so clear.  

For illustration, the following Table 4 gives 
estimated values ( ; ( , ))z x a b of BIM-spectrum for one of 
the most important edges - (10,11), and  a less 
important edge  (13,14), for even  x  values.  

 
Table 4: The BIM's Spectra 

x ( ; (10,11))z x  ( ; (13,14))z x  
2 .0037 0 
4 .0207 .0034 
6 .0524 .0157 
8 .1008 .0474 
10 .1700 .1106 
12 .2592 .2056 
14 .3534 .3183 
16 .4386 .4217 
18 .5104 .5036 
20 .5702 .5695 
22 .6294 .6278 
24 .6838 .6830 
26 .7423 .7419 
28 .8008 .7997 
30 .8568 .8564 
32 .9152 .9140 
34 .9720 .9708 

 
We see that the values of BIM-spectrum for edge 

(10,11) are consistently greater than  those  of edge 
(13,14). Remind that this means that  (10,11) is more 
important than (13,14), no matter what the values of q 
are. 
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Remark. As it was noted, the BIM spectrum is a 
topological invariant for most reliability criteria, but in 
the case of flow networks the edge capacities may affect 
the spectrum.  Nevertheless also in this case the 
topological features of the edge prevail on its capacity 
value influence. 

To illustrate the remark, let us take from the 
network on Figure 2 two edges: (1,10) with capacity 
c(1,10)=8, and (10,11) with c(10,11)=5. In spite of the  
difference in capacities, all values of BIM-spectrum of 
edge (10,11) are consistently greater of those of edge 
(1,10).      

For the second example take three  parallel edges 
connecting  nodes 8 and 9. We see from  table 1 that  

1 2 3((8,9) ) ((8,9) ) ((8,9) ).c c c   Clearly that these 
three edges have the same topological features, but here 
the edge capacities affect the BIM-spectra, and we have 

1 2 3( , (8, 9) ) ( , (8, 9) ) ( , (8, 9) ).z x z x z x    
Note that introducing parallel edges is a way of 

having edges with more than two states. For example, 
two independent edges connecting nodes 4 and 13 may 
be viewed as one edge with four possible capacities 0, 
2, 5 and 7 with probabilities 2 , (1 ),  (1 ),q q q q q  and 

2
,(1 )q  respectively. 

 
5. POSSIBLE EXTENSIONS 
To the best of our knowledge, there are no publications    
devoted to using network D-spectra technique to the 
study of network flow behavior in networks with  
unreliable edges.  The model considered  in this paper  
can be extended  in several directions.  

First, our method may be easily extended to the 
case of unreliable nodes. 

Second, we  can  introduce several  flow sources 
and  several  sinks.  

Finally, introducing   cost for edge reinforcement 
(for the purpose  of increasing their reliability and/or 
flow capacity)  will bring us to  the search for  the 
"best" predisaster design, similar to  the study made  by 
(Gertsbakh and Shpungin 2009, 2011b, Levitin, 
Gertsbakh, and Shpungin 2010, Peeta, Salman, Gunnec, 
and Kannan 2010).  
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