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ABSTRACT 

Metaheuristics are successfully applied in many 

different application domains as they provide a 

reasonable tradeoff between computation time and 

achievable solution quality. However, choosing an 

appropriate algorithm for a certain problem is not 

trivial, as problem characteristics can change 

remarkably for different instances and the performance 

of a metaheuristic may vary considerably for different 

parameter settings. Therefore it always takes qualified 

algorithm experts to select and tune a metaheuristic 

algorithm for a specific application. This process of 

algorithm selection and parameter tuning is frequently 

done manually and intuitively and requires a large 

number of empirical tests. 

In this contribution the authors propose several 

measurement values to characterize the search behavior 

of different metaheuristics for solving combinatorial 

optimization problems. Based on these measurements 

algorithms can be classified and models can be learnt to 

predict the algorithms behavior for new parameter 

settings. This helps to understand the interdependencies 

and impacts of parameters, to identify promising 

parameter values, to formalize the parameter tuning 

process, and to reduce the number of required test cases. 
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1. MOTIVATION 

In the last decades researchers have created a wide 

range of metaheuristics. There are various forms from 

trajectory-based metaheuristics (e.g. Simulated 

Annealing (Kirkpatrick, Gelatt, and Vecchi 1983), Tabu 

Search (Glover 1989)) to population-based 

metaheuristics (e.g. Evolutionary Algorithms (Holland 

1975), Scatter Search (Laguna and Marti 2002), Particle 

Swarm Optimization (Kennedy and Eberhart 1995)) or 

hybrid metaheuristics (Talbi 2002). The evolution of so 

many different metaheuristic optimization algorithms 

results from the fact that no single method can 

outperform all others for all possible problems. As 

postulated in the No Free Lunch Theorem (Wolpert and 

Macready 1997), such a general-purpose and universal 

optimization strategy is impossible. One strategy can 

always outperform another, if it is more specialized to 

the structure of the tackled problem instance. 

Consequently it always takes qualified algorithm 

experts to select and tune a metaheuristic algorithm for 

a concrete application. 

Choosing an appropriate method for a certain 

problem is not an easy task, as problem characteristics 

may change for different instances and the performance 

of a metaheuristic may vary considerably with different 

parameter settings. Therefore the choice of a well-suited 

method and according parameter values (parameter 

tuning) is a crucial aspect when applying metaheuristics 

(Smit and Eiben 2009). 

Because parameter tuning is a time consuming task 

that needs to be performed by a human expert, various 

attempts have been made to improve and automate this 

process. Hyperheuristics (Özcan, Bilgin and Korkmaz 

2008) try to combine multiple simpler heuristics in a 

single algorithm that is able to solve a class of 

problems. Parameterless algorithms (Nadi and Khader 

2011) try to reduce or eliminate the parameters of a 

metaheuristic which would make parameter tuning 

obsolete. Similarly to parameterless algorithms, 

metaheuristics utilizing parameter control (Eiben, 

Michalewicz, Schoenauer, and Smith 1999) need less 

parameter configuration but still exhibit parameters, 

which are automatically tuned during the execution of 

the algorithm. Meta-optimization (Smit and Eiben 

2009) is another approach where the problem of finding 

good parameters is seen again as an optimization 

problem and can therefore be optimized by a 

metaheuristic. Even though meta-optimization 

optimizes the parameters of metaheuristics, the meta-

level algorithm still has to be parameterized by a human 

expert.  

These methods often lead to robust results for 

different problems, although it is difficult to achieve the 

same quality level as with manually tuned parameter 

settings which are adapted to the characteristics of a 

specific problem. Therefore, manual parameter tuning is 

still essential, if the solution quality of an algorithm 

should be maximized. 
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The process of parameter tuning can be interpreted 

as a search process itself. When performed by a human 

expert it is often done intuitively by observing the 

runtime and quality characteristics of an algorithm. On 

the contrary, when applying a parameter grid search 

parameter values are sampled in a fixed pattern which is 

usually only suitable for a small amount of value 

combinations. Meta-optimization approaches try to 

apply some intelligent search procedure for navigating 

through the parameter space and identifying good 

settings, although this approach is not practically usable 

in many cases due to the enormous computational 

effort. 

In this contribution the authors propose 

measurement values which describe the search behavior 

of an algorithm for making parameter tuning more 

systematic and comparable. The remainder of this paper 

is organized as follows: Section 2 describes the 

proposed behavioral measures. Section 3 describes use 

cases for the proposed measures and details on the 

advantages of retrieving additional information about 

the search process. Section 4 describes the work the 

authors plan to conduct in the future.  

 

2. BEHAVIORAL MEASURES 

In this section various measures are described which 

can be used to analyze the behavior of population-based 

or trajectory-based metaheuristics when solving 

combinatorial optimization problems: 

 

Solution Similarity: 

A problem with population-based metaheuristics is 

often that populations tend to converge to a solution 

candidate too quickly and diversity is lost within the 

population. The solution similarity gives a crucial hint 

on why a metaheuristic is not able to achieve the desired 

performance. Similarity can be calculated by comparing 

each individual to each other and averaging these values 

for each generation.  

Similarity can also be expressed using allele frequency 

analysis (Wagner 2004) which investigates the alleles of 

a population. For example unique alleles are the amount 

of distinct alleles contained in a population. Therefore is 

measure may also be used to get a deeper insight into 

the diversity of the population and can offer a reason 

why a metaheuristic is not able to generate better 

offspring.  

 

Spread of Solutions: 

While some algorithms such as local search only cover 

little parts of the solution space more intensively, other 

algorithms that are intentionally built with 

diversification in mind are able to cover broader parts of 

the solution space. This measurement therefore captures 

how wide spread the solutions are in the solution space 

over the complete run of the algorithm. 

 

Amount of Improvement: 

Metaheuristics can have difficulties in improving the 

quality of solution candidates. The reason for this is that 

an operator might not be able to generate new solutions 

with a better quality than the original solution. The 

Offspring Selection Genetic Algorithm (Affenzeller, 

Winkler, Wagner and Beham 2009) for example uses a 

comparison factor to define the percentage by which the 

quality of the generated offspring has to succeed the 

worse parent. Similar the improvement ratio defines the 

percentage by which the quality of the offspring 

increases or decreases compared to the worse parent.  

This measure offers information about the performance 

of an operator. In the parameter tuning process 

operators are often measured by the quality of the best 

found solution. This measure therefore gives a more 

detailed view into the performance and behavior of a 

single operator without being influenced by other 

parameters.  

In the case of a genetic algorithm for example, this 

measure can show how well the crossover and mutation 

operators work. Therefore it can also be used to analyze 

how well the mutation and crossover operators work 

together and how much of an improvement each 

operator contributes to the overall improvement of the 

solution candidate. 

 

Step Size of Moves: 

If a metaheuristic only provides one type of solution 

generation method (meaning no distinction between an 

intensification and a diversification step), this 

measurement tracks the average size of the jump an 

algorithm makes from one solution candidate to the 

next.  

 

Convergence Speed: 

As already mentioned a problem of metaheuristics is 

often that they converge too quickly to a certain 

solution candidate and are then not able to generate 

improved solutions. The convergence speed therefore 

measures how long it takes until individuals have 

reached a certain similarity and the population is 

converged. This measure observes the solution 

similarities over time and shows therefore how quickly 

an algorithm converges.  

 

Success Ratio: 

Convergence can also be seen as the problem that a 

metaheuristic is not able to generate offspring that 

succeeds the quality of the parents. Even if the 

algorithm and used operators are able to generate better 

offspring there might still be individuals that do not 

succeed their parents. The Offspring Selection Genetic 

Algorithm takes this fact into account by adding a 

parameter success ratio which defines the amount of 

better offspring that has to be generated for the next 

generation. Similar to this concept the ratio of solutions 

which are better than the parents to the amount of worse 

children are captured. This measure shows how difficult 

it is for the algorithm to generate new and successful 

offspring. 
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Coverage of the Solution Space: 

This measure captures how much of the solution space 

is covered by an algorithm. Often metaheuristics allow 

duplicate solutions in their population while others 

intentionally prohibit such a state. This measure 

therefore shows the ratio of overall distinct solutions to 

the number of overall solutions generated during the 

algorithm execution.  

 

Intensification/Diversification Ratio: 

Metaheuristics often provide special mechanisms for 

intensification and diversification. For example Scatter 

Search uses an explicit diversification step (the 

population rebuild method) when no better individuals 

can be found. It additionally uses an improvement 

method which is applied after the solution 

recombination method to further improve the generated 

solutions (intensification). Similarly, simulated 

annealing generally tries to find better solutions, but 

also incorporates worse solution candidates with a 

certain probability. The intensification/diversification 

ratio therefore provides information about the amount 

of usage of these two methods.  

 

Intensification/Diversification Frequency: 

Metaheuristics often apply intensification or 

diversification operations periodically or based on a 

certain scheme. This measurement value captures the 

frequency between intensification and diversification 

operations. 

 

Diversification Intensity: 

When metaheuristics include explicit diversification 

mechanisms, they usually incorporate new and diverse 

solutions into the search process or accept worse quality 

solutions. The diversification intensity measures to 

which degree diverse candidates are accepted. 

 

3. USE CASES AND ADVANTAGES OF 

BEHAVIORAL MEASURES 

In this section use cases for the proposed measurement 

values are described. The goal of having behavioral 

measurements for algorithms is to use them as a basis 

for further algorithm analyses and prediction.  

Behavioral algorithm measures make algorithms 

comparable to each other. At the moment algorithms are 

mostly compared by their achieved quality and the 

number of evaluated solutions. We argue that 

comparisons solely based on the quality are not enough 

as they only give information about the performance but 

not the reason for it. Furthermore, these measures give 

hints about potentially successful parameter settings. If 

an algorithm performs poorly, these measurements can 

explain the reason for this particular behavior. Using the 

quality as a measure alone could lead to the wrong 

impression that an algorithm is not suited for a certain 

problem. But behavioral measures can give a reason 

why this is the case and help to find parameter 

configurations that work better. An example for such a 

case is e.g. a genetic algorithm that has a bad quality as 

well as a high convergence speed and a low coverage of 

solution space. A researcher could therefore infer from 

these results that a higher population size or mutation 

rate could lead to a better quality instead of discarding 

the algorithm because of the initial poor results.  

Behavioral measures could also be used by algorithms 

to predict potentially good parameter settings. Such 

algorithms could use this information to pursue a more 

informed search process by repeating the execution, 

analyzing the calculated behavioral measures and then 

infer new and better parameter settings. These 

algorithms would work much more like a human expert 

doing parameter tuning who learns from his mistakes 

and tries to improve on them.  

These algorithms need to be able to generate new 

parameter configurations based on the calculated 

behavioral measures. This could be realized by defining 

a rule set for behavioral measures. Therefore algorithms 

could react if a behavioral measure has a certain value 

which indicates that a parameter should be adjusted in 

the next run as it would potentially lead to better results. 

A disadvantage of the rule set approach is that it is 

difficult to capture all states of different measures as 

well as the right parameter settings to counter potential 

bad behavior.  

Another possibility to infer new parameter 

configurations is to use supervised learning methods to 

create models for predicting algorithm performance for 

new parameter settings. Having a large data set, 

parameter settings based on the behavioral measures 

can be learned. This allows sampling new parameter 

configurations and discarding those where the model 

predicts a bad performance. 

Additionally, fitness landscape analysis (FLA) (Pitzer 

and Affenzeller 2012) can be used to improve the 

parameter prediction. FLA offers metrics for problem 

instances that describe certain characteristics of the 

problem. This information could be used as well 

together with algorithm behavioral measures to choose 

parameter configurations more systematically.  

The above described rule set for parameter generation 

can also be used in a similar way as algorithms using 

parameter control. While the before described 

parameter tuning algorithms work on a data set of 

results generated by executing standard metaheuristics, 

these new parameter control algorithms would tune and 

adapt their parameters based on a defined rule set at 

runtime.  

 

4. CONCLUSION AND FUTURE WORK 

Algorithm behavior analysis represents a profound 

basis for further algorithm analysis. Besides giving 

researchers a tool for getting a better insight into the 

inner dynamics of algorithms and help to understand the 

interdependencies and impacts of parameter settings, 

these measures can be used to predict potentially good 

parameter settings based on either rule sets or 

supervised learning methods. Furthermore, the 

prediction models can be used to determine promising 

parameter settings and to steer parameter tuning into the 
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right direction which reduces the amount of required 

test cases. Additionally algorithms that use behavioral 

measures for online parameter tuning could be realized 

using a rule set for parameter control which would 

allow these algorithms to follow a more systematic 

search process. 

In the future the authors will implement the 

proposed measurements. There is a proper need of 

detailed information about the inner workings of the 

search process to be able to choose parameter settings 

more systematic instead of intuition. Another future 

task is the development of the proposed parameter 

tuning and parameter control algorithms which utilize 

the behavioral measures.  

Additionally, these measures should also be integrated 

into the optimization knowledge base. The Optimization 

Knowledge Base (OKB) (Scheibenpflug, Wagner, 

Pitzer and Affenzeller 2012) is an open database for 

storing information about algorithms, problems and the 

results collected from executing algorithms. It gives 

researchers a tool for gaining a better understanding of 

the behavior of algorithms by providing a huge data set 

of already generated results for different algorithms on 

various problems as well as meta-information for 

problems. While the OKB can be used to support 

parameter tuning and algorithms by providing a 

memory, it can also serve as a platform for researchers 

to publish their results and make their contributions 

more transparent. Besides storing the results of 

metaheuristic runs, the optimization knowledge base 

also stores information about problems which is 

generated by fitness landscape analyses. 

The OKB therefore already gives researchers a 

huge source of information that can be used to partially 

explain the behavior of metaheuristics. The results 

together with the parameter settings saved in the OKB 

show which settings in combination with which 

algorithms works well on specific problems. The values 

collected from fitness landscape analyses can be used to 

get a feeling for the problem at hand and may also be 

used to explain the behavior of algorithms or parameter 

settings. A feature the optimization knowledge base is 

missing is support for algorithm behavior measures. 

These measures could be used to explain the behavior 

of algorithms and why certain algorithms exhibiting a 

certain behavior work well on certain problems having 

certain problem characteristics.  

Furthermore, the information can be used by 

applications that automatically optimize new and 

unknown problems. If a new problem is to be 

optimized, the fitness landscape analysis can be used to 

calculate the similarities from the new problem to all 

known problems. Then the results for the similar 

problems can be gathered and the parameter settings of 

the best runs can be used for optimizing the new 

problem.  

We argue that this method, as described until now, 

needs more information about the algorithms besides 

the best achieved quality. If the OKB contains 

algorithm behavior measures, parameter tuning 

algorithms could use the information contained in the 

OKB together with the algorithm behavioral measures 

for supervised learning methods to create models to 

predict algorithm performance for new parameter 

settings. This allows sampling new parameter 

configurations and discarding those where the model 

predicts a bad performance. This would drastically 

minimize the run time and lead to a much more 

deliberate search process.  
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