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ABSTRACT 
Some studies in the multi-echelon inventory systems 
literature have used a negative binomial distribution to 
approximate that of a critical random variable arising in 
the inventory model. Graves (1996) developed a model 
with fixed replenishment intervals where each site 
follows a base stock policy. He proposed – in the one-
warehouse, N-retailer case – a negative binomial 
distribution to approximate a random variable which he 
referred to as “uncovered demand”. Computational 
evidence was provided to demonstrate the effectiveness 
of the approximation. Graves then suggested search 
procedures for approximately optimal base stock levels 
at the warehouse and N identical retailers under two 
customer service criteria: (i) probability of no stockout 
and (ii) fill rate. A separate analytical evaluation of the 
negative binomial approximation has also been reported 
elsewhere. In the current study, we apply a modeling 
and simulation approach to assess whether the 
approximation-based search procedures, in fact, lead to 
optimal stock levels. 
 
Keywords: one-warehouse and N-retailer inventory 
system, multi-echelon inventory model, base stock 
policy, negative binomial approximation, modeling and 
simulation 

 
1. INTRODUCTION 
Since the seminal work by Clark and Scarf (1960), 
many studies on multi-echelon inventory systems have 
appeared in the literature.  These systems involve two 
or more levels of entities handling or storing inventory 
of an item or items.  Typical entities in a distribution 
network, for example, would be distribution centers or 
warehouses, at national, regional, or sub-regional levels, 
as well as retail sites. 

Simplifying assumptions which have been made in 
some multi-echelon models have allowed for 
mathematical tractability. However, in order to better 
capture the  complexities of multi-echelon systems that 
actually exist in practice, those restrictive assumptions 
have had to be relaxed in favor of more realistic ones 
(e.g., random demand or stochastic leadtimes). Some of 
the more complex elements of the resulting models 
have sometimes required the introduction of 

approximations to continue to permit analytical 
investigation. 

The negative binomial distribution (NBD), with 
discrete density function (e.g., Mood, Graybill, and 
Boes 1974): 
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has parameters p and r. The parameter p is a probability 
of “success” ( 10 ≤< p ) and the parameter r (a positive 
integer) is a target number of successes. A realization x 
of the random variable X represents a number of failures 
before the rth success is attained.  

An NBD was earlier used by Graves (1985) as an 
approximation to the distribution of outstanding orders 
for a repairable item under one-for-one replenishment in 
a two-echelon system involving N operating sites 
supported by a repair depot. The distribution of Qi(t), 
the outstanding orders at operating site i at time t, is 
observed to be unimodal, with its variance greater than 
its mean. Graves proposed to approximate the 
distribution of Qi by a negative binomial distribution 
with the same mean and variance as the exact 
distribution. He reported that the approximation erred in 
only 0.9% of 1,968 test cases in specifying stockage 
levels that would minimize inventory holding and 
shortage costs. Graves reported that, in comparison, the 
METRIC model developed by Sherbrooke (1968) 
understated stockage requirements in 11.5% of the 
cases. 

Lee and Moinzadeh (1987) confirmed the 
effectiveness of the negative binomial approximation 
under a more general setting: a two-echelon model for a 
repairable item with batch ordering at the operating 
sites. The approximation is excellent, with a maximum 
percentage of cost deviation of 2% for the special case 
when the batch size is one, which corresponds to the 
one-for-one replenishment policy assumed by Graves 
(1985). The performance of the approximation appears 
to deteriorate for larger batch sizes, but the maximum 
cost deviations are below 9% up to a batch size of 
seven. 

Graves (1996) reported the negative binomial 
approximation of a random variable referred to as 
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uncovered demand to be “a very accurate 
approximation.”  However, he provided only an 
illustration of the accuracy of the approximation, while 
citing that the effectiveness of such an approximation 
had been shown by Graves (1985) and Lee and 
Moinzadeh (1987) for the systems they considered. 

In all three multi-echelon inventory studies cited 
above that have proposed a negative binomial 
approximation, computational evidence has been 
offered in support of the proposed approximation. A 
first analytical evaluation of the negative binomial 
approximation was reported by Solis, Schmidt, and 
Conerly (2007), applying to the latest of the three 
models (Graves, 1996). In the current study, we apply 
the modeling and simulation approach to evaluate 
Graves’ NBD approximation. In effect, Modeling and 
Simulation have proved to be one of the most powerful 
approaches when dealing with complex stochastic 
systems (Bruzzone, 2002; Bruzzone, 2004); in 
particular, the authors have a long experience in using 
Modeling and Simulation based approaches for 
inventory management problems (see for instance, De 
Sensi et al., 2008; Longo and Mirabelli, 2008; Curcio 
and Longo, 2009). 

This paper is organized as follows. In section 2, we 
present a summary of Graves’ (1996) model. We 
discuss our modeling and simulation approach, as well 
as our preliminary simulation results, in section 3. In the 
final section, we present our conclusion and expected 
directions for further study.  

 
2. GRAVES’ MODEL 
In this section, we present a slightly modified version of 
a summary, as earlier prepared by Solis and Schmidt 
(2009), of the major assumptions and results in Graves’ 
(1996) model.  

The model involves an arborescent system with M 
inventory sites each having a single internal supplier, 
with the exception of site 1, a central warehouse (CW) 
whose inventory is replenished by an external supplier.  
Customer demand occurs only at retail sites, at the 
lowest echelon.  All other sites are storage and/or 
consolidation facilities, called transshipment sites.  The 
unique path linking a retail site to the CW is the supply 
chain for the retail site. 

The analysis involves a single item of inventory. 
The demand at each retail site j is an independent 
Poisson process with demand rate λj. Dj(s,t) represents 
the demand over the time interval (s,t] for site j. The 
item under study is included in a multi-item distribution 
system, with each shipment being a consolidation of 
orders for various items. Site j places its mth 
replenishment order on its supplier at preset times pj(m) 
with fixed intervals. Fixed positive leadtimes τj are 
assumed for shipments to site j from its supplier; the mth 
order is thus received at time rj(m) = pj(m)+τj.  When 
inventory is in short supply, the supplier will ship less 
than the quantity ordered and make up for the shortfall 
on later shipments. Customer demand is fully 
backordered.  The external supplier is fully reliable and 

fills every order by the CW with a fixed leadtime τ1.  
Each site j follows a base stock policy.  Initial inventory 
(at time 0) at site j is the base stock level Bj for site j.  
Tj(m) represents the coverage provided by the supplier 
to site j on its mth order, with Dj[Tj(m–1),Tj(m)] units 
shipped by the supplier.   

Graves’ model assumes virtual allocation. 
Whenever a unit demand occurs at the retail site, each 
site on the supply chain increases its next order quantity 
by one. At the same time, each site on the supply chain 
commits one unit of its inventory, if available, for 
shipment to the downstream site on the latter’s next 
order occasion. Virtual allocation, while possible under 
current information technology, is not the common 
practice but is assumed for mathematical tractability. It 
is found by Graves to be near-optimal in many cases.   

A random variable requiring attention is Aj(t), 
which denotes the available inventory at site j at time 
t—on-hand inventory not yet committed for shipment to 
another site. Aj(t) < 0 indicates backorders. Graves 
establishes that, if rj(m) ≤ t < rj(m+1), then  

 
Aj(t) = Bj – Dj[Tj(m),t].    (2) 

 
Let site i be the internal supplier to site j. If Tj(m) < 

pj(m), then Tj(m) equals the time when site i would run 
out of available inventory to allocate to site j. Consider 
the relevant shipment to the supplier i such that, at 
pj(m), site i has received its nth shipment but not yet its 
(n+1)th shipment. Suppose that, based upon its receipt of 
this nth shipment, site i is able to cover the demand 
processes of its successor sites up through time Si(n). 
We call Si(n) the depletion or runout time for this nth 
shipment to site i.  It follows that 
 
Tj(m) = min{pj(m),Si(n)}.                 (3) 
 
Then Si(n) – Ti(n) is the buffer time provided by Bi, and  
 
Si(n) – Ti(n) ∼ gamma(λi,Bi).                (4) 

 
Graves then focuses on a two-echelon system 

consisting of sites 1 (the CW) and j (N retailers).  A 
single-cycle ordering policy is in place: each retailer 
orders a fixed number of times for every order placed 
by the CW.  If θ1 and θj respectively denote the CW and 
retail site order cycle lengths, θ1/θj is a positive integer.  
The ordering policy is also nested: every time the CW 
receives a shipment, all retail sites place an order. 

Consider an arbitrary (nth) CW order cycle.  Graves 
simplifies the analysis by setting time zero equal to 
p1(n).  Graves draws attention to the last, or (θ1/θj)th, 
retail site order within the CW order cycle, placed at 
time pj = τ1+θ1–θj and received at time pj+τj.  The 
resulting available inventory will be used to cover 
demand until the next order, placed at time pj+θj, arrives 
at the retail site at time tr = τ1+θ1+τj.  The instant of 
time tr

– just before this replenishment proves crucial to 
the analysis.  In this case, rj(m) ≤ tr

– < rj(m+1) holds. 
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Treating this (θ1/θj)th order as the mth order for the 
retail site j within the nth CW order cycle, the indices m 
and n are henceforth dropped for notational 
convenience. Rewriting (3), Tj = min{pj,S1} is the 
coverage provided by the (θ1/θj)th shipment to retail site 
j.  From (4), S1 ∼ gamma(λ1,B1).  

Graves defines a random variable Dj[Tj,t], which 
he calls uncovered demand (up to some specified point 
in time t): demand at retail site j not covered by the 
(θ1/θj)th shipment from the CW. He derives the 
following mean and variance:   
 
E{Dj[Tj,t]} = λj (t – E[Tj])    (5) 
         
Var{Dj[Tj,t]} = λj (t – E[Tj]) + λj

2 Var[Tj].  (6) 
 

He reports computationally finding the NBD having the 
same first two moments to be a fairly accurate 
approximation to the distribution of Dj(Tj,t). Graves 
presents very limited evidence in support of his 
assertion, however. Based on (5) and (6), the parameters 
of the NBD approximation are determined as follows:  
 
r = (t – E[Tj])2 / Var[Tj]                 (7) 
 
p = (t – E[Tj]) / {(t – E[Tj]) + λjVar[Tj]}.               (8) 
 

Graves proposes a procedure for each of the two 
most commonly specified service level criteria (Silver, 
Pyke, and Peterson 1998) that would search for a base 
stock policy <B1,Bj> that minimizes expected on-hand 
inventory in the system. The first service criterion is an 
average probability of no stockout α.  The other service 
measure is an average fraction of demand to be satisfied 
from stock on hand, or fill rate β. 
 
2.1. Probability of No Stockout as Service Criterion 
The probability of the retail site stocking out is greatest 
for the (θ1/θj)th retail order within the CW order cycle.  
To set base stock levels to achieve a given probability α 
of the retail site not stocking out within the CW order 
cycle,   

 
Pr{Aj(tr

–)≥0} ≥ α,                 (9) 
 
needs to be assured. The distribution of uncovered 
demand Dj(Tj,tr), where tr = τ1+θ1+τj as discussed 
above, comes into play and leads to a computational 
procedure that searches over possible settings of the 
CW base stock level B1.  For each B1, the minimum 
retail site base stock level Bj that would yield (9) is to 
be determined.  The antecedent rj(m) ≤ tr

– < rj(m+1) of 
(1) being satisfied, it follows that requirement (9) 
translates into 

 
Pr{Dj(Tj,tr)≤Bj} ≥ α.               (10) 
 

We apply the negative binomial approximation 
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starting with Bj = 1, and incrementing Bj by 1 until (10) 
is first satisfied.  The base stock level B1 which yields 
the lowest average system inventory is selected.  (In the 
case of ties, the smallest value of B1 is preferred, there 
being no difference assumed between holding costs at 
the CW and the retail sites.) 

Graves provides an approximation to expected 
system on-hand inventory: 

 
Avg. inventory = B1 +∑N

jB
1

 –  0.5λ1θ1 – λ1τ1.     (11) 

 
Strictly speaking, (11) should be corrected for counting 
retail backorders at negative inventory. For reasonable 
service levels, however, the expected backorder 
component is very small and is ignored. 
 
2.2. Fill Rate as Service Criterion 
For “realistic” fill rates (> 0.95), expected backorders 
over a CW order cycle may be approximated by 
expected backorders pertaining to the (θ1/θj)th retail 
order, since effectively all backorders occur at this last 
retail order. E[{Aj(tr)}–], where y– = max{0,–y}, 
represents expected backorders at time tr (just before the 
next order arrives).  A computational procedure similar 
to that in sub-section 2.1 arises. For each B1, a 
minimum retail site base stock level Bj is sought that 
would yield  
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            ≤  (1 - β) λjθ1,             (12) 
 
where λjθ1 represents mean demand at the retail site 
over the CW order cycle. The base stock level B1 which 
yields the lowest average system inventory is chosen.   
 
2.3. Graves’ Computational Study 
In his computational study, Graves used test scenarios 
all based on a single system demand rate λ1 = 36.  
Identical retail sites are assumed, with the number N of 
retail sites being 2, 3, 6, or 18.  Hence, the retail site 
demand rates λj are 18, 12, 6, or 2, respectively.  The 
length of the retail site order cycle is fixed at θj = 1 time 
unit.  Four different parameter combinations <θ1,τ1,τj> 
are tested.  This resulted in 16 test scenarios, 
summarized in Table 1. 

 
Table 1: Summary of Graves’ Test Scenarios 
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Scenario θ1 τ1 τj N λj

1 2 1 1 18 2
2 6 6
3 3 12
4 2 18
5 2 1 5 18 2
6 6 6
7 3 12
8 2 18
9 5 4 1 18 2

10 6 6
11 3 12
12 2 18
13 5 4 5 18 2
14 6 6
15 3 12
16 2 18  
 
For the probability of no stockout criterion, four 

levels of α were used: 0.80, 0.90, 0.95, and 0.975.  
Similarly, four fill rate levels β were tested: 0.95, 0.98, 
0.99, and 0.999.  Thus, for each service criterion, 64 test 
cases were considered by Graves. 
 
3. MODELING AND SIMULATION  
 
3.1. Simulation Models  
Solis, Schmidt, and Conerly (2007) reported the very 
first analytical evaluation of the effectiveness of the 
negative binomial approximation used in Graves’ 
(1996) model. Prior to their analytical evaluation, only 
computational evidence had been offered in all three 
multi-echelon inventory studies earlier cited (Graves 
1985; Lee and Moinzadeh 1987; Graves 1996) in 
support of the proposed NBD approximation to a 
crucial random variable. 

In the current study, we apply the modeling and 
simulation (M&S) approach to evaluate the NBD 
approximation as proposed by Graves (1996). We 
create simulation models using the AnyLogic platform 
for the sixteen scenarios as summarized in Table 1. For 
each simulation model, we test the “optimal” base stock 
policy <B1,Bj> as determined by Graves’ search 
procedure (based upon the NBD approximation of 
uncovered demand). Each simulation run is over 100 
CW order cycles – i.e., 200 retail site order cycles for 
scenarios 1-8 or 500 retail site order cycles for scenarios 
9-16. Our simulation experiments involve 100 
replications each; hence, 20,000 or 50,000 retail site 
order cycles for scenarios 1-8 or 9-16, respectively. 
Depending upon whether the simulated service level is 
below or above the target service level, we increase or 
decrease B1 or Bj one unit at a time until the simulated α 
or β is at or just over the target level. The “optimal” 
base stock policy from Graves’ search procedure is then 
compared against the optimal policy obtained using 
M&S. To attain comparability of simulated service 
levels under different pairs of B1 and Bj values being 
assessed, we apply fixed random number seeds in 

generating the Poisson demand streams at the retail 
sites.    
 
3.2. Simulation Results for the Probability of No 

Stockout Criterion  
In Table 2, we compare Graves’ “optimal” base stock 
policies <B1,Bj> under the probability of no stockout 
criterion for scenarios 4, 8, 12, and 16 (where N = 2 
retail sites) against the optimal policies using the M&S 
approach. In our simulation experiments, we find that 
Graves’ “optimal” policies meet the target (minimum) α 
in only seven of the 16 test cases, and are thus equal to 
the M&S optimal policies. For the remaining nine test 
cases, the simulated α from Graves’ optimal policy is 
below the target α. However, the echelon base stocks 
arising from the M&S optimal policy is not more than 
two units over that resulting from Graves’ “optimal” 
policy.  
 
Table 2: Comparison of Simulation Results under the 
Probability of No Stockout Criterion when N = 2 
α = 0.80

            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St α B 1 Β j Ech Base St α
4 44 56 84 0.7996 45 56 85 0.8164
8 7 150 235 0.8045 7 150 235 0.8045
12 245 66 143 0.7959 246 66 144 0.8085
16 248 139 292 0.7991 249 139 293 0.8092

α = 0.90
            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St α B 1 Β j Ech Base St α
4 53 55 91 0.9000 53 55 91 0.9000
8 37 140 245 0.9019 37 140 245 0.9019
12 272 57 152 0.8942 273 57 153 0.9015
16 268 135 304 0.8962 269 135 305 0.9017

α = 0.95
            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St α B 1 Β j Ech Base St α
4 55 57 97 0.9520 55 57 97 0.9520
8 61 132 253 0.9499 62 132 254 0.9540
12 283 55 159 0.9411 283 56 161 0.9524
16 272 138 314 0.9496 273 138 315 0.9529

α = 0.975
            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St α B 1 Β j Ech Base St α
4 60 57 102 0.9762 60 57 102 0.9762
8 53 140 261 0.9759 53 140 261 0.9759
12 287 56 165 0.9681 290 56 168 0.9757
16 271 143 323 0.9755 271 143 323 0.9755  

 
For scenario 3 (with N = 3 retail sites), Graves’ 

“optimal” policies meet the target α in all four test 
cases. However, we have found that Graves’ optimal 
policies meet the target α in only about one-fourth of all 
the 64 test cases. Moreover, we have observed that the 
deviations between simulated and target service levels 
tend to become larger as N increases – and are thus 
largest for scenarios 1, 5, 9, and 13 (with N = 18 retail 
sites) than in corresponding scenarios with fewer retail 
sites. These deviations also tend to be larger with a 
longer CW order cycle (i.e., when θ1 = 5, as compared 
to θ1 = 2).  Furthermore, these deviations become more 
pronounced with lower target α levels, particularly 
when α = 0.90 and 0.80.      
 
3.3. Simulation Results for the Fill Rate Criterion 
We show in Table 3 the comparisons between Graves’ 
“optimal” and the M&S optimal base stock policies 
under the fill rate criterion for scenarios 4, 8, 12, and 16 
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(with N = 2 retail sites). In our simulation experiments, 
the policies determined using Graves’ search procedure 
meet the target β in only five of the 16 test cases. The 
simulated β from Graves’ “optimal” policy is below the 
target β in the remaining 11 test cases. In one of these 
test cases, the echelon base stocks arising from the 
M&S optimal policy is four units more than that from 
Graves’ “optimal” policy, but not more than two units 
in the remaining cases.  

None of Graves’ “optimal” policies meets the 
target β in any of the four test cases under scenario 3 
(where N = 3). The echelon base stocks for the M&S 
optimal policies in these four test cases, however, are 
only either one or two units more than for Graves’ 
“optimal” policies.  

We have found that Graves’ optimal policies meet 
the target β in only five of the 64 test cases. As in the 
probability of no stockout service criterion, we have 
observed that the deviations between simulated and 
target β levels tend to become larger as N increases – 
and are thus largest for scenarios 1, 5, 9, and 13 (where 
N = 18) relative to corresponding scenarios with smaller 
N. These deviations also tend to be larger with a longer 
CW order cycle. Moreover, these deviations are less 
pronounced with higher target β levels, and are more 
pronounced as target β levels become lower.      
 
Table 3: Comparison of Simulation Results under the 
Fill Rate Criterion when N = 2 
β = 0.95

            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St β B 1 Β j Ech Base St β
4 56 47 150 0.9477 57 47 151 0.9523
8 53 125 303 0.9460 52 126 304 0.9504
12 259 50 359 0.9486 260 50 360 0.9513
16 207 151 509 0.9506 207 151 509 0.9506

β = 0.98
            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St β B 1 Β j Ech Base St β
4 55 52 159 0.9804 55 52 159 0.9804
8 51 132 315 0.9798 52 132 316 0.9813
12 267 53 373 0.9795 268 53 374 0.9810
16 259 133 525 0.9791 260 133 526 0.9803

β = 0.99
            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St β B 1 Β j Ech Base St β
4 64 50 164 0.9892 65 50 165 0.9906
8 47 138 323 0.9904 47 138 323 0.9904
12 275 53 381 0.9891 276 53 382 0.9900
16 269 133 535 0.9888 269 134 537 0.9905

β = 0.999
            "Optimal" Policy                Optimal Policy 
 Using Graves' Search Procedure Simulated              Using Simulation Simulated

Scenario B 1 Β j Ech Base St β B 1 Β j Ech Base St β
4 65 57 179 0.9991 65 57 179 0.9991
8 58 143 344 0.9991 58 143 344 0.9991
12 288 56 400 0.9984 288 58 404 0.9990
16 279 141 561 0.9988 280 141 562 0.9990  

 
4. CONCLUSION AND FURTHER WORK 
Departing from the traditional computational and 
analytic approaches to looking into the effectiveness of 
distributions used to approximate exact distributions of 
random variables arising in multi-echelon inventory 
models, we have applied the M&S approach in the 
evaluation of a negative binomial approximation as 
proposed by Graves (1996) in a one-warehouse, N-
retailer inventory system. 

Computational evidence offered by Graves (1996) 
suggests the NBD approximation to be fairly accurate, 

and an analytical investigation (Solis, Schmidt, and 
Conerly 2007) has suggested why the approximation is 
effective in certain instances.  

In our simulation studies to date, we have found 
Graves’ search procedures, based on his NBD 
approximation, to be less effective when the number of 
retail sites is larger, the CW order cycle is longer, or 
when the target service level is lower. At the time of the 
conference, we will provide a more thorough report of 
our findings. 

Solis and Schmidt (2007, 2009) have introduced 
stochastic leadtimes τj between the CW and the retail 
sites and investigated how optimal base stock policies 
differ between deterministic and stochastic leadtime 
cases when the CW does not or does carry stock. In the 
former situation where the CW does not carry stock (as 
in a distribution center with cross-docking), an 
analytical investigation was reported (Solis and Schmidt 
2007). In the latter situation where the CW actually 
carries stock, with the model becoming mathematically 
intractable, Solis and Schmidt (2009) applied an M&S-
based heuristic taking off from Graves’ search 
procedures. We will soon apply the M&S approach to 
the stochastic leadtime τj case, whether the CW carries 
stock or not. 

Further, we will also use the M&S approach to 
investigate the implications of stochastic leadtimes τ1 
between the external supplier and the CW. In practice,  
τ1 is probably more prone to randomness than the 
internal leadtimes between the CW and retail sites, over 
which retail firms would expectedly be able to exercise 
greater control. In investigating stochastic leadtimes τ1, 
we would be interested in finding out whether the 
model is more sensitive to randomness in τ1 or to 
randomness in τj.            
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