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1. ABSTRACT 
In system simulation state event descriptions and state 
event handling are used to model and to simulation 
‘discontinuous’ changes of the system under investiga-
tion. State events may cause simple ‘jumps’ of parame-
ters, or complex changes of models, as in case of loss or 
increase of degrees of freedom. The classical method of 
state event handling consists of an interpolative and /or 
iterative method to locate the event with ongoing time – 
based on the zero of the state event function. This con-
tribution discusses first event classification and time-
based event location algorithms, and second, it discuss-
es an alternative method for state event location by 
change of the independent variable. This method, first 
suggested by Henon in 1982, makes use of the princi-
ples of Poincare mappings. This alternative method is 
analyzed and sketched with models from the ARGESIM 
Benchmarks on Modelling Approaches and Simulation 
Techniques. 

 
Keywords: system simulation, state event handling, 
structural dynamic systems, state event finding, bench-
marks 

 
2. STATE EVENT DESCRIPTION IN SYSTEM 

SIMULATION 
Simulation systems for system simulation generate usu-
ally an implicit state space description of type 
 , , , , ,         1  , , , 0                            2  

For subsequent numerical analysis, an appropriate 
DAE solver with certain accuracy is to be used. 

 
In models from application it is often necessary to 

model discontinuities in the model description, because 
a certain system phenomenon can only be described 
‘approximatively’ by a discontinuous change in the 
model. These discontinuous changes are called events; 
if the time instant of the change is known in advance, 
the event is called a time event.  

If the event depends on a certain values or thresh-
olds for state variables or functions of state variables, 
the time instant of occurrence is not known in advance, 
and the event is called a state event.  

For rough numerical analysis these discontinuous 
changes may be mimicked by if – then – else constructs 
in the right hand side of the system equations. The DAE 
solver takes these changes into account at the next 
solver step after the event. For accurate numerical simu-
lation and in case of more complex discontinuous 
changes it is necessary to synchronise the event with the 
DAE solver. For time events, this synchronisation is 
easy. For state events, a relatively complex algorithm – 
state event handling – must be performed. 
 
A state event is defined  
• by an event function , , ,                         3  

whose zero determines the time instant ̂  
of the occurrence of the event, 

• and by an event action ̂ , ̂ , ̂ ,                     4  

which performs the discontinuous change.  

An event function  can cause the associated event 
action  several times.  , ,   !   0  ̂ , ̂ ,     5  

The event description (5) is to be read as follows: 
the event ‘ ’ occurs, if the event function (3) associated 
with the event ‘ ’, , , ,  has a zero 
crossing, whose zero ̂  is to be determined; dependent 
on the crossing direction, the associated event action  ̂ , ̂ ,  has to be performed: only in case 
of crossing from positive in negative direction, only in 
case of crossing from negative in positive direction, or 
in both cases, indicated by the crossing operator: ! , ! , !  
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The associated event action  ̂ , ̂ ,  
must handle the discontinuous change in the model de-
scription, which ranges from simple to very complex. It 
makes sense to classify events with respect to their 
complexity of action of change: 

• state event – output change – SE-O 
• state event – parameter change – SE-P 
• state event – input change – SE-I 
• state change – state value change – SE-S 
• state event – derivative vector change - SE-D 
• state event – model change - SE-M 
 

3. CLASSICAL STATE EVENT HANDLING 
The primary tasks of event handling are the synchroni-
sation of the state event with the ODE/DAE solver, and 
the ‘execution’ of the event – i.e. the discontinuous 
change of parameters, inputs, and states, and the choice 
of new derivatives or new models. The classical state 
event algorithm requires the following steps: 

• Detection of the event  
• Localisation of event and solver stopping 
• Event Action 
• Restart of ODE solver 
 

Event Detection. Observing the algebraic sign of the 
event function during the time advance of the 
ODE/DAE solver in each integration interval ,  
allows detection of the event: sign   sign . 

On inequality, the event occurred at a time instant ̂ , ̂ , . On occurrence, depending on the de-
fined crossing direction, the state event must be han-
dled, or not: in case of crossings into negative direction 
(‘-’ in (14)) if sign 1, in case of crossings 
into positive direction (‘+’ in (5)) if sign1, and in case of crossings in both directions (‘±’ in 
(5)) in any case. 

 
Figure 1: Algorithms for Iterative State Event Location 
(zero of function  - black line): Bisection – 
blue; Secant Method – green; Tangent Method or New-
ton Algorithm resp.  – red. 

Classical Event Location. After detection, the event 
time ̂ , ̂ ,  must be determined with suffi-
cient accuracy, followed by a ‘closing’ solver step from 

 to ̂. Two related algorithms are used,  

      Interpolative algorithms   t̂ ΨI t , t        

      Iterative algorithms    t̂ ΨI t̂ ; t , t       

A very classical method is bisection (iterative); 
common method is the secant formula (interpolative or 
iterative), and advanced method is the tangent formula 
(interpolative) or the Newton algorithm resp. (itera-
tive.). The iterative event location algorithms stop if the 
length of the event window is less equal a given mini-
mal length: ∆ ̂ | ̂ ̂ | ̂ ̂        

Figure 1 shows the first steps of the forementioned 
methods which are given in detail in the following. 

 
Bisection method. The iterative bisection method is the 
slowest method, but the most ‘stable’: 
• The interval ,   is divided into two halves , , , , ,  , , 12  ,  

checking of the algebraic sign determines, in which 
interval the event happens,  
e.g. ̂ , ,  

• Again interval , ,  is divided into two halfs  , , , , , ,  , , 12 ,   
and the algebraic sign determines the next ‘event 
interval’, and so on with further n-2 times dividing 
of the event interval, until event time ̂ is suffi-
ciently approximated due to (23) and finally set to ̂ , . 

• As last step, integration of (2) and (3) on the ‘re-
maining’ interval , , ̂  updates the states 
until event time. 

Another iterative method is the secant formula, which 
determines the zeros of the secant line connecting the 
event function at the boundaries of the event interval: 
• With interval ,   and values of the event 

function at the interval borders given by , , ,   
the first approximation for the event time ̂ is the 
zero of the secant which connects ,  and , : 

,  

• The time instant ,  divides the first event interval, 
and the algebraic sign function determines, where 
the event happens, e.g. ̂ , , ;  
with event function values , ,  at the interval 
borders of , , , the next approximation for ̂ is 
the zero of the connecting secant line: 
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Iterative event localisation 

 

 

blue − bisection algorithm
green − secant algorithm
red − Newton (tangent) algorithm
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, ,,  

• This procedure is further iterated m-2 times, until 
event time ̂ is sufficiently approximated due to 
(23) and finally set to ̂ , . 

• As last step, integration of (2) and (3) on the ‘re-
maining’ interval , , ̂  updates the states 
until event time. 

A very fast iterative method is the Newton algorithm, or 
simply the tangent method: 
• With interval ,   and value and derivative 

value of the event function at the left border given 
by , , , , 
the first approximation for event time ̂ is the zero 
of the tangent in , : 

, 1
 

• This procedure is further iterated  r-2 times, until 
event the time ̂ is sufficiently approximated due to 
(23) and finally set to ̂ , . 

• As last step, integration of (2) and (3) on the ‘re-
maining’ interval , , ̂  updates the states 
until event time. 
 
In principle, this tangent method (Newton algo-

rithm) approximates the event function by a Taylor se-
ries expansion of 1st order. Accuracy can be increased 
by using a Taylor series approximation of 2nd order, re-
quiring the second derivative of the event function, 
which is available in special cases (event function is 
threshold of distance, whereby distance and velocity are 
states). Figure 2 compares the discussed Taylor ap-
proximations for the event function; the tangent method 
is an interesting link to the Henon method (section 4). 

 
 
Figure 2: Comparison of interpolative algorithms for 
state event location (zero of function  - black 

line): secant method – green; tangent method – red, 
quadratic interpolation - magenta. 
 
Some aspects with respect to event location must be 
taken into account: 
• Iterative methods can give more accurate results. 

But in case of different event functions with nearby 
roots, the iterative methods may cause a deadlock, 
may let events vanish, etc. 

• Iterative methods generally cause backstepping in 
time, which causes problems with not synchronised 
time events occurring in the iteration interval, and 
with stepsize control of the ODE solver. 

• A general, partly essential and partly philosophical 
problem comes up with methods which make use 
of the ‘virtual’ value  of the 
event function at the time step after the event, 
which is definitely wrong from viewpoint of phys-
ics (in case of bouncing ball example the algo-
rithms accepts, that the ball is flying in the ground 
!). This physical error may give totally wrong re-
sults for , or it may be only a 
strange fact. 

• ODE solvers’ stepsize control and event location 
algorithm are partly ‘competitive’ strategies. If the 
DAE/ODE solver takes a too long stepsize, an 
event may vanish, in case the step bridges two zero 
crossings. In principle, the event time instant ̂ is to 
be seen as so-called barrier time for the solver, 
which limits the stepsize. 

• The DAE/ODE solver themselves are approxi-
mations of a specific order – if for instance an ex-
plicit Euler solver has calculated  and the 
event function (3) is a linear function of the states, 
then the tangent method and secant method for de-
termining the event time coincide with the ODE 
solver step, so that the event time determined by 
the cited algorithms is exact, and– further iteration 
makes no sense. In general, the desired accuracy 
for determining the event time must be coordinated 
with the solver’s order and solver’s accuracy. 

• Generally, the event function is not really known as 
formula; as the function depends on the states, 
which are only known at grid points, also the event 
function is only known at gridpoints (before and af-
ter the event), so that the secant interpolation is the 
first choice for event location because of genuine 
accurateness; iteration or more complex methods 
refine the accuracy of the ODE solvers in behind. 

Many advanced DAE/ODE solvers offer the steps de-
tection and localisation with solver stopping as generic 
feature – so called root finding feature. Additionally to 
system equations (1) and (2) also the event function (3) 
or (5) resp. with indication of crossing direction can be 
provided, resulting in a stopping of the ODE/DAE 
solver at localized event time.  
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Interpolative event localisation

green − secant
red − tangent (1st order)
magenta − quadratic function (2nd order)
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Sometimes tuning parameters for the event loca-
tion can be chosen, but only in rare cases the location 
method can be chosen. Simulation systems make either 
use of a DAE/ODE solver with root finding, or they in-
corporate the event algorithm into a general event 
mechanism which controls the ODE solver stopping.  

 
Event Action. Due to the state event classification 
sketched before, the event actions in (4) consist of dis-
continuous change of parameter values, of input values, 
of output values, or of state values, or the actions, 
switch to new derivative functions (new derivative vec-
tor) or to a new model description (with changing di-
mension). A general view is to interpret a state event as 
the end of validity of a certain model, and the necessity 
to restart with a new model, which gets initial values 
from the previous model. This approach – the hybrid 
decomposition approach -decomposes the system into 
conditionally consecutive dynamic models, which are 
interrupted and controlled by discrete events. 

The approach, strongly related to structural-
dynamic systems is recommended for handling model 
change events SE-M and partly derivative vector events 
SE-D. The approach might be an overdo for handling 
state events of type SE-P, SE-I, SE-S and partly for 
events of type SE-D, because these events can be han-
dled within one model by specific features like event-
synchronised conditions or schedulable discrete seg-
ment.  

While – If-Then-Else Constructs. The action of 
state events of type SE-P, SE-I and partly of type SE-D 
can be handled in if-then-else constructs or while con-
structs, which are ‘synchronised’ with the ODE/DAE 
solver, i.e. which cause implicitly a state event. Most 
simulation systems offer features for this ‘integrated’ 
approach which requires artificial constructs for struc-
tural dynamic changes and state jumps (frozen states, 
integrator hold, etc. 
 
4. STATE EVENT DETECTION BY CHANGE 

OF INDEPENDENT VARIABLE 
An unusual, but eventually efficient alternative method 
for state event location can be based on a method for 
calculation of Poincare maps, suggested by M. Henon. 
Henon interprets the state space (1) as (autonomous) 
dynamical system  , , … ,  , , … ,                … … … …                             , , … ,                         6  

which describes curves in the n-dimensional space. A 
Poincare map is roughly speaking the set of intersec-
tions of the curves with (n-1)-dimensional subspace  , , … , 0                              7  
representing an autonomous event function of type (3): 

, ,  , , … , 0 

For simple subspaces of type ,                     8  
in system (6) now the independent variable   can be 
changed with the dependent variable  (e.g. ) 
giving a modified system with independent variable  
and dependent variables , , … , , : 
 , , … ,, , … ,   , , … ,, , … ,                 … … … …  , , … ,, , … ,                              1, , … ,                     9  

 
System (9) is usually much more complex, and di-

vision by , , … ,  might cause severe prob-
lems, as well as implicit function theorem must hold, 
but the systems allows numerical solution of the system 
with accurate intersection of the subspace 

.  
 

Henon suggest now a clever modification: 
• Solution of the original system (6) by an ODE 

solver until  just before the intersection with 
 stopping with 0. 

• Solution of the modified system (9) by the same 
ODE solver, from  with one step of 
length , meeting the intersection almost ex-
actly. 

The subspace  can be interpreted now 
as set of zeros of the event function , , … ,   so 
that the above algorithm can be used as alternative 
method for state event location without any interpola-
tion and iteration.  

For complex subspaces , , … , 0 He-
non suggests reformulation of the subspace by a differ-
ential equation  , , … ,   , , … ,   · , , … ,  

Henon’s method allows now formulating a modi-
fied event location algorithm which meets the zero of 
the event function , , … ,   ‘exactly’ within the 
accuracy of the ODE solver used. 
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Event Detection. Observing the algebraic sign of the 
event function during the time advance of the 
ODE/DAE solver in each integration interval ,  
allows detection of the event: sign   sign . 

On inequality, the event occurred at a time instant ̂ , ̂ , . On occurrence, depending on the de-
fined crossing direction, the state event must be han-
dled.  

 
Event Location by Variable Change. After detection 
and stopping time integration at  with , the event 
time ̂ , ̂ ,  is determined by solving the 
modified extended state space (9) if , , … ,  
does not get zero on , ̂ : , , … ,, , … ,   , , … ,, , … ,                … … … …  , , … ,, , … ,  

                             1, , … ,                         · , , … ,            10  

 
using the ODE solver on the interval , 0  with 

 

and stepsize  or fractions of  

resulting in all state values and time instant of the zero 
of the event function:  ̂ 0   ̂ 0  

In case of simple event functions of type (8) the modi-
fied state space simplifies to , , … ,, , … ,   , , … ,, , … ,                 … … … …  , , … ,, , … ,  

 

                            1, , … ,                    12  

to be solved on the interval , 0  with stepsize 
 or fractions of  resulting in all state 

values and time instant of the zero of the event function:  ̂ 0 ,     

   ̂ 0  

 
Figure 3: State Event Location with Tangent Method in 
Time Domain (at left), and State Event Location by 
Euler ODE Solver in State Domain 

 

The suggested method requires that locally the im-
plicit function theorem holds at least on , ̂ , 
without singularities. Figure 3 shows that indeed 
uniqueness of inversion can be violated, e.g. as long the 
function is not monotone. The following evaluation dis-
cusses some advantages and disadvantages of this 
method, and suggests modifications. 

• Henon suggest a combination of systems (6) and 
(9) with a general independent variable and with 
scaling factors (transformation factors) so that in-
deed he quotients in equation (12) are used. It 
might be appropriate to perform symbolical simpli-
fications on these quotients. 

• The original method makes one final solver step 
with the new independent variable – for improving 
accuracy, or in case of zeros which build up a series 
of limit points, it might be better to use more than 
one solver step with fractions of the remaining step, 
or to continue with the solver in the new independ-
ent variable. 

Figure 3 shows an interesting link between classical 
state event location algorithms and Henon’s state event 
location. The tangent interpolation method in the time 
domain (at left) makes use of the same tangent line as 
the Euler ODE solver in the state domain (at right): 

 1 1
 

While in first time domain formula the zero must be 
calculated, in the second state domain formula simply a 
zero must be inserted: . 
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5. EVALUATION WITH ARGESIM  
BENCHMARKS 

The journal SNE – Simulation Notes Europe is publish-
ing benchmarks for modelling approaches and imple-
mentations of approaches in simulation systems. In 
these benchmarks, state event handling plays an impor-
tant role.  

At present Henon’s method is tested with the mod-
els from ARGESIM Benchmark C6 Constrained Pen-
dulum and ARGESIM Benchmark C20 Hybrid and 
Structural Dynamic Systems.  

 
Benchmark C6 Constrained Pendulum relates to the 
physical pendulum described by angle , given by 
state space  

                      13  
 

Task is to model the discontinuous change of pen-
dulum length and angular velocity, if the pendulum hits 
a pin which is locates at angle . The event function 
becomes ,  

This event function is of the simple type (8), and 
for using the method of independent variable change for 
state event location, the modified system with inde-
pendent variable  is 

  1                                      14  

Henon’s method works well, if  does not get 
zero when hitting or leaving the pin. Unfortunately the 
angular velocity  gets zero, if the pendulum is 
on point of return – which may happen at pin position 

 – here a modified event function could help (to be 
investigated further). 

Benchmark C20 Hybrid and Structural Dynamic Sys-
tems test more or less complex state event changes in 
models from mechanical and electrical engineering: 
bouncing ball, rotating pendulum, and switching circuit. 

The bouncing ball model with dynamic contact 
phase and states ball position , ball velocity, and ball 
deformation  is modelled during flight by ,  ·                                15  

Flight ends, if the ball gets in contact with the 
ground, given by the event function , ,                               16  

Although event function (16) is simple, it must be 
made a differential equation , , ·  

The modified system with independent variable  
for use of the Henon method is then given by  ·· ·    ·· ·    ·· ·  

 
Henon’s method only would fail, if flight velocity and 
deformation change both get zero – which cannot hap-
pen or add to zero – which could happen in a very rare 
case.  
 

Another test model from Benchmark C20, the ro-
tating pendulum, is at present under investigation. Use 
of Henon’s method can range from simple to complex, 
depending on the chosen coordinate system. 
 

 
SUMMARY - OUTLOOK 
Henon’s method offers itself as charming alternative for 
state event handling. Perhaps the main advantage is the 
fact, that the ODE solver is not interrupted by a numeri-
cal root finding algorithm – whereby both algorithms 
influence each other. On the other hand, the problem of 
singularities in the modified state space must not be ne-
glected. 

 
First numerical tests with the cited benchmarks are 

satisfying and promising because of the ‘simpler’ algo-
rithms. At present the method is tested within master 
theses using the ARGESIM Benchmarks and an ex-
tended rotor – stator model.  

After discussion with experts from mechatronic it is 
intended to investigate the method within new research 
project in more detail. There, also possible links to 
F. Cellier’s and E. Kofman’s QSS method are to be 
considered: QSS - Quantized State Systems – integra-
tion works with a discretisation of state instead of time, 
so that state events are determined by a state increment 
known in advance. 
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