
ON THE ANALYSIS, CLASSIFICATION AND PREDICTION OF METAHEURISTIC

ALGORITHM BEHAVIOR FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Andreas Scheibenpflug
(a)

, Stefan Wagner
(b)

, Erik Pitzer
(c)

, Bogdan Burlacu
(d)

, Michael Affenzeller
(e)

(a-e)

 Heuristic and Evolutionary Algorithms Laboratory (HEAL)

University of Applied Sciences Upper Austria

Softwarepark 11, 4232 Hagenberg, Austria

(a)

ascheibe@heuristiclab.com,
(b)

swagner@heuristiclab.com,
(c)

epitzer@heuristiclab.com,
(d)

 bburlacu@heuristiclab.com,
(e)

maffenze@heuristiclab.com

ABSTRACT

Metaheuristics are successfully applied in many

different application domains as they provide a

reasonable tradeoff between computation time and

achievable solution quality. However, choosing an

appropriate algorithm for a certain problem is not

trivial, as problem characteristics can change

remarkably for different instances and the performance

of a metaheuristic may vary considerably for different

parameter settings. Therefore it always takes qualified

algorithm experts to select and tune a metaheuristic

algorithm for a specific application. This process of

algorithm selection and parameter tuning is frequently

done manually and intuitively and requires a large

number of empirical tests.

In this contribution the authors propose several

measurement values to characterize the search behavior

of different metaheuristics for solving combinatorial

optimization problems. Based on these measurements

algorithms can be classified and models can be learnt to

predict the algorithms behavior for new parameter

settings. This helps to understand the interdependencies

and impacts of parameters, to identify promising

parameter values, to formalize the parameter tuning

process, and to reduce the number of required test cases.

Keywords: Metaheuristics, Parameter Tuning,

Algorithm Behavior Analysis, Performance Prediction

1. MOTIVATION

In the last decades researchers have created a wide

range of metaheuristics. There are various forms from

trajectory-based metaheuristics (e.g. Simulated

Annealing (Kirkpatrick, Gelatt, and Vecchi 1983), Tabu

Search (Glover 1989)) to population-based

metaheuristics (e.g. Evolutionary Algorithms (Holland

1975), Scatter Search (Laguna and Marti 2002), Particle

Swarm Optimization (Kennedy and Eberhart 1995)) or

hybrid metaheuristics (Talbi 2002). The evolution of so

many different metaheuristic optimization algorithms

results from the fact that no single method can

outperform all others for all possible problems. As

postulated in the No Free Lunch Theorem (Wolpert and

Macready 1997), such a general-purpose and universal

optimization strategy is impossible. One strategy can

always outperform another, if it is more specialized to

the structure of the tackled problem instance.

Consequently it always takes qualified algorithm

experts to select and tune a metaheuristic algorithm for

a concrete application.

Choosing an appropriate method for a certain

problem is not an easy task, as problem characteristics

may change for different instances and the performance

of a metaheuristic may vary considerably with different

parameter settings. Therefore the choice of a well-suited

method and according parameter values (parameter

tuning) is a crucial aspect when applying metaheuristics

(Smit and Eiben 2009).

Because parameter tuning is a time consuming task

that needs to be performed by a human expert, various

attempts have been made to improve and automate this

process. Hyperheuristics (Özcan, Bilgin and Korkmaz

2008) try to combine multiple simpler heuristics in a

single algorithm that is able to solve a class of

problems. Parameterless algorithms (Nadi and Khader

2011) try to reduce or eliminate the parameters of a

metaheuristic which would make parameter tuning

obsolete. Similarly to parameterless algorithms,

metaheuristics utilizing parameter control (Eiben,

Michalewicz, Schoenauer, and Smith 1999) need less

parameter configuration but still exhibit parameters,

which are automatically tuned during the execution of

the algorithm. Meta-optimization (Smit and Eiben

2009) is another approach where the problem of finding

good parameters is seen again as an optimization

problem and can therefore be optimized by a

metaheuristic. Even though meta-optimization

optimizes the parameters of metaheuristics, the meta-

level algorithm still has to be parameterized by a human

expert.

These methods often lead to robust results for

different problems, although it is difficult to achieve the

same quality level as with manually tuned parameter

settings which are adapted to the characteristics of a

specific problem. Therefore, manual parameter tuning is

still essential, if the solution quality of an algorithm

should be maximized.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 368

mailto:ascheibe@heuristiclab.com
mailto:swagner@heuristiclab.com
mailto:epitzer@heuristiclab.com
mailto:bburlacu@heuristiclab.com
mailto:maffenze@heuristiclab.com

The process of parameter tuning can be interpreted

as a search process itself. When performed by a human

expert it is often done intuitively by observing the

runtime and quality characteristics of an algorithm. On

the contrary, when applying a parameter grid search

parameter values are sampled in a fixed pattern which is

usually only suitable for a small amount of value

combinations. Meta-optimization approaches try to

apply some intelligent search procedure for navigating

through the parameter space and identifying good

settings, although this approach is not practically usable

in many cases due to the enormous computational

effort.

In this contribution the authors propose

measurement values which describe the search behavior

of an algorithm for making parameter tuning more

systematic and comparable. The remainder of this paper

is organized as follows: Section 2 describes the

proposed behavioral measures. Section 3 describes use

cases for the proposed measures and details on the

advantages of retrieving additional information about

the search process. Section 4 describes the work the

authors plan to conduct in the future.

2. BEHAVIORAL MEASURES

In this section various measures are described which

can be used to analyze the behavior of population-based

or trajectory-based metaheuristics when solving

combinatorial optimization problems:

Solution Similarity:

A problem with population-based metaheuristics is

often that populations tend to converge to a solution

candidate too quickly and diversity is lost within the

population. The solution similarity gives a crucial hint

on why a metaheuristic is not able to achieve the desired

performance. Similarity can be calculated by comparing

each individual to each other and averaging these values

for each generation.

Similarity can also be expressed using allele frequency

analysis (Wagner 2004) which investigates the alleles of

a population. For example unique alleles are the amount

of distinct alleles contained in a population. Therefore is

measure may also be used to get a deeper insight into

the diversity of the population and can offer a reason

why a metaheuristic is not able to generate better

offspring.

Spread of Solutions:

While some algorithms such as local search only cover

little parts of the solution space more intensively, other

algorithms that are intentionally built with

diversification in mind are able to cover broader parts of

the solution space. This measurement therefore captures

how wide spread the solutions are in the solution space

over the complete run of the algorithm.

Amount of Improvement:

Metaheuristics can have difficulties in improving the

quality of solution candidates. The reason for this is that

an operator might not be able to generate new solutions

with a better quality than the original solution. The

Offspring Selection Genetic Algorithm (Affenzeller,

Winkler, Wagner and Beham 2009) for example uses a

comparison factor to define the percentage by which the

quality of the generated offspring has to succeed the

worse parent. Similar the improvement ratio defines the

percentage by which the quality of the offspring

increases or decreases compared to the worse parent.

This measure offers information about the performance

of an operator. In the parameter tuning process

operators are often measured by the quality of the best

found solution. This measure therefore gives a more

detailed view into the performance and behavior of a

single operator without being influenced by other

parameters.

In the case of a genetic algorithm for example, this

measure can show how well the crossover and mutation

operators work. Therefore it can also be used to analyze

how well the mutation and crossover operators work

together and how much of an improvement each

operator contributes to the overall improvement of the

solution candidate.

Step Size of Moves:

If a metaheuristic only provides one type of solution

generation method (meaning no distinction between an

intensification and a diversification step), this

measurement tracks the average size of the jump an

algorithm makes from one solution candidate to the

next.

Convergence Speed:

As already mentioned a problem of metaheuristics is

often that they converge too quickly to a certain

solution candidate and are then not able to generate

improved solutions. The convergence speed therefore

measures how long it takes until individuals have

reached a certain similarity and the population is

converged. This measure observes the solution

similarities over time and shows therefore how quickly

an algorithm converges.

Success Ratio:

Convergence can also be seen as the problem that a

metaheuristic is not able to generate offspring that

succeeds the quality of the parents. Even if the

algorithm and used operators are able to generate better

offspring there might still be individuals that do not

succeed their parents. The Offspring Selection Genetic

Algorithm takes this fact into account by adding a

parameter success ratio which defines the amount of

better offspring that has to be generated for the next

generation. Similar to this concept the ratio of solutions

which are better than the parents to the amount of worse

children are captured. This measure shows how difficult

it is for the algorithm to generate new and successful

offspring.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 369

Coverage of the Solution Space:

This measure captures how much of the solution space

is covered by an algorithm. Often metaheuristics allow

duplicate solutions in their population while others

intentionally prohibit such a state. This measure

therefore shows the ratio of overall distinct solutions to

the number of overall solutions generated during the

algorithm execution.

Intensification/Diversification Ratio:

Metaheuristics often provide special mechanisms for

intensification and diversification. For example Scatter

Search uses an explicit diversification step (the

population rebuild method) when no better individuals

can be found. It additionally uses an improvement

method which is applied after the solution

recombination method to further improve the generated

solutions (intensification). Similarly, simulated

annealing generally tries to find better solutions, but

also incorporates worse solution candidates with a

certain probability. The intensification/diversification

ratio therefore provides information about the amount

of usage of these two methods.

Intensification/Diversification Frequency:

Metaheuristics often apply intensification or

diversification operations periodically or based on a

certain scheme. This measurement value captures the

frequency between intensification and diversification

operations.

Diversification Intensity:

When metaheuristics include explicit diversification

mechanisms, they usually incorporate new and diverse

solutions into the search process or accept worse quality

solutions. The diversification intensity measures to

which degree diverse candidates are accepted.

3. USE CASES AND ADVANTAGES OF

BEHAVIORAL MEASURES

In this section use cases for the proposed measurement

values are described. The goal of having behavioral

measurements for algorithms is to use them as a basis

for further algorithm analyses and prediction.

Behavioral algorithm measures make algorithms

comparable to each other. At the moment algorithms are

mostly compared by their achieved quality and the

number of evaluated solutions. We argue that

comparisons solely based on the quality are not enough

as they only give information about the performance but

not the reason for it. Furthermore, these measures give

hints about potentially successful parameter settings. If

an algorithm performs poorly, these measurements can

explain the reason for this particular behavior. Using the

quality as a measure alone could lead to the wrong

impression that an algorithm is not suited for a certain

problem. But behavioral measures can give a reason

why this is the case and help to find parameter

configurations that work better. An example for such a

case is e.g. a genetic algorithm that has a bad quality as

well as a high convergence speed and a low coverage of

solution space. A researcher could therefore infer from

these results that a higher population size or mutation

rate could lead to a better quality instead of discarding

the algorithm because of the initial poor results.

Behavioral measures could also be used by algorithms

to predict potentially good parameter settings. Such

algorithms could use this information to pursue a more

informed search process by repeating the execution,

analyzing the calculated behavioral measures and then

infer new and better parameter settings. These

algorithms would work much more like a human expert

doing parameter tuning who learns from his mistakes

and tries to improve on them.

These algorithms need to be able to generate new

parameter configurations based on the calculated

behavioral measures. This could be realized by defining

a rule set for behavioral measures. Therefore algorithms

could react if a behavioral measure has a certain value

which indicates that a parameter should be adjusted in

the next run as it would potentially lead to better results.

A disadvantage of the rule set approach is that it is

difficult to capture all states of different measures as

well as the right parameter settings to counter potential

bad behavior.

Another possibility to infer new parameter

configurations is to use supervised learning methods to

create models for predicting algorithm performance for

new parameter settings. Having a large data set,

parameter settings based on the behavioral measures

can be learned. This allows sampling new parameter

configurations and discarding those where the model

predicts a bad performance.

Additionally, fitness landscape analysis (FLA) (Pitzer

and Affenzeller 2012) can be used to improve the

parameter prediction. FLA offers metrics for problem

instances that describe certain characteristics of the

problem. This information could be used as well

together with algorithm behavioral measures to choose

parameter configurations more systematically.

The above described rule set for parameter generation

can also be used in a similar way as algorithms using

parameter control. While the before described

parameter tuning algorithms work on a data set of

results generated by executing standard metaheuristics,

these new parameter control algorithms would tune and

adapt their parameters based on a defined rule set at

runtime.

4. CONCLUSION AND FUTURE WORK

Algorithm behavior analysis represents a profound

basis for further algorithm analysis. Besides giving

researchers a tool for getting a better insight into the

inner dynamics of algorithms and help to understand the

interdependencies and impacts of parameter settings,

these measures can be used to predict potentially good

parameter settings based on either rule sets or

supervised learning methods. Furthermore, the

prediction models can be used to determine promising

parameter settings and to steer parameter tuning into the

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 370

right direction which reduces the amount of required

test cases. Additionally algorithms that use behavioral

measures for online parameter tuning could be realized

using a rule set for parameter control which would

allow these algorithms to follow a more systematic

search process.

In the future the authors will implement the

proposed measurements. There is a proper need of

detailed information about the inner workings of the

search process to be able to choose parameter settings

more systematic instead of intuition. Another future

task is the development of the proposed parameter

tuning and parameter control algorithms which utilize

the behavioral measures.

Additionally, these measures should also be integrated

into the optimization knowledge base. The Optimization

Knowledge Base (OKB) (Scheibenpflug, Wagner,

Pitzer and Affenzeller 2012) is an open database for

storing information about algorithms, problems and the

results collected from executing algorithms. It gives

researchers a tool for gaining a better understanding of

the behavior of algorithms by providing a huge data set

of already generated results for different algorithms on

various problems as well as meta-information for

problems. While the OKB can be used to support

parameter tuning and algorithms by providing a

memory, it can also serve as a platform for researchers

to publish their results and make their contributions

more transparent. Besides storing the results of

metaheuristic runs, the optimization knowledge base

also stores information about problems which is

generated by fitness landscape analyses.

The OKB therefore already gives researchers a

huge source of information that can be used to partially

explain the behavior of metaheuristics. The results

together with the parameter settings saved in the OKB

show which settings in combination with which

algorithms works well on specific problems. The values

collected from fitness landscape analyses can be used to

get a feeling for the problem at hand and may also be

used to explain the behavior of algorithms or parameter

settings. A feature the optimization knowledge base is

missing is support for algorithm behavior measures.

These measures could be used to explain the behavior

of algorithms and why certain algorithms exhibiting a

certain behavior work well on certain problems having

certain problem characteristics.

Furthermore, the information can be used by

applications that automatically optimize new and

unknown problems. If a new problem is to be

optimized, the fitness landscape analysis can be used to

calculate the similarities from the new problem to all

known problems. Then the results for the similar

problems can be gathered and the parameter settings of

the best runs can be used for optimizing the new

problem.

We argue that this method, as described until now,

needs more information about the algorithms besides

the best achieved quality. If the OKB contains

algorithm behavior measures, parameter tuning

algorithms could use the information contained in the

OKB together with the algorithm behavioral measures

for supervised learning methods to create models to

predict algorithm performance for new parameter

settings. This allows sampling new parameter

configurations and discarding those where the model

predicts a bad performance. This would drastically

minimize the run time and lead to a much more

deliberate search process.

ACKNOWLEDGMENTS

The work described in this paper was done within the

Josef Ressel-Centre HEUREKA! for Heuristic

Optimization sponsored by the Austrian Research

Promotion Agency (FFG).

REFERENCES

Wolpert, D. H., Macready, W. G., 1997. No Free Lunch

Theorems for Optimization. IEEE Transactions on

Evolutionary Computation, 1 (1), 67–82.

Talbi, E.-G., 2002. A taxonomy of hybrid

metaheuristics. Journal of Heuristics, 8(5), 541-

564.

Smit, S.K., Eiben, A.E, 2009. Comparing parameter

tuning methods for evolutionary algorithms. IEEE

Congress on Evolutionary Computation, 399-406.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., 1983.

Optimization by Simulated Annealing. Science,

220, 671-680.

Glover, F., 1989. Tabu Search - Part I. Informs Journal

on Computing, 1 (3), 190-206.

Holland, J. H., 1975. Adaptation in natural and artificial

systems. University of Michigan Press.

Laguna, M., Marti, R., 2002. Scatter Search:

Methodology and Implementations in C. Kluwer

Academic Publishers.

Kennedy, J., Eberhart, R., 1995. Particle swarm

optimization. Proceedings of the IEEE Conference

on Neural Networks, 4, 1942 -1948.

Özcan, E., Bilgin, B., Korkmaz, E.E., 2008. A

comprehensive analysis of hyper-heuristics.

Intelligent Data Analysis, 12 (1), 3–23.

Nadi, F., Khader, A. T., 2011. A parameter-less genetic

algorithm with customized crossover and mutation

operators. Proceedings of the 13th annual

conference on Genetic and evolutionary

computation, 901-908.

Eiben, A. E., Michalewicz, Z., Schoenauer, M., Smith,

J., 1999. Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary

Computation, 3, 124-141.

Mercer, R., Sampson, J., 1978. Adaptive search using a

reproductive metaplan. Kybernetes, 7, 215-228.

Affenzeller, M., Winkler, S., Wagner, S., Beham, A.,

2009. Genetic Algorithms and Genetic

Programming. Chapman & Hall/CRC.

Scheibenpflug, A., Wagner, S., Pitzer, E., Affenzeller,

M., 2012. Optimization Knowledge Base: An

Open Database for Algorithm and Problem

Characteristics and Optimization Results,

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 371

Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO).

Pitzer, E., Affenzeller, M., 2012. A comprehensive

survey on fitness landscape analysis, Recent

Advances in Intelligent Engineering Systems, 378,

161-191.

Wagner, S., 2004. Looking Inside Genetic Algorithms.

Universitätsverlag Rudolf Trauner.

Smit, S. K., Eiben A. E., 2009. Comparing

parametertuning methods for evolutionary

algorithms. IEEE Congress on Evolutionary

Computation, 399-406.

AUTHORS BIOGRAPHIES

ANDREAS SCHEIBENPFLUG
received his MSc in software engineering

in 2009 from the University of Applied

Sciences Upper Austria. He is currently

research assistant at the Heuristic and

Evolutionary Algorithms Laboratory at the

University of Applied Sciences Upper Austria.

STEFAN WAGNER received his PhD in

engineering sciences in 2009 from JKU

Linz, Austria; he is professor at the Upper

Austrian University of Applied Sciences

(Campus Hagenberg). Dr. Wagner’s

research interests include evolutionary

computation and heuristic optimization, theory and

application of genetic algorithms, and software

development.

ERIK PITZER received his diploma in

software engineering in 2004 at the Upper

Austria University of Applied Sciences.

Since 2004 he has been working as a

research associate at the Research Center

Hagenberg of the Upper Austria

University of Applied Sciences and at the Decision

Systems Group of Harvard Medical School in Boston.

Erik Pitzer is currently working on his PhD thesis in the

field of fitness landscape analysis for the design and

analysis of meta-heuristic algorithms.

BOGDAN BURLACU received his MSc

in computer science and systems

engineering in 2009 from the “Gheorghe

Asachi” Technical University in Iasi,

Romania. Currently he is a research

associate in the Heuristic and

Evolutionary Algorithms Laboratory in Hagenberg,

under the supervision of Michael Affenzeller.

MICHAEL AFFENZELLER has

published several papers, journal articles

and books dealing with theoretical and

practical aspects of evolutionary

computation, genetic algorithms, and

meta-heuristics in general. In 2001 he

received his PhD in engineering sciences and in 2004 he

received his habilitation in applied systems engineering,

both from the Johannes Kepler University of Linz,

Austria. Michael Affenzeller is professor at UAS,

Campus Hagenberg, and head of the Josef Ressel

Centre Heureka! at Hagenberg.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 372

