
DATA INDEPENDENT MODEL STRUCTURE FOR SIMULATION WITHIN THE

VIENNA UT MORESPACE PROJECT

Benjamin Rozsenich
(a)

, Salah Alkilani
(b)

, Martin Bruckner
(c)

, Štefan Emrich
(d)

, Gabriel Wurzer
(e)

(a)(b)

 Institute for Analysis and Scientific Computing, Vienna UT, Austria
(c)

 dwh GmbH - Simulation Services, Vienna, Austria
(d)

Chair of Real Estate Development and Management, Vienna UT, Austria
(e)

Digital Architecture and Planning, Institute of Architectural Sciences, Vienna UT, Austria

(a)(b)(d)(e)

{benjamin.rozsenich|salah.alkilani|stefan.emrich|gabriel.wurzer}@tuwien.ac.at
(c)

martin.bruckner@drahtwarenhandlung.at

ABSTRACT

The Institute for Analysis and Scientific Computing at

Vienna University of Technology (Vienna UT) has

created models to simulate lecture room reservations, in

order to test strategies for increasing the efficiency of

utilisation, increasing booking fairness and perceived

capacity without need to add more lecture rooms. Thus,

the produced system had to satisfy some tough

constraints: (1.) It had to be flexible and

multifunctional, meaning that a dynamic code structure

was needed so that program logic could depend on the

imported data, but simulation algorithms would stay

data-independent. (2.) The presentation logic had to be

customized to fit the usability needs of the client, who

would perform the simulation experiments himself. To

report on both programming techniques and

architectural decisions that enabled us to achieve these

constraints is thus the main goal of this paper.

Keywords: customization, simulation, software

architecture

1. INTRODUCTION AND OVERVIEW

For the past years, researchers over various institutions

of Vienna UT have been working together on a project

that that optimises utilisation of lecture rooms, by

performing simulations on booking requests instead of

having them reserved in a ‘first-come-first-served’

fashion. Together with dwh Simulation Services, this

has led to the production of the novel simulation suite,

on whose development this paper focuses.

During the initial steps of developing a new

simulation, much effort has to be devoted to the

correctness of algorithms. Two models had to be

produced (see “Simulation Core”, Section 2):

 a scheduling model, which performs static

scheduling based on a set of heuristic rules

(Section 2.1)

 a pedestrian dynamics model, which performs

physical simulation of students moving within

the built environment, according to their

lecture timetable (Section 2.2).

Producing a working simulation core is necessary, but

not sufficient for a piece of software to become a

product (see Section 3, “Building MoreSpace”):

 Data import and export have to be tailored to

the customer's needs, e.g. reading from and

writing to databases that already exist. As a

matter of fact, this interfacing aspect becomes

a software in its own right, which needs to be

written and supported specifically for the client

in question (3.1, “Input/Output

configuration”).

 Orchestration of the simulation core’s

algorithms, given the often-changing demands

and requirements of the client, can be seen as

yet another required task. On the one hand, this

means producing code that will call upon the

pre-existing algorithms in an order that

produces seemingly special-tailored

simulations. On the other hand, such models

need to have a user interface that meets the

requirements of the (not necessarily technically

skilled) simulation user. What is thus required

is a rather non-technical step in which an

analyst customises the software so that the

inputs needed, simulations performed, and

outputs generated clearly reflect what the

customer has in mind (3.2, “Simulation

customization”).

 Once simulation results have been gained,

analysis over what scenario gives the best

performance has to begin (3.3, “Analysis”).

There is, however, no absolute best - only

alternative solutions that have to be weighted

by the simulation user, according to

practicability in implementation. We provide a

set of visualisation views, intended for in-

depth analysis and justification. The latter

aspect is most important when a single result

has to be selected and exported for use in a

production system on which thousands of users

rely (in our case: the reservation system of

Vienna UT).

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 519

mailto:mail@uni.edu
mailto:mail@uni.edu
mailto:benjamin.rozsenich@tuwien.ac.at

As a side-note for this paper, we wish to state that

related work is given directly within the narrative.

Additional material is to be found at the end of the

paper (see Section 4), before the conclusion (Section 5).

2. SIMULATION CORE

The core of our simulation consists of two models that

assign lectures to lecture rooms and let students

simulate their would-be passages through the built

environment, given the assigned lecture locations and

per-term timetables. Both models are implemented in

Java, and packed as Java libraries that ship with the

application. Changes in the simulation core are thus

only possible by using application updates, and only if

they affect all clients (not individual customers). For the

sake of completeness, we now describe the two models

used in some detail:

2.1. Scheduling model

The scheduling model has the task of filling predefined

slots, each one measuring half an hour and being within

given lecture room of finite capacity, with lectures. In a

pre-step, so-called booking requests have to be

generated by Vienna UT’s reservation system, each one

stating when, how long a room of what capacity is

needed in which building (location), given what special

equipment. The scheduler then arranges the lectures so

as to satisfy one of its implemented constraints, which

we give here in simplified form:

 Greedy scheduling. Capacity, equipment and

location of the booking request have to be

satisfied exactly when finding a slot.

 Tolerant scheduling. The capacity of the

booked room may be more (but not less) than

the requested capacity, furthermore, the booker

can be tolerant concerning the location.

An additional parameter controls whether the scheduler

can shift lectures by half an hour plus and minus, in

order to see whether the result becomes any better. The

same goes for splitting, i.e. using multiple rooms for the

same event, in case the booking request requires a

capacity beyond available rooms.

In all cases, the result of the booking process is a

number of successfully booked requests plus any

leftover requests that require some (manual) work.

2.2. Pedestrian dynamics model

This model calculates the time that students need to

change lecture rooms (see Figure 1). In detail, what is

computed are the trails of each virtual student, given

his/her timetable as input. This transition between

different lecture rooms is governed by three layers of

increasing complexity: The movement is calculated

with reference to a physical model by (Blue and Adler

2001). Above that, route choice and movement along a

circulative network is computed by using graph

algorithms, quite similar to (Tabak 2009; Tabak, de

Vries and Dijkstra 2010; Wurzer 2011). At the highest

level, individual behaviour is governed by the timetable

of lectures to visit. If there is more than one lecture that

takes place in an instant, the student’s probability of

changing rooms is taken into account. This aspect could

also be called a fourth layer, that of individual choice or

preference. Extended work on this route choice,

specifically for urban environments, has been done by

(Dijkstra, Jessurun, Timmermans and de Vries 2011).

More details on the used pedestrian model can also be

found in (Bruckner, Tauböck, Popper, Emrich,

Rozsenich and Alkilani 2012; Bruckner 2009).

Figure 1: Pedestrian dynamics model

3. BUILDING MORESPACE

The product which we have designed, called

MoreSpace, is a platform that glues different simulation

algorithms together by making use of a common

scripting platform (Rhino for Java). Conceptually, one

might think of a common data structure (coined quite

paradoxically as ‘the data independent model’) existing

as a database and a sequence of simulation algorithms

acting on it. The following sections describe, in detail,

the setup and workflow connecting the different

components of our system, whose reusable and

extensible architecture is the main contribution we

would like to share. An overview of this workflow is

also given in Figure 2:

1. External data stores hold the customer-specific

data, which is converted to our data

independent model upon import (see Section

3.1).

2. Simulation algorithms acting on our data

structure are producing results within the same

database (see Section 3.2).

3. These are visualised, in order to select one

specific result that fits the end user by

whatever criteria he/she sees fit (see Section

3.3).

4. Additional simulation types, such as dynamic

simulation using pedestrian dynamics models,

can also be incorporated into a post step, if

they would take too long to compute to be

practical for every simulation run.

5. The export process then records the chosen

result as selected by the user, which it then

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 520

writes to a data store defined by the client. This

might be the same as during import, or a

different one (again see Section 3.1).

Figure 2: Workflow and outline of MoreSpace App

3.1. Input/Output configuration

Even though our application can have a different user

interface and simulation setup for each customer, we

rely on a data structure that is static and common to all

installations. Once filled, the different simulation

models perform their work on this structure, and save

their results back into it. We employ the popular SQlite

database together with an Object/Relational mapping

tool (Apache Cayenne) for this purpose, giving each

part of the application easy access to our entities

(booking request, space, booked slot, etc.).

The complexity of the import/export process lies in

the details of the (external) data stores, whose merging

and querying has proved to be a consulting problem of

its own. For us, the same application must be able to be

used at any university, e.g. the Technical University of

Vienna but also in other companies - each having an

own data storage type available (e.g. Excel, database,

XML). Before being able to simulate, we thus need to

import booking requests from whatever source available

into our common data structure. The same procedure

will be required reverse upon export of the simulation

results, either into the same data store or into a different

one.

Usually, transformations of data structures are

handled by special Extraction/Transformation/Loading

(ETL) software packages. We have chosen a different

approach, by defining the customer-specific import and

export script in Rhino that does the necessary steps,

tightly integrated into the application (File>Import and

File>Export option). We also have a user interface

intended at filtering and selecting data from this

external data store so that it fits the scope of the

simulation project.

3.2. Simulation customisation

A booking product such as ours must deliver a project-

specific output, and thus requires also a project specific

setup which we call customisation. Such a specially

tailored approach is not new – it is used e.g. in

accounting software (SAP ERP), Hospital Information

Systems and further products that are not by definition

finished ‘off the shelf’. Simulation models have been

and continue to be an example of such software, being

highly specific to the customer and scenario in mind.

We extend this notion by introducing a platform in

which simulation can be used, i.e. glue between pre-

existing models and the customer-specific setup, which

is yet unprecedented to the best of our knowledge. In

detail, we are using three essential concepts throughout

our application:

 Scenario: a named sequence of invocations of

a variety of simulation and algorithms which

has a specially defined user interface where

one can define inputs that are not hardcoded

but rather given as parameters. Colloquially,

each scenario stands for a given problem

complex which is due to be analysed.

 Experiment: a specific choice of parameters for

a given scenario. This scenario can contain

several experiments, but at least one (the

default experiment having default parameters).

 Result: the effect of an invocation of an

experiment. Every result is reproducible by

using the defined parameters and settings of

the experiment again. In this case, the already

existing data is overwritten. If two experiment

runs with the same parameters are to be

compared nevertheless (e.g. for validation),

one must duplicate the experiment.

Each scenario is represented by a Rhino script, which

invokes all the necessary simulation algorithms

iteratively. Multiple simulation runs and aggregation are

handled here, as well. As a general rule, scripts to not

act directly on the database: They rather call upon

algorithms, which load data, compute, and write back

into the database, using the experiment ID as conceptual

key for the result.

Figure 3: MoreSpace Graphical User Interface. (A)

Experiment toolbar for creating and running

experiments, (B) filter and (C) parameterisation user

interface loaded for each scenario (D) experiment run

output console (E) result panel (F) scenario selector.

Each scenario also has a graphical user interface that is

dynamic and has been defined to suit the client’s needs

(also refer to Figure 3). We employ the Abeille Forms

designer for that purpose, which outputs XML that can

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 521

be read back to construct Java Swing panels using the

jGoodies forms library.

Semantically, a scenario user interface is always

divided into two parts: the filtering part (Figure 3B) for

selecting the data on which the simulation acts, and the

parameter part, where one can set input data (Figure

3C). Using the experiment toolbar (Figure 3A), one can

then create experiments and run them, producing results

under the results panel (Figure 3E) and summary

console (Figure 3D). This process can be repeated for

every scenario that is defined (each being represented

by a tab, as in Figure 3F).

3.3. Analysis

Without proper interpretation, the results produced

during by the simulation remain useless. Therefore, our

application has a visualization dashboard (see Figure 4)

in which the produced results can be reviewed and

compared by the client or analysts acting on his behalf.

The actual visualisation types used are currently

bar charts, line charts, Gantt charts (see Figure 5) and

histograms, in both single-experiment and multi-

experiment layouts. Each visualisation window retains

its position and state even if the program is closed. This

enables analysts to show why a certain result was

chosen without having to perform data analysis in front

of the client.

Figure 4: Visualisation dashboard for interpretation of

results (circled).

3.4. Summary and big picture

Having presented the core as well as different

components of the application, we may now begin to

summarise and compact what has been said. One of the

interesting aspects of the program, which applies well

beyond the borders of our software, is the ability to

initialise itself with a completely new user interface and

simulation logic specially customised to the client. This

means that the system is changing its nature without

affecting a single line of java code of the core (which

would require recompilation). Technically, this is done

by bundling a set of scripts and user interface

definitions together with the program, which we read

that the programs start.

Figure 5: Example resultset visualized as Gantt chart.

In detail, we proceed as follows:

 For every scenario, the must exist a scenario

script (‘scenario.js’) as well as filter

(‘filter.jfrm’) and scenario user interface

definition (‘gui.jfrm’) in a folder having the

scenario name.

 Furthermore, we define to special folders

containing the same files by the name of

‘Importer’ and ‘Exporter’, which contain the

logic and user interface necessary for

interfacing to the client's data infrastructure.

On start-up, the application knows only how to browse

through a set of folders, instantiating scenarii (tabs) and

importer/exporter (File>Import and Export) as it goes

along. When it has finished doing so, the user is

presented with a specially tailored application that is not

only customised in its function, but also in language and

terminology used. Updates to the functional core are

kept at a minimum - what is changed lies mostly in the

orchestration part (i.e. scripts), to be elaborated together

with the client. The product is thus the executable

artefact that incorporates the core library, while

everything else belongs to the domain of a project.

3.4.1. Additional implementation notes

Some additional notes given here, although not

important for the general picture, might be beneficial

when developing a similar application:

 The data structures used for storing

experiments and results sacrifice functionality

for ease of implementation: One experiment

may only have zero or one results. If an

experiment has no result (i.e. it is new), its

parameters may be updated. In all other cases,

the experiment is said to be fixed - no

alterations can be made, since that would

corrupt the result data. One may, however,

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 522

duplicating an experiment (using a Save As..

option), in which case the parameter settings

are copied to a new experiment which can be

altered.

 The scenarios have a caveat as well: During

import, we allocate a special scenario

‘Scenario 0’ containing a predefined ‘Result

0’, which is the result of a manual assignment

of lectures to rooms. This Result 0 of Scenario

0 may not be overwritten; it may only be used

for comparison with the actually simulated

results.

 Another caveat concerns to input data; should

these change, all experiment runs are obsolete.

Therefore, a re-import is only possible in order

to add data, not for update. Should this be

desired, the current database has to be archived

and reset (i.e. cleared). This also happens once

data has been exported, in order to be ready for

another simulation period.

4. BACKGROUND AND RELATED WORK

Our system operates according to the Model-View-

Controller (MVC) concept (refer to Figure 6): Model

objects are the parts of the application that implement

the logic for the application’s data domain. Views are

the components that display the application’s User

Interface (UI). The UI is created using the model data as

input. Controllers are the components that handle user

interaction and update the model (Shelly 2005).

Figure 6: MVC

We take the notion of MVC one step further: Our model

is a database with a static structure. The model itself has

a delegate which we have called Importer, which maps

from customer specific data sources to this format. The

view and the controller are both put inside the scenario

scripts, which are essentially client specific. The

meaning of this reflects our project experience in

dealing with customisation: a large part of the logic is

special tailored and cannot be reused. Instead, we see it

all customised called as being yet another delegate to

the model, intended for rapid development and (if need

arises) redevelopment.

Another topic of which we are well aware is that

our base technology scripting has large issues with

debugging. The used Rhino is an exception here, since

there is the excellent Rhino debugger (Oliver and Boyd

2012) that can be utilised. Rhino itself is a Java

implementation of JavaScript bundled with the Java

Platform, therefore being widely available without

additional installation.

Coming to the related work, we are not aware of any

approach is similar to our ‘glue code scripting’ / rapid

user interface development technique. It is certainly true

that, for example, Anylogic (Borshchev and Filippov

2003) offers a similar experience when coding using the

simulation’s core library. However, Anylogic is using

Java - a compiled language. Thus, customisation can

only happen to very limited extent, off-site, where all

the development tools are installed. Furthermore, the

user interface tools given are very limited, non-

scriptable.

As a second contrast point, the application area of

Anylogic’s core is currently concentrating on ABM,

SD, DES. This is certainly an advantage: Functionality

exists and can be readily used. At the same time, such

closed and pre-existing Application Programmer’s

Interfaces (APIs) also have a drawback - extending

them further might be very complicated, since the

source is not available. We are thus taking pure Java as

basis, aiming at optimal control of the employed

algorithms and source availability rather than functional

superiority. The latter may be achieved by incorporating

code from a variety of open-source packages such as

NetLogo (Wilensky 1999), or put differently: “An open

architecture allows developers to design systems that

are made up of many small functional modules

interconnected by a common software interface”

(Roschelle, DeLaura and Kaput 1996).

From a development perspective, combining Java

and JavaScript also enables new forms of working

together among distinct roles: A developer, can

implement the core functions of software while a

customizer or analyst oversees the design of the

application by scripting (Separation of Concerns).

5. CONCLUSION

We have presented a simulation called MoreSpace, that

is designed to be dynamic in its appearance and in

relation to how simulation algorithms are employed.

Upon bootstrapping itself, the application looks for

specially-named script files together with user interface

definitions, which it then goes on to interpret and

display. Data is dynamically loaded from proprietary

sources into its own comon data structure serving all

simulation models, which are orchestrated within the

script files. Such a high degree of customisation has

previously only been found in Enterprise Resource

Planning (ERP) and healthcare IT, which is why we see

our efforts as being important not only for our

application, but also in the light of the ongoing

modularisation that modelling packages embrace

nowadays.

REFERENCES

Blue, V.J., Adler, J.L., 2001. Cellular automata

microsimulation for modeling bi-directional

pedestrian walkways. Transporation Research Part

B 35 (2001), 293-312.

Borshchev, A., Filippov, A., 2003. From System

Dynamics and Discrete Event to Practical Agent

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 523

Based Modeling: Reasons, Techniques, Tools.

Proceedings of the 22nd International Conference

of the System Dynamics Society.

Bruckner, M., 2009. Modeling of pedestrian dynamics

in the university operation using cellular automata

in the programming language JAVA, Master

Thesis, Vienna UT.

Bruckner, M., Tauböck, S., Popper, N., Emrich, Š.,

Rozsenich, B., Alkilani, S., 2012. A combined

Cellular Automata and DEVS simulation,

MathMod 2012 Full Paper Preprint Volume,

Argesim Report S38, Available from:

http://seth.asc.tuwien.ac.at/proc12/full_paper/Cont

ribution356.pdf [accessed 1
st
 June 2012]

Dijkstra, J., Jessurun, A.J., Timmermans, H.J.P., de

Vries, B., 2011. A Framework for Processing

Agent-Based Pedestrian Activity Simulations in

Shopping Environments, Cybernetics and Systems,

42 (7), 526-545.

Oliver, C., Boyd, N., 2012, Rhino Debugger, Available

from: http://www.mozilla.org/rhino/debugger.html

[accessed 1
st
 June 2012]

Roschelle, J., DeLaura, R., Kaput, J., 1996. Scriptable

Applications: Implementing Open Architectures In

Learning Technology, Proceedings of Ed-Media

96 - World Conference on Educational Multimedia

and Hypermedia, 599-604.

Tabak, V., de Vries, B., Dijkstra, J., 2010. Simulation

and validation of human movement in building

spaces, Environment and Planning B: Planning

and Design, 37 (4), 592-609.

Tabak, V., 2009, User Simulation of Space Utilisation,

PhD Thesis, TU Eindhoven.

Wilensky, U., 1999. Netlogo, Available from:

http://ccl.northwestern.edu/netlogo [accessed 1
st

June 2012]

Wurzer, G., 2011. Prozessvisualisierung in der

Krankenhausplanung, PhD Thesis, Vienna UT.

AUTHORS BIOGRAPHY

Benjamin Rozsenich got his master degree in medical

computer science from Vienna UT in 2010, finishing

with his diploma thesis ‘Statistical module of the tumor

documentation system "HNOOncoNet" based on JBoss

Seam and Hibernate concepts’ for the Vienna General

Hospital (AKH Wien). For the Morespace Project, he

has been active as lead developer and technical

architect, a job which he now continues in the private

sector.

Salah Alkilani has a Bachelor in Software Engineering

from Vienna UT. During the MoreSpace project, he has

been working on the static scheduler, in which topic he

has also published first papers. He is also involved in

lecturing for the Afro-Asiatic Institute of Vienna

University on the impact of the Arabic spring and the

role of Islam in society.

Martin Bruckner studied mathematics at Vienna UT,

receiving his master in 2009. His work on ‘Modeling of

pedestrian dynamics in the university operation using

cellular automata in the programming language JAVA’

has been used in the pedestrian simulation of the

MoreSpace project, and beyond, for his PhD thesis that

is currently under preparation. He currently works for

drahtwarenhandlung simulation services, the company

participating in the MoreSpace project.

Štefan Emrich has a master degree in mathematics

(2007), where he was focusing on prediction of

influenza epidemics using cellular automata and agent

based systems in a comparative manner. After his

degree, he went on to ETH Zurich, where he was

involved in research on modelling workforce and

workflow management. Returning to Vienna, he began

his PhD on ‘Simulation for Space Management’ in the

Real Estate Department of the Faculty of Architecture,

in which function he also participated in the MoreSpace

project. He is author of numerous articles on evaluation

of usage in buildings, and was awarded the Austrian

Construction Prize (Baupreis) in the category “best

junior scientist” in the year 2011.

Gabriel Wurzer earned his Ph. D. degree in Process

Visualization and Simulation for Hospital Planning

from Vienna University of Technology in 2011. His

research in architectural sciences focuses on tool

support for early-stage planning of complex buildings,

with regular contributions to both Pedestrian and

Evacuation Dynamics conference (PED) and the

Education and Research in Computer Aided

Architectural Design in Europe conference (eCAADe),

from which he was awarded the Ivan Petrovic Prize in

2009. He is also an active researcher in archaeological

simulation, together with the Natural History Museum

Vienna.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 524

