
AUTOMATED VERIFICATION OF CARDIOVASCULAR MODELS WITH CONTINUOUS

INTEGRATION TOOLS

M. Bachler
(a)

, B. Hametner
(b)

, C. Mayer
(c)

, J. Kropf
(d)

, M. Gira
(e)

, S. Wassertheurer
(f)

(a) - (f)

AIT Austrian Institute of Technology GmbH, Health & Environment Department, Biomedical Systems
(a) - (b)

Vienna University of Technology, Institute for Analysis and Scientific Computing

(a)

martin.bachler@student.tuwien.ac.at,
(b)

bernhard.hametner@ait.ac.at,
(c)

christopher.mayer@ait.ac.at,
(d)

johannes.kropf@ait.ac.at,
(e)

matthias.gira@ait.ac.at,
(f)

siegfried.wassertheurer@ait.ac.at

ABSTRACT

Models in general, but especially in medicine, need

extensive testing and verification to ensure that they do

not contain errors and produce correct results.

Traditionally, this happens after completing the

development. In this work an approach to automated

and continuous testing, verification and documentation

based on a continuous integration tool is presented. This

practice has several advantages in comparison to the

traditional way of verification. As the model is verified

after every single change that is made to it, one benefit

is the earlier and more precise tracing of errors. Another

advantage is the aggregation of code generation,

software building, testing, verifying and documentation

in one tool to ensure maximum automation and to

reduce expenditure of time. Furthermore, due to the

integration of central versioning systems, it makes

working in development teams easier. In this work, the

development processes of two cardiovascular models

are incorporated into a continuous integration system.

Keywords: continuous integration, cardiovascular

model, model verification, development tools

1. INTRODUCTION

In contrast to model checking, which ensures the formal

validity of a software system, model verification tests

the correctness of the results derived from a given

model. In medicine, the verification of physiologic

models can be done, for example, by comparing these

results with real world measurements.

This verification process traditionally starts after

the development of the model is completed and

executable software has been build, whereas the

building process itself is usually carried out manually

and step by step. Finally, documentation of model and

verification is produced by hand. All these steps have to

be carried out each time the model is changed.

Figure 1 shows a diagram of this typical

development approach, e.g. as described by Bachler et

al. (2011).

Modelling

(Building a model in a mathematical programming

language)

Code generation and compilation

(Generation of C code and compilation of executable

software)

Library integration

(Integration of the compiled model in a software

product)

Verification

(Do the results of the model meet the requirements?)

Documentation

(Documenting model and results of the verification

process)

Figure 1: Typical Development Process of a Software

Product based on a Model

Among others, one big disadvantage of this

approach is the late verification of the model. Finding

an error in the fourth step (verification) of the process

usually forces the developer to go back to step two

(code generation and compilation) or even step one

(modelling), depending on the mistake.

Another drawback can be found in environments

where the model is subject to continual changes.

Usually, several changes are made to the model before

the building process is started again. Therefore it is not

easy to track back errors found during the verification

and relate them to a specific change.

Although these issues are addressed by best

practice paradigms such as “test early, test often” they

tend to reoccur in many different software development

processes, not only in model based algorithm

development. Following these fundamental practices

seems to be harder than one would expect. The

automation of the entire building process can help to

enhance the frequency of testing and verification

(Duvall, Matyas, and Glover 2007).

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 316

mailto:martin.bachler@student.tuwien.ac.at
mailto:bernhard.hametner@ait.ac.at
file:///C:/Users/reinickev/Lokale%20Einstellungen/Temporary%20Internet%20Files/Content.Outlook/FBBZEWQ6/vorname.nachname@ait.ac.at
mailto:johannes.kropf@ait.ac.at
mailto:matthias.gira@ait.ac.at
mailto:siegfried.wassertheurer@ait.ac.at

In this work the automation of the development

processes of two software products containing

cardiovascular models using the continuous integration

tool and open source software Jenkins in the version

1.473 is described.

2. METHODS AND MATERIALS

In the first part of this chapter, two concrete software

products containing cardiovascular models are

presented. Their development processes, which were

transferred into a continuous integration system, will be

described. One of the models is dealing with the

calculation of certain parameters using pulse wave

analysis, the other is used for the detection of features in

electrocardiography.

The second part deals with continuous integration

tools in general and the software tool Jenkins in

particular.

2.1. Pulse Wave Analysis

Pulse wave analysis (PWA) in general deals with the

determination of several cardiovascular parameters

calculated from the pulse wave travelling through

human arteries. The AIT Austrian Institute of

Technology GmbH developed a non-invasive and easy

to use method based on recordings of the pulse wave by

means of an occlusive blood pressure cuff

(Wassertheurer, Mayer, and Breitenecker 2008;

Wassertheurer et al. 2010; Hametner 2011; Hametner et

al. 2012; Weber et al. 2011; Wassertheurer, Hametner,

and Weber 2011; Nunan et al. 2012).

Certain software algorithms for the calculation of

parameters for the aortic blood pressure, arterial

stiffness and wave reflection are part of this method. As

this system is subject to ongoing research, the

underlying models are changed continually.

Furthermore, several developers are involved in the

modelling and building process. Hence, these models

and algorithms are perfect candidates to be incorporated

in a continuous integration system.

The model based algorithms used for the pulse

wave analysis are developed in the mathematical

programming language MathWorks MATLAB
®
 in the

version R2007b and converted to C code using

Embedded MATLAB
®
. This C code is compiled into

dynamic link libraries using standard C compilers and

integrated in a software product written in the

programming language Java. The original development

process followed the steps shown in Figure 1.

The whole development process is summarised in

Figure 2. In the original setting, the transition from

MATLAB
®
 code to the DLL was semi-automatic using

shell-scripts. The integration of the DLL in the Java-

Environment, software tests and verification as well as

the documentation was done manually.

2.2. Electrocardiography

Electrocardiography (ECG) is the measurement of the

electric activity of the cardiac muscle. It is a non-

invasive, painless technique and is widely used in the

assessment of heart failures. The tracing of one

heartbeat consists of a P wave representing the atrial

depolarization, a QRS complex showing the ventricular

depolarization and a T wave at the ventricular

repolarisation.

The software algorithm is able to detect beginning,

peak and end of the QRS complex, the P and the T

wave of each heartbeat automatically and in real time

(Bachler et al. 2011).

The results of this algorithm are verified by

comparing them to annotations made by medical

experts with data from different ECG databases

(Goldberger et al. 2000).

Like the algorithms for pulse wave analysis, this

software is written in MATLAB
®
, converted to C code,

compiled to a dynamic link library and integrated in a

software product written in Java (shown in Figure 2).

Again, the transition from MATLAB
®
 code to the DLL

is semi-automatic, whereas integration, verification and

documentation are done by hand. Therefore several

build steps from the pulse wave analysis algorithm can

be reused.

MATLAB
®
 - Model

DLL Java

Research & Development

Development

C code

Embedded MATLAB compiler

C compiler

Figure 2: Development of different parts of the software

system for Pulse Wave Analysis and ECG Analysis

2.3. Continuous Integration

Continuous integration helps implementing “best

practices” in software development by automating the

whole building process (code generation, compilation,

testing and verification) and the documentation thereof

(Duvall, Matyas, and Glover 2007).

Focused mainly on the principles of centralisation,

“test early, test often”, automation of build and

documentation, and feedback, a continuous integration

system usually features (as shown in Figure 3):

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 317

 A version control repository,

 A continuous integration server,

 Build scripts, and

 A feedback mechanism.

Build Script

Commit Source Code

Developer Developer

Poll

Version

Control

Repository

Continuous

Integration

Server

Feedback

Mechanism

Figure 3: Basic Components of a Continuous

Integration System (Duvall, Matyas, and Glover 2007)

2.3.1. Centralisation

In research and development teams, usually a file server

is utilized as central data storage accessible to all team

members. Typically a version control system such as

Concurrent Versions System (CVS) or Apache

Subversion (SVN) is used to keep track of all changes

made to the files.

Continuous integration systems support the

practice of using central versioning systems and

integrate them seamlessly without any change

necessary. A central continuous integration server

frequently checks for changes in the source code stored

in the version control system. If a change is detected,

the building process is carried out according to some

predefined build scripts.

2.3.2. Test Early, Test Often

Testing is part of the building process. Automated

software tests (including the verification of the results

obtained using the model) are executed each time after

the software was compiled. As the building process is

started after each change in the source code that is

submitted to the version control system, the only thing

developers need to do is to commit their code every

time they add or change something. As a consequence,

every single change leads to a full test and verification

of the whole system and therefore also the model. This

narrows down bug tracking to where did the error occur

(i.e. in which development step) and when did it occur

(i.e. after which change in the model), therefore making

errors a lot easier to resolve (Duvall, Matyas, and

Glover 2007).

2.3.3. Automation of Build and Documentation

With tools such as GNU Make (originating from UNIX

systems and mainly used for the C programming

language), Apache Ant and Apache Maven (primarily

for development in Java), build automation tools are

already widely used. But instead of running these tools

on the machines of developers (which probably

prevents them from doing something else in the

meantime), they are incorporated in the continuous

integration system and executed on a dedicated

continuous integration server.

Therefore, existing build scripts can be reused

easily in a continuous integration system. Furthermore,

different sorts of scripts can be combined to create a

fully automated build environment.

In addition to the compilation process and

automated testing, sophisticated scripts allow the

automated verification of the results of the model based

algorithms described above and the automated

generation of verification reports.

2.3.4. Feedback

As building, testing and documentation is completely

taken over and automated by the continuous integration

system, there has to be a mechanism to inform the

developer of success or errors in the build. Usually, the

continuous integration server is configured to send an e-

mail to either a predefined address (probably the

coordinator of the team) or to the developer that

initiated the building process by committing code

changes.

If errors occur during the building process, the

feedback contains detailed descriptions of them to allow

fast and easy debugging. Otherwise, build artifacts are

generated. These usually consist of executable software

or compiled libraries, test results and verification

reports.

2.4. The Continuous Integration tool Jenkins

Jenkins is an extendable, web based continuous

integration tool written in Java and published under the

open source MIT license. It supports several build tools

such as Apache Ant, different versioning systems such

as Apache Subversion and automatic software testing

tools. It is a fork (spin-off) from the continuous

integration system Hudson supported by Oracle (Wiest

2010).

Originally, it was designed for Java projects only,

but with the capability of using plugins its features can

be extended far beyond this limited purpose (Wiest

2010).

Projects can be created and managed via a web

interface using an ordinary browser. Therefore, every

developer can access the same configuration data, adapt

them or check the status of a certain project (Wiest

2010).

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 318

Jenkins is not limited to one central continuous

integration server but can incorporate several distinctive

nodes running different operating systems. This feature

is especially essential if the source code has to be

compiled for different platforms such as Linux, Mac OS

X or Microsoft Windows, but can also help distributing

the work load to several building machines (Wiest

2010).

2.5. Using Jenkins for the Development of the

Algorithms based on Cardiovascular Models

As described earlier in this section, some parts of the

development process were already automated using

shell scripts. Also the version control system Apache

Subversion in the version 1.6 was already in use. So,

when implementing Jenkins with the projects for pulse

wave analysis and ECG analysis, the main work was the

combination of all single steps into one completely

automated process. The biggest challenge was the

creation of automated verification reports. In contrast to

standard software tests, which primarily give a yes/no-

answer to the question of the absence of runtime-bugs,

verification has to quantify the difference between the

results obtained using the model and a reference.

Therefore, the report of the verification process cannot

be simply the output of a standard software test but has

to include extensive statistical analyses of the results.

2.5.1. Assessment of the Initial Situation

To create an overview of the steps necessary for porting

the whole development process to Jenkins, an

assessment of the initial situation has to be performed:

1. Modelling: The models used in pulse wave

analysis and ECG analysis are written in the

programming language MATLAB
®
. As this is

the creative part of the development process

done by researchers and developers, it is not

possible to automate this task.

2. Code generation: Using scripts written in

MATLAB
®
, models and algorithms from step

1 are converted to code in the C programming

language.

3. Code compilation: In this step, dynamic

libraries are created for Linux, Mac OS X and

Microsoft Windows. Therefore, three building

machines with different operating systems are

in use. Shell scripts for these compilation

processes already exist, but they have to be

executed on each machine manually.

4. Library integration: The three libraries built in

step 3 are integrated in a Java project, which

again is build using a shell script on one of the

machines mentioned in the step above.

5. Verification: The verification consists basically

of three parts: verifying the MATLAB
®
 model

itself, verifying the libraries integrated in the

Java project and running automated software

tests. For the first part, a MATLAB
®
 script is

used to compare the results derived using the

models with a reference and to quantify the

differences. The libraries are verified manually

on their respective operating system (Linux,

Mac OS X and Microsoft Windows) by

executing the Java software, loading the

reference data, performing the calculations and

exporting the results. These results are then

compared and quantified using a MATLAB
®

script. The automated software tests are

executed using a shell script and the testing

framework TestNG (Beust and Suleiman

2007).

6. Documentation: The documentation of the

results of the verification is done manually by

summarising all results generated in step 5 and

describing the changes since the last version of

the software.

2.5.2. Adaption to a Fully Automated Continuous

Integration

Several steps were taken to adapt the existing

development procedures and to integrate them in

Jenkins:

1. Jenkins was configured to access the version

control repository and to frequently check for

modifications of the model. If a modification is

detected, it will perform a clean check-out of

the source code and start the whole building

process.

2. To automatically run MATLAB
®
 scripts,

MATLAB
®
 was installed on the same machine

as Jenkins. These scripts can be executed by

Jenkins through a shell script which starts

MATLAB
®
 without user interface and runs the

MATLAB
®
 script. These scripts are used for

code generation and verification.

3. To compile the C source code for different

operating systems, three machines where set

up to run Jenkins: one Linux, one Mac OS X

and one Microsoft Windows machine. Also,

three Jenkins projects were created, one for

each platform. Each was configured to be built

only on one designated machine using the

appropriate shell scripts. The scripts could be

reused without modification (Berg 2012).

4. The verification of the libraries was automated

by transferring the evaluation of the reference

data to the automated TestNG tests. Instead of

loading the reference data and exporting the

results manually, these steps have been added

to the already existing TestNG tests. These

tests are executed by Jenkins automatically

after compilation is finished.

5. To automate the documentation of the

verification as far as possible, the MATLAB
®

script quantifying the differences between

model, libraries and reference was adapted to

write these results into a file. A source file in

the document markup language LaTeX was

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 319

prepared to automatically read and summarise

these results. The LaTeX typesetting system is

executed by Jenkins after all other

development steps have been finished

successfully to produce a PDF document

containing all results of the verification

process. This document also features the

possibility of adding text to allow a manual

description of the results. Therefore, the

repetitive part of the generation of the

documentation was automated using Jenkins.

The creative part, which includes a detailed

description of the changes in the model as well

as an interpretation and discussion of the

results of the verification, is still left to

researchers and developers.

3. RESULTS

Figures 4 and 5 present a qualitative comparison of the

workflow before and after the introduction of the

continuous integration system to the development

process of the software products containing the

cardiovascular models.

manual automated

 T

im
e

Start code generation Code generation

Start compilation on

Windows
Code compilation

Start compilation on

Mac OS X
Code compilation

Code compilation
Start compilation on

Linux

Library Inegration

Start model

verification

Verify Windows Lib.

Verify Mac OS X Lib.

Verify Linux Lib.

Verify model

Evaluate results

Documentation

Modify and commit

model

Figure 4: Manual and Automated Tasks in the

Development Process without Continuous Integration

manual automated

Modify and commit

model
Code generation

Code compilation

on Linux

Library Inegration

Verify Windows Lib

Verify OS X Lib.

Verify Linux Lib.

Verify model

Evaluate results

Finalise

Documentation

Code compilation

on Mac OS X

Code compilation

on Windows

Prepare

Documentation

 T

im
e

Figure 5: Manual and Automated Tasks in the

Development Process with Continuous Integration

Table 1 gives an overview of the time spent by a single

developer on different sorts of tasks, assuming that

there are no errors in the model (please note that the

given time spans are rough estimates and that the true

values depend heavily on the amount of reference data

used for verification and the time spent on the creative

part of the documentation).

Table 1: Comparison of Time Spent by a single

Developer on Different sorts of Tasks with and without

a Continuous Integration System (CI)

Time spent by developer Without CI With CI

Overall 60 min 15 min

On repetitive tasks 45 min 0 min

On creative tasks 15 min 15 min

3.1. Discussion

The heavy overhead of repetitive tasks burdening the

developer in a development process without a

continuous integration system (see Table 1) usually

lowers the frequency of code compilation, code testing

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 320

and model verification. Therefore, usually several

changes are made to the model and only verified once.

Assuming that one of these changes leads to an error

during the verification process, it is hard to determine

the source of the error as there are multiple possibilities.

Shifting this overhead to the continuous integration

system and triggering the whole build-and-verify-

process after every single change that is made to the

model leads to a higher frequency of builds and

therefore a higher frequency of verifications. Errors are

detected immediately and can be resolved in less time.

4. CONCLUSION

Using the continuous integration tool Jenkins and

several of its extensions, the development, verification,

and documentation processes of software systems

containing cardiovascular models were automated. The

developer is relieved of repetitive tasks and the

frequency of model verifications during the

development is raised. Lowering the expenditure of

time of the building process due to automation and the

time needed for the fixing of bugs because of earlier and

more accurate error reports lead to a speed up of the

release of new versions of the software.

REFERENCES

Bachler, M., Mayer, C., Hametner, B., and

Wassertheurer, S., 2011. Automatic detection of

QRS complex, P and T wave in the

electrocardiogram. Abstractband / 21. Symposium

Simulationstechnik: ASIM 2011, 37. September 7-

9, 2011, Winterthur, Switzerland.

Berg, A, 2012. Jenkins Continuous Integration

Cookbook. Birmingham:Packt Publishing Ltd.

Beust, C., and Suleiman, H., 2007. Next generation

java™ testing: testng and advanced concepts.

Boston:Addison-Wesley Professional.

Duvall P. M., Matyas S., Glover A., 2007. Continuous

Integration: Improving Software Quality and

Reducing Risk. Boston:Addison-Wesley

Professional

Goldberger, A. L. et al., 2000. PhysioBank,

PhysioToolkit, and PhysioNet: Components of a

New Research Resource for Complex Physiologic

Signals. Circulation 101:e215-e220.

Hametner, B., 2011. Arterial Pulse Wave Analysis:

Impact of Models for Impedance and Wave

Reflection. Doctoral thesis. Vienna University of

Technology.

Hametner B., Weber T., Mayer C., Kropf J.,

Wassertheurer S., 2012. Effects of Different Blood

Flow Models on the Determination of Arterial

Characteristic Impedance. Preprints MATHMOD

2012 Vienna – Abstract Volume. 2012:262.

Nunan, D., Wassertheurer, S., Lasserson, D., Hametner,

B., Fleming, S., Ward, A., and Heneghan, C.,

2012. Assessment of central haemomodynamics

from a brachial cuff in a community setting. BMC

Cardiovascular Disorders 12:48.

Wassertheurer S., Mayer C., Breitenecker F., 2008.

Modeling arterial and left ventricular coupling for

non-invasive measurements. Simulation Modelling

Practice and Theory 16:988-997.

Wassertheurer S., Kropf J., van der Giet M., Baulmann

J., Ammer M., Hametner B., Mayer C., Eber B.,

Magometschnigg D., 2010. A new oscillometric

method for pulse wave analysis: comparison with

a common tonometric method. Journal of Human

Hypertension 24:498-504.

Wassertheurer S., Hametner B., and Weber T., 2011.

Model based estimation of aortic pulse wave

velocity. Artery Research 5:162.

Weber, T., Wassertheurer, S., Rammer, M., Maurer, E.,

Hametner, B., Mayer, C.C., Kropf, J., and Eber,

B., 2011. Validation of a brachial cuff-based

method for estimating central systolic blood

pressure. Hypertension 58:825-832.

Wiest, S., 2010. Continuous Integration mit

Hudson/Jenkins: Grundlagen und Praxiswissen

für Einsteiger und Umsteiger. Heidelberg:dpunkt

Verlag.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 321

