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ABSTRACT 

 
 In this paper we describe an algorithm based on 
evolutionary algorithms for determining patterns in 
images of biological samples (especially living cells) 
generated using the micro-patterning assay approach. In 
order to identify these patterns it is necessary to identify 
symmetric grids in nanoscale microscopy images. 

The algorithm presented in this paper is based on 
evolution strategies (ES): After downsampling the 
image using a correlation based approach for estimating 
the optimal downsampling rate, initial grids are 
constructed which are repeatedly evaluated and mutated 
for creating new candidates from which the best ones 
are promoted to the next generation. In the experimental 
section of this paper we analyse the performance of 
several ES strategies for identifying optimal grids in 
several images of biological samples. 
 
Keywords: bioinformatics, evolution strategy, µ-
patterning assay 
 
1. INTRODUCTION: USING THE μ-

PATTERNING ASSAY FOR THE 
DETECTION OF PROTEIN-PROTEIN-
INTERACTIONS IN LIVING CELLS 

 
 The cellular membrane of biological cells is an 
important integral part of cellular interaction processes. 
The membrane itself represents a physical barrier 
between intracellular and extracellular spaces and 
hereby generates a tiny reaction volume – the biological 
cell. In order to guarantee the proper function of a cell, 
interactions between the extracellular environment and 
the intracellular space are necessary.  

In many cases interactions take place with the help 
of proteins (receptors), which can be found integrated or 
on the surface of cell membranes. The communication 
between these receptors is regulated by so-called 
messenger-substances; for example the binding of 
insulin to the insulin receptor activates this receptor, 
which leads to decreased blood sugar levels. Another 
example can be found in the context of cell-growth: 
Binding of epidermal growth factor (EGF) to the EGF-
receptor (EGFR) can stimulate cell proliferation.            

A faulty regulation or an incorrect transmission of EGF 
can thus lead to cancer.  

Protein-protein interactions, especially in cell 
membranes, represent a key element for many cellular 
processes. Nowadays, the number of available methods 
for the detection and quantification of protein-protein 
interactions in living cells is limited. Some of them 
entail serious drawbacks like insufficient sensitivity or a 
high number of false-positive or false-negative results. 

Figure 1: Basic principle of µ-patterning assay 
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A very sensitive method to detect protein-protein 
interactions in living cells is called micro-patterning 
assay ((Schwarzenbacher et al., 2008) and (Weghuber et 
al., 2010a) and (Weghuber et al., 2010b)). Figure 1 
illustrates the basic principle of this technique: In order 
to identify and quantify interactions between a 
fluorophore-labelled protein (prey) and a membrane 
protein (bait) in vivo, a specific ligand to the exoplasmic 
domain of the bait is arranged in micropatterns on a 
glass surface. The intermediate gaps are passivated with 
BSA. When cells expressing the bait are plated on such 
surfaces, the bait follows the antibody patterns. To 
address bait-prey interactions, the lateral distribution of 
fluorescently tagged prey is analysed and compared 
with the antibody/BSA micropatterns. Interaction leads 
to pronounced co-patterning, whereas no interaction 
yields homogeneous prey-distribution. To detect the 
interactions a TIRF-based fluorescent microscopy 
imaging system is best suited, since it allows a strong 
background reduction from peripheral cell volume. 

In order to benefit from the advantages of the µ-
patterning technique, appropriate software is needed. 
Currently this is not the case. During the analyses of 
bait-prey protein interactions a large amount of data is 
collected, which has to be analysed. This analysing 
process cannot be carried out with the possibilities 
provided in an acceptable time. Thus, new algorithmic 
solutions are necessary.  

 
2. RESEARCH GOAL: OPTIMIZATION OF 

GRIDS FOR DETECTING PATTERNS IN 
BIOLOGICAL IMAGES 

 
 The goal of the research work presented in this 
paper is to develop an algorithm that is able to 
automatically identify grid structures in images of 
biological samples labelled by µ-patterning. 

The main idea is the analysis of two different kinds 
of images which represent in combination one 
biological sample: 

• Green light intensity images represent 
fluorescently labelled protein spots, known as 
patterns, which are to be analysed. 

• Red light intensity images represent the lattices 
which were used to produce the micro 
patterned glass plate. 

Real world examples for input data analysed in this 
research work can be seen in Figure 2. 

 
Within these images the patterns have to be 

separated from areas that represent the lattices. Thus, 
what is needed is a method that is able to identify 
symmetric grids within the red channel images and uses 
these grids to identify pattern areas in the corresponding 
green channel images. 

 
3. DATA PREPROCESSING 

 
3.1. Correlation Based Optimal Downsampling 

 
 In order to decrease the runtime consumption of 
further image analysis steps (including the identification 
of grid structures), the analyzed red channel images are 
downsampled (Lin and Dong 2006) using a correlation 
threshold θ: 

Starting with downsampling rate (dsr) 2, the dsr is 
constantly increased until the correlation (Rodgers and 
Nicewander 1988) of the downsampled image and the 
original image becomes less than θ.  
 
3.2. Transformation of Greyscale to Binary Images 
 
 In order to distinguish pattern areas from lattice, 
pixels below a pre-defined greyscale intensity level are 
transformed to white representing grid pixels, others to 
black ones. Additionally, pixels with intensity above a 
pre-defined threshold are also transformed to black. 
This leads to binary images as the one exemplarily 
shown in Figure 3. 
 

 
Figure 3: Binary representation of a red channel image 
 

Figure 2: Left column: fluorescently labelled bait 
antibody control, right column: bait-prey 

redistribution in living cells on µ-biochips; top: green 
channel images (interaction detection channel), 

bottom: red channel images (BSA-Cy5 grid) 
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4. IDENTIFICATION OF GRID STRUCTURES 
IN IMAGES OF BIOLOGICAL SAMPLES 
BASED ON EVOLUTION STRATEGIES 

 
In this section we describe an approach for 

identifying grid structures in images using evolution 
strategies: First, an initial grid is identified, which is 
repeatedly evaluated and mutated for creating new 
candidates from which the best ones are promoted to the 
next generation. 

 
4.1. Evolution Strategies 
 

Evolution strategies (ESs), beside GAs the second 
major representative of evolutionary computation, were 
developed since the 1960s, primarily by a German 
research community around Rechenberg and Schwefel 
at the Technical University of Berlin, and have been 
extensively studied in Europe (see for example 
(Rechenberg 1973) and (Schwefel 1994)). 

As it is an evolutionary algorithm, the optimization 
process based on ES is executed by applying operators 
in a loop, i.e., main operations are applied on the 
solution candidates repeatedly until a given termination 
criterion is met. Similar to GAs, an ES works with a 
population of individuals; each individual is 
characterized by its parameter vector which is used to 
calculate the individual’s fitness value. In every step of 
the algorithm's execution (that is, in each generation), 
the old population is replaced by a new one. Still, there 
are differences between GAs and ESs, especially in the 
form of their genotypes, the calculation of the fitness 
values and the operators (mutation, recombination and 
selection): 

• ESs most frequently use real-coding of design 
parameters, they model the organic evolution 
at the level of individual’s phenotypes; the 
representation used is a fixed-length real-
valued vector, each position in the vector 
corresponds to a feature of the individual. 

• Whereas GAs use mutation only for avoiding 
stagnation, mutation is the main reproduction 
operator in evolution strategies: Each 
component of the parameter vector is mutated 
individually in each generation. Small 
mutations are more likely than big ones, the 
standard mutation distribution being the 
Gaussian mutation (N(0,σ)). 

• In addition to mutation, recombination can be 
used to create a new individual (a “child”) out 
of two “parents”, too. Recombining two ES 
solution candidates means calculating the 
geometric average of the parents' parameter 
vectors. 

• In contrast to nature and GAs, the selection of 
ESs works in a totally deterministic way: In 
each generation only the best individuals 
survive. 

Examples for mutation and recombination in the 
context of ESs are shown in Figure 4: 

 

 
Figure 4: Exemplary solution candidates and the 

effect of genetic operations in ES 
 

In each generation of an ES algorithm, λ children 
are produced by μ parent individuals; by selection, the 
best children are chosen and become the parents of the 
next generation. Typically, parent selection in ES is 
performed uniformly randomly, with no regard to 
fitness; survival in ESs simply saves the μ best 
individuals, which is only based on the relative ordering 
of fitness values. 

Basically, there are two selection strategies for 
ESs: 

• The (μ,λ)-strategy: μ parents produce λ 
children; the best μ children are selected and 
form the next generation's parents. 

• The (μ+λ)-strategy: If this selection model, 
also called the “plus-selection”, is applied, μ 
parents produce λ offspring; parents and 
children together form a pool of potential new 
parents, and the best μ individuals are selected 
from this pool to become the next generation's 
parents. 

The main procedure steps of the execution of ES is 
summarized and graphically shown in Figure 5. 

 

 
Figure 5: Workflow of the standard evolution strategy 

(ES) algorithm 
 
Rechenberg proposed a heuristic for the adaptation 

of the mutation variance, the so-called 1/5 success rule 
(which was originally proposed for the special case of a 
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(1+1) ES; similar rules have also been stated for other 
ES-variants): The quotient of the number of the 
successful mutants (those that improve the population's 
quality) to all mutants should be about 1/5. If this 
quotient is greater than 1/5, then the mutation variance 
should be increased; if the quotient is less than 1/5 
(which means that less than 20% of the mutations 
produce better mutants), the mutation variance should 
be reduced. 

Additionally, this ES workflow is extended as 
proposed by Schwefel (Schwefel 1994) so that there is 
an individual mutation strategy parameter for each 
parameter of the solution candidate. Thus, the mutation 
strength of each feature is also optimized during the 
evolutionary process. 

 
4.2. Solution Candidates Representing Grids 
 
 A solution candidate is represented as a 
composition of four parameters and its quality measure. 
As shown in Figure 6, the four parameters are: 

• The grid’s deflection, the inclination of the grid 
referring to the image orientation, 

• the grid’s width, i.e., the distance between two 
gridlines, 

• the horizontal offset of a reference vertical grid 
line, 

• the vertical offset of a reference horizontal grid 
line. 

 
4.3. Evaluation of Grid Solution Candidates 

 
 In order to obtain a robust and reproducible 
comparison between various grid solution candidates an 
evaluation function has been defined; this evaluation 
function calculates the quality of a solution candidate 
comparing the binary image, retrieved from the input 
grid image, with the solution candidate itself. 

 

 

4.3.1. Computation of the Whole “Expected” Grid 
Defined by a Grid Solution Candidate 
 

As a solution candidate is only represented by four 
parameters, it is clearly necessary to expand the solution 
candidate of the size of the initial image and thus 
retrieve the whole grid defined by this parameter 
combination. 

 

 
 
This clamping process is done by calculating all 
gridlines appearing in the initial image and furthermore 
(gridwidth * gridwidthTolerance) additional lines on 
the left and the right side of the original line. These 
additional lines are calculated to be aware of 
inaccuracies in the original grid picture and therefore to 
avoid faulty calculations of intensity and contrast values 
in the analyses steps later on. 
The result of a fully clamped expected grid can be seen 
in Figure 7. The result is a binary image with white-
coloured grid lines and black-coloured patterns. 
  
4.3.2. Comparison with Initial Binary Image 
 
 The actual quality of a solution candidate (grid) is 
computed by the comparison of each pixel of the 
expected grid image (expected(grid)) with the 
corresponding pixel of the binary representation of the 
original image (binary). The number of positive 
comparisons is summed up over all pixels p and divided 
by the total number of pixels N. The retrieved value is 
within the range [0, 1]. 
 
   ܰሺܾ݅݊ܽݕݎሻ ൌ |ሼ݌| ݌ א  ሽ | (1)ݕݎܾܽ݊݅
 
  ܲሺ݃݀݅ݎ, ሻݕݎܾܽ݊݅ ൌ 
  |ሼ݁݀݁ݐܿ݁݌ݔሺ݃݀݅ݎሻሾ݌ሿ ൌ  ሿሽ|  (2)݌ሾݕݎܾܽ݊݅
 
,݀݅ݎሺ݃ݕݐ݈݅ܽݑݍ   ሻݕݎܾܽ݊݅ ൌ   |௉ሺ௚௥௜ௗ,௕௜௡௔௥௬ሻ|

|ேሺ௕௜௡௔௥௬ሻ|
  (3) 

 
4.4. Identification of Initial Solution Candidates 

 
 In order to start the identification of grid structures 
we determine initial solution candidates which are 
calculated from the binary image. The first step is to 
define three gridlines (two vertical and one horizontal) 
in order to be able to complete the grid definition. A 
gridline itself is composed of an offset-value, which 
determines the position within the image, and its 

Figure 7: Exemplary expected grid 
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Figure 6: Parameters of a grid candidate 
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deflection. A gridline can be evaluated by calculating 
the percentage of white pixel-values compared to the 
binary image (as defined in Equation 5). 

 
• First, starting from some area A within the 

image (e.g., the right upper quarter of the 
image), all possible vertical gridlines in this are 
evaluated: 

 
 ݔ ሺ ׊ א ,஺ݔ ݊݋݅ݐ݈݂ܿ݁݁݀ א ሾെ0.2;൅0.2ሿሻ: 
  ݈ ൌ ,ݔሺ݈݁݊݅݀݅ݎܩ݈ܽܿ݅ݐݎ݁ݒ   ;ሻ݊݋݅ݐ݈݂ܿ݁݁݀
ሺ݈ሻݕݐ݈݅ܽݑݍ ൌ ,ሺ݈݈ܽݒ݁   ሻ݁݃ܽ݉ܫݕݎܾܽ݊݅

 (4) 
,݈݁݊݅݀݅ݎሺ݈݃ܽݒ݁ ሻ݁݃ܽ݉ܫݕݎܾܽ݊݅ ൌ  

|ሼ݌|݌  א  ݈݁݊݅݀݅ݎ݃ ר ሿ݌ሾ݁݃ܽ݉ܫݕݎܾܽ݊݅  ൌ |ሽ݁ݐ݄݅ݓ
|ሼ ݌  א |ሽ݈݁݊݅݀݅ݎ݃  

 (5) 
 

The best gridline with offset x and deflection 
def (lopt(xopt,defopt)) so found in A is the starting 
point for the construction a complete grid 
definition. 

 
• Second, the best next parallel gridline lopt2 to 

lopt is computed by iteratively decreasing (or 
increasing) x (starting at xopt) and evaluating 
the so created lines with the same deflection 
defopt until the next local optimum in the set of 
possible vertical gridlines is found.  
 

• Finally, all horizontal gridlines in A with 
deflection െ݀݁ ௢݂௣௧are calculated: 
 

 ݕ ሺ ׊ א  :஺ሻݕ
  ݈ ൌ ,ݕ൫݈݁݊݅݀݅ݎܩ݈ܽݐ݊݋ݖ݅ݎ݋݄ െ݀݁ ௢݂௣௧൯;  
ሺ݈ሻݕݐ݈݅ܽݑݍ ൌ ,ሺ݈݈ܽݒ݁   ሻ݁݃ܽ݉ܫݕݎܾܽ݊݅

 (6) 
The best of these is selected as lopt3. 

 
These three lines (lopt, lopt2, and lopt3) define an 

initial grid candidate identified in the area A. 
This initial grid construction heuristic is performed 

five times in different starting areas of the given image; 
the best so found solution candidate is subsequently 
optimized by the ES algorithm. 

 
5. EXPERIMENTAL RESULTS 
 
In order to demonstrate ability of the here presented 
approach to identify optimal grids in biological 
microscopy images, 8 exemplary samples have been 
selected. These samples represent microscopy images of 
living cells and their size is 1344 by 1024 pixels. 

In the following tables we summarize the qualities 
achieved for these samples for downsampling tolerances 
0.8 and 0.9 as well as varying ES parameter settings 
(plus selection as well as mutation strategy adaptation 
as described previously were applied in all tests). In 
Figure 8 we show the average improvements achieved 
by one specific ES configuration for the given samples 
(w.r.t. the initial qualities); examples of grid structures 

found for one of the chosen microscopy images are 
shown in Figure 9. 

 
 

 Quality  
Image 

Sample 
initial optimized Improvement 

[%] 
1 0.749 0.788   5.213% 
2 0.726 0.822 13.335% 
3 0.701 0.778 11.110% 
4 0.605 0.804 32.738% 
5 0.651 0.767 17.779% 
6 0.584 0.733 25.424% 
7 0.696 0.699   0.459% 
8 0.548 0.570   3.978% 

Mean Improvement [%] 13.754% 
Table 1: Results achieved with downsampling 

tolerance 0.8, μ = 5, λ = 10, and 100 ES iterations 
 
 

 Quality  
Image 

Sample 
initial optimized Improvement 

[%] 
1 0.682 0.770 12.964% 
2 0.709 0.803 13.208% 
3 0.649 0.776 19.599% 
4 0.572 0.808 41.124% 
5 0.543 0.719 32.484% 
6 0.525 0.619 17.813% 
7 0.561 0.661 17.781% 
8 0.594 0.643   8.263% 

Mean Improvement [%] 20.404% 
Table 2: Results achieved with downsampling 

tolerance 0.9, μ = 5, λ = 10, and 100 ES iterations 
 
 

 Quality  
Image 

Sample 
initial optimized Improvement 

[%] 
1 0.749 0.786   4.968% 
2 0.726 0.816 12.424% 
3 0.701 0.774 10.523% 
4 0.605 0.801 32.232% 
5 0.651 0.763 17.202% 
6 0.584 0.729 24.867% 
7 0.696 0.698   0.418% 
8 0.548 0.562   2.593% 

Mean Improvement [%] 13.154% 
Table 3: Results achieved with downsampling 

tolerance 0.8, μ = 5, λ = 10, and 40 ES iterations 
 
 

 Quality  
Image 

Sample 
initial optimized Improvement 

[%] 
1 0.682 0.769 12.825% 
2 0.709 0.800 12.784% 
3 0.649 0.775 19.446% 
4 0.572 0.804 40.435% 
5 0.543 0.717 32.145% 
6 0.525 0.619 17.818% 
7 0.561 0.661 17.697% 
8 0.594 0.642   8.065% 

Mean Improvement [%] 20.152%
Table 4: Results achieved with downsampling 

tolerance 0.9, μ = 5, λ = 10, and 40 ES iterations 
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 Quality  

Image 
Sample 

initial optimized Improvement 
[%] 

1 0.749 0.788   5.174% 
2 0.726 0.822 13.278% 
3 0.701 0.778 11.042% 
4 0.605 0.802 32.543% 
5 0.651 0.763 17.231% 
6 0.584 0.732 25.402% 
7 0.696 0.698   0.406% 
8 0.548 0.565   3.031% 

Mean Improvement [%] 13.513% 
Table 5: Results achieved with downsampling 

tolerance 0.8, μ = 3, λ = 15, and 40 ES iterations 
 

 Quality  
Image 

Sample 
initial optimized Improvement 

1 0.682 0.769 12.820% 
2 0.709 0.784 10.491% 
3 0.649 0.776 19.607% 
4 0.572 0.807 41.078% 
5 0.543 0.758 39.594% 
6 0.525 0.684 30.274% 
7 0.561 0.661 17.731% 
8 0.594 0.641   8.018% 

Mean Improvement 22.452%
Table 6: Results achieved with downsampling 

tolerance 0.9, μ = 3, λ = 15, and 40 ES iterations 
 

 
Figure 8: Average improvement during the 

evolutionary process for the 8 given samples (compared 
to the initial solution candidate) achieved with 
μ= 3,  λ =15, and downsampling tolerance 0.9. 
 
 

6. CONCLUSION 
In this paper we have described an evolutionary 

process with an initial construction heuristic that is able 
to automatically identify grids in microscopy images of 
biological samples. In future work this approach shall 
be included in a fully automated bioinformatical image 
analysis framework that is designed for biomedical 
research. 
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