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ABSTRACT 
The aim of this paper is to simulate the effect of traffic 
lights and time-varying flows distribution at junctions 
of urban traffic networks. We consider a macroscopic 
model for road networks based on conservation law, 
describing the motion of cars as a continuous flow. At 
junctions some Riemann solvers to find a unique 
solution to  Riemann problems are introduced.  
In particular we propose a micro-algorithm to define a 
Riemann solver in situations in which a road in some 
time-instant is empty and the corresponding problem 
can be under-determined. Then, we discuss the correct 
use of Riemann solvers to capture the presence of traffic 
lights and time-varying behavior of drivers at junctions. 
Simulation results for a 2 2×  junction and a 
comparison among the effects of changing traffic lights 
cycles in a network are shown. 
 
Keywords: fluid-dynamic model for traffic networks, 
conservation law, Riemann solvers, traffic lights 
simulation. 

 
1. INTRODUCTION 

To study car traffic phenomena, researchers  from 
various areas proposed a lot of models, among which 
fluid-dynamic ones. The latter treat traffic from a 
macroscopic point of view: the evolution of 
macroscopic variables, such as density and average 
velocity of cars, is considered. 

The basic fluid-dynamic model is due to Lighthill, 
Whitham and Richards (LWR model) (Lighthill and 
Whitham, 1955; Richards 1956), according to which the 
motion of cars along a road can be modeled by a 
conservation law, regarding the density of cars as the 
main quantity to be looked at. To overcome the 
limitations of the LWR model, other alternatives were 
searched for, such as second and third order models 
(Helbing 2001; Colombo 2002; Bellomo and Coscia 
2005). Recently, the LWR model was extended to 
networks (Coclite, Garavello and Piccoli 2005; 
Garavello and Piccoli 2006).  

Since traffic networks consist of a finite set of 
roads meeting at some junctions, the dynamics at 
junctions is captured solving Riemann problems which 
are Cauchy problems with constant initial data on each 

road. In order to solve uniquely Riemann problems 
some assumptions are made: 

• the incoming traffic distributes to outgoing 
ones according to fixed (statistical) coefficients; 

• drivers behave to maximize the through flux. 
More precisely, if the number of incoming roads is 

greater than that of outgoing ones, some right of way 
parameters have to be added. 

Once the solution to a Riemann problem is 
provided, piecewise constant approximations via a wave 
front tracking algorithm can be constructed (Bressan 
2000; Garavello and Piccoli 2006).  

In this paper starting from Coclite, Garavello, 
Piccoli model, we describe the evolution of vehicles 
flows respecting traffic lights cycles and defining time-
varying distribution at junctions in order to take account  
the dynamic behavior of drivers. Then we introduce a 
micro-algorithm and a Riemann solver to cover these 
typical situations. Numerical schemes such as the 
Godunov method, based on exact solutions to Riemann 
problems (Godlewski and Raviart 1991; Godunov 
1959) are used to solve numerically the conservation 
law along roads. 

The paper is organized as follows. A model for 
traffic networks is introduced in Section 2. Section 3 is 
devoted to the definition of Riemann solvers at 
junctions. In particular the micro-algorithm and 
Riemann solvers for traffic lights and time-varying 
distribution coefficients are described. Numerical 
methods are presented in Section 4. Some simulation 
results for a typical scenario of a simple 22×  junction 
(two incoming roads and two outgoing ones) are shown 
in order to test and verify the adopted approach in 
Section 5. The section ends with a comparison between 
different configurations of two traffic lights in a 
network with three junctions. 
 
2. MODELING CAR TRAFFIC NETWORKS 
A road network is schematized by the couple , 

where  represents the set of roads, 

while  is the collection of junctions connecting roads. 

Fixed a junction  we denote by  and 

, respectively, the set of all incoming roads, 

( ),JΙ

{ }: 1,..,iI i NΙ = =
J

J,J ∈ ( )Inc J

( )Out J
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numbered from  to , and the set of all outgoing 
ones, numbered from  to n+m (see Figure 1).   

 
 
 
 
 
 

Figure 1: example of a  junction. 
 

Each road is represented by an interval 

. 

According to the LWR model, we describe the 
evolution of cars density along each road by 
  

  (1) 

 

where  is the cars density on 

road Ii,  is the maximal density,  is 

the flux, and  is the average velocity.  

On the flux f  we assume that  
(F) :[0,1]f → ℜ  is smooth, strictly concave, f (0) = 

f (1)=0. Therefore there exists a unique strict maximum 
]0,1[σ ∈ .

  
 The dynamics at each junction  is determined 
by solving a Riemann Problem (RP), which is a Cauchy 
problem with constant initial data on each incident road. 
The solution is formed either by continuous waves, 
called rarefactions, or by traveling discontinuities, 
called shocks. In order to find a unique solution some 
Riemann Solvers (RS) are defined, based on rights of 
way and traffic distribution parameters. 

Definition 1. A Riemann Solver for the junction 

 is a map  that 
associates to Riemann data  at  

a vector  so that the solution on an 

incoming road , is given by the wave 

 and on an outgoing road , 

is given by the wave . We require the 

consistency condition  
(CC) . 

In particular, for a  junction, RSs are based 
on the following rules: 

(A) drivers distribute at a junction according to 
some traffic distribution coefficients which represent 
the preferences of drivers from the incoming roads to 
outgoing ones and they are collected in the matrix: 

 

1,..., , 1,...,{ } m n
ji j n n m i nA α ×

= + + == ∈ℜ   (2) 

such that , where  is the 

percentage of drivers who, arriving from the ith 
incoming road, take the jth outgoing road. 

(B) Respecting (A) rule, drivers behave so as to 
maximize the flux through the junction . 

(C) If  , it is assumed that not all cars can 
enter the outgoing roads and let  be the amount that 

can do it. Then  cars come from the ith road to the 

generic jth one, with  and , 

and  can be thought as a right of way parameter. 

 
3. RIEMANN PROBLEMS AT JUNCTIONS 
Let  be a  junction. The density functions on 
incoming and outgoing roads are denoted as 

 and 

. We observe that the waves generated on incoming 
roads must have negative velocity, while the outgoing 
ones positive velocity. For this reason, some bounds on 
possible states reached by a solution to an RP at  

exist. Precisely, if we set , we have: 

 Proposition 2. Let  be the initial 

densities of an RP at  The maximal fluxes , 

 and , , that can be 

obtained on incoming roads and outgoing ones, 
respectively, are the following:  

           (3) 

      (4) 

 Theorem 3. Let  be a  junction. For every 

initial data , there exists an unique 

admissible weak solution  to (1) at , 

respecting rules (A), (B) and (C), such that 
 

 (5) 

 
Moreover, there exists a unique vector 

 such that 

 

(6) 

 
with , and 
 

 (7) 

with , where  is the map 

such that  for every  and 

 for every [0,1] \{ }ρ σ∈ .  

1 n
1n +

n m×

[ ],i i iI a b= ⊆ ℜ

( ) 0,t i x ifρ ρ∂ + ∂ =

( ) [ ]max, 0,i i t xρ ρ ρ= ∈

maxρ ( ) ( )f vρ ρ ρ=

( )v ρ

JJ ∈

J [ ] [ ] [ ] [ ]mnmnRS 1,01,01,01,0: ×→×
( )0,0,10 ,..., mn+= ρρρ J

( )mn+= ρρρ ˆ,...,ˆˆ 1

,  1,...,iI i n=
( )ii ρρ ˆ,0, ,  1,...,jI j n n m= + +

( ),0
ˆ ,j jρ ρ

( )( ) ( )00 ρρ RSRSRS =
mn×

1 ,10
1

=<< ∑
+

+=

mn

nj
jiji αα jiα

JJ ∈
mn >

Q

Qpi

1,...,i n= 1,...,j n n m= + +

ip

J mn×

( ) ( ) [ ]max, , 0, ,  1,...,i it x I t x i nρ ρ+∈ℜ × → ∈ =

( ) ( ) [ ]max, , 0, ,  1,...,j jt x I t x j n n mρ ρ+∈ℜ × → ∈ = + +

J

( )i ifγ ρ=

( )1,0 ,0,..., n mρ ρ +

.J max
iγ

1,...,i n= max
jγ 1,...,j n n m= + +

( ) [ ]
( ) ] ]

,0 ,0max

,0 max

   0, ,
  1,..., ,

      , ,

i i

i
i

f if
i n

f if

ρ ρ σ
γ

σ ρ σ ρ

 ∈= = ∈

( ) [ ]
( ) ] ]

,0max

,0 ,0 max

      0, ,
1,..., .

  , ,

j

j

j j

f if
j n n m

f if

σ ρ σ
γ

ρ ρ σ ρ

 ∈= = + +
∈

J n m×

( )1,0 ,0,..., n mρ ρ +

( )1,..., m nρ ρ ρ += J

( ) ( )1 1,0 ,00, ,...,  0, .n m n mρ ρ ρ ρ+ +⋅ ≡ ⋅ ≡

( )1
ˆ ˆ,..., n mρ ρ +

{ } ( )
[ ]

,0 ,0 max ,0

max ,0 max
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ˆ
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i i i

i
i

if

if

ρ τ ρ ρ ρ σ
ρ

σ ρ σ ρ ρ

   ≤ ≤  ∈ ≤ ≤

∪

1,...,i n=

[ ]
{ } ( )

,0

,0 ,0 ,0 max

0,                          0 ,
ˆ

0,    ,

j

j

j j j

if

if

σ ρ σ
ρ

ρ τ ρ σ ρ ρ

 ≤ ≤∈
  ≤ ≤  

∪

1,...,j n n m= + + [ ] [ ]1,01,0: →τ
( )( ) ( )ρρτ ff = [ ]1,0∈ρ

( ) ρρτ ≠

1 

n 

n+1 

n+m 
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In order to show the construction of the RS 
satisfying rules (A) and (B) we recall the following 
simple cases:   
Case 1 -  junction; 
Case 2 -  junction. 
Case 1. We consider the junction in Figure 2 with two 
incoming roads, 2 and 1 , and one outgoing road . 
 
 
 
 

 
 

Figure 2: a  junction. 
 

Fix a right of way parameter ] [ 1 ,0 ∈p  describing 

the percentage of cars crossing the junction. The 
solution is built as follows. To maximize the through 
traffic, according to rule (B), we set 
 

,  (8) 

 
where  and  are respectively given by 

relations (3) and (4). Observe that  is given by the 
column vector . Considering the space  and 

the lines  
 

,  (9) 

,  (10) 
 
we indicate with  the intersection point between lines 
(9) and (10). Therefore the final fluxes must belong to 
the admissible region  
 

( ){ }max
1 2 1 2 3

ˆ, : 0 ,0 , 1,2i i iγ γ γ γ γ γ γΩ = ≤ + ≤ ≤ ≤ = . (11) 

 
We distinguish two different cases: 

1.  belongs to . 
2.  does not belong to . 

In the first case (Figure 3) we set , 

while in the second case (Figure 4) we set , 

where  is given by the intersection 

. Once determined  

we are able to compute in a unique way  

applying Theorem 3. 
 

 
 
 
 
 
 
 

 
Figure 3:  belongs to . 

 
 
 
 
 
 
 
 
 
 
 

           Figure 4:  does not belong to . 
 
Case 2. Deal with the junction in Figure 5 characterized 
by one incoming road  and two outgoing roads,  and 

. 
 

 
 
 
 
 

Figure 5: a  junction. 
 

The rules (A) and (B) are only used. The 
distribution matrix is given by  

 

,  (12) 

 

where  and  indicate the percentage of 

cars which, from road , goes to roads  and , 
respectively. Due to rule (B), the solution to RP is 
 

,  (13) 

  

where . Finally, we 

determine  by Theorem 3. 

 
3.1. RS for generalized junctions 
Now we focus on some particular cases for a  
junction with . Starting from the discussion done 
in subsection 2.1, Case 1, we are able to define a RS, 
through the archetype of a linear programming (LP) 
problem. Without loss of generality we can analyze the 
sub-case of a  junction as shown in Figure 6. 
 
 
 

 
 
 

 
Figure 6:  junction. 
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For each incoming road we fix a right of way 

parameter , such that . 

According to rule (B), we set 
 

,  (14) 

 
or we can say that the objective function of this problem 

is . The admissible region is given by 

the set  
 

( ) max
1 1ˆ,.., : ,0 ,

n

n i n i i
i

iγ γ γ γ γ γ+
 Ω = ≤ ≤ ≤ ∀ 
 

∑ . (15) 

 Considering the n-dimensional space  we 

can determine the unique solution as the intersection of 

1
1

, 2,..., ,i
i

p
i n

p
γ γ= ∀ =   (16) 

.  (17) 

 
We remark that, since no graphical method can be 

applied, the solution point  is obtained using the 
simplex method to solve the LP problem defined in 
(15), (16), (17) with objective function in (14). 

Then if  belongs to , we set 

, otherwise, , and we run the simplex method 

adding this constraint to the LP problem.  
Observe that if at some time instant , the 

solution is given by . Since 

this is not acceptable (the through traffic flow is 
different from zero), in order to determine the correct 
solution the following micro-algorithm, consisting of 
three steps, is implemented: 

1. Search the incoming road with minimum 
traffic right of way parameter, except that with 
zero density. 

2. Set the priority constraints, as in (16), referred 
to the choice at step one.  

3. Solve the corresponding LP problem. 
Let us discuss the case of an  junction, as in 

Figure 7, in which the distribution matrix is the 
following 
 

,  (18) 

with , and . 

 
 
 
 
 
 

Figure 7: an  junction. 
 

In this case the flux vector of solution to the RP is 
  

,  (19) 

 
 
where   
 

.  (20) 

 
Now, we are able to describe the LP problem for a 
 junction assuming . In order to satisfy the 

rules (A), (B) and (C), we get the following LP 
problem: 
 

,  (21) 

  (22) 

,  (23) 

  (24) 
 
which can be solved using the simplex method. Then  
the outgoing fluxes are given by  
 

.  (25) 

 
3.2. RS for time dependent traffic 
The real dynamic behavior of drivers at junctions is 
captured considering time dependent distribution 
coefficients, which means that, for instance, during a 
time period of the day, the traffic flows towards some 
specific direction, while in the successive period 
towards another one. Then, the matrix  is time 
dependent. Moreover we include a traffic light on the 
incoming side of a junction of type  (Figure 8), 
where 2 ,1  are the incoming roads and 4 ,3  are the 
outgoing ones.  
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Figure 8:  junction. 
 

Assume the distribution coefficients are two 
piecewise constant functions 

 

 
 

 
 

(26) 

with ,  and , for each 

. We define two piecewise constant maps as  
, , with  and 

, 2 ,1=i , for each , which represent 

traffic lights. The values  and 1 correspond, 
respectively, to red and green lights. The matrix  is 
given by 

 
 

(27) 

First, let  (no traffic lights) and fix 

; to find the solution  at junction we solve 

the following LP problem: 

1 2max ,γ γ+  

max
1 1 1 2 3 ,η γ η γ γ+ ≤   

max
1 1 2 2 4(1 ) (1 ) ,η γ η γ γ− + − ≤             (28) 

max
1 10 ,γ γ≤ ≤   

max
2 20 .γ γ≤ ≤    

 

 Clearly, for a time-instant belonging to the interval 
, the LP problem will be defined taking account the 

different values of distribution coefficients, as in (26). 

Now, if we suppose that, for some ,  

and , i.e. for road 1 the green light is set, while 

for road  red light, the traffic flows from road  to 
roads 3 and 4. In this case the LP problem can be 
reduced to 

 

 

 

1max ,γ  

max
1 1 3 ,η γ γ≤   

max
1 1 4(1 ) ,η γ γ− ≤                                         (29) 

max
1 10 .γ γ≤ ≤   

 
 

 

 
4. NUMERICAL METHOD 
The space ( )xt,  is discretized via a numerical grid in 

( )TN ,0×ℜ  using the following notations: 

• x∆  is the space grid size; 

• t∆  is the time grid size; 

•  for n∈N  and m∈Z   

are the grid points. 

The values of the velocity  and the density , 

on the grid are denoted, respectively, by   

and . 

In order to find a numerical solution for the 
conservation law along roads, the Godunov scheme is 
used. The initial datum  is approximated by  

.  (30) 

 
The Godunov scheme is based on exact solutions 

 to RP at points , m∈Z  and on the 

projection of the solution 
 

.  (31) 

 
This procedure can be repeated inductively on 

every . Under the CFL (Courant-Friedrichs-Lewy) 

condition 
 

,  (32) 

 
the waves, generated by different RP, do not interact. 

We can use the Gauss-Green formula to compute . 

The flux in  for  is given by 
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22×

( ) 1

2

    0 t ,

    t ,
t

T

η τ
α

η τ
≤ <

=  ≤ ≤

( ) 2

1

    0 t ,

    t ,
t

T

η τ
β

η τ
≤ <

=  ≤ ≤

( ) 10 << tα ( ) 10 << tβ ( ) ( )tt βα ≠
0≥t

( )t11 χχ = ( )t22 χχ = ( ) ( ) 121 =+ tt χχ
( ) { }1,0∈tiχ 0≥t

0
A

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

1 2

1 2

.
1 1

t t t t
A

t t t t

χ α χ β
χ α χ β

 
=   − − 

( ) 2,1 ,1 == itiχ
τ<t ( )21 ˆ,ˆ γγ

[ ]T,τ

τ<t ( ) 11 =tχ
( ) 02 =tχ

2 1

( ) ( )tnxmtx nm ∆∆= ,,

v ρ

( )nm
n
m txvv ,=

( ),n
m m nx tρ ρ=

0ρ

( )
1

0 2
1 0
2

1 m

m

x x

m
x x

v x dx
x

ρ
+ ∆

− ∆
=

∆ ∫

∆v xm ∆






 −
2

1

( )∫
∆+

∆−
+

∆+
∆

=
xx

xx
n

n
m

m

m

dxxtv
x

v 2

1

2

1 1
1 ,

1

nt

( )
( )1

,
,

sup sup '
n n
m m

m n
I

t f x
ρ ρ ρ

ρ
+∈

 
 ∆ ≤ ∆ 
  

1+nv

xxx m ∆−=
2

1 ( )1, +∈ nn ttt

( )( )1

1
, 0; ,

2
n n

m R m mf t x x f W v vρ −
  − ∆ =  

  









+− vv

t

x
WR ,; −v

 

 

 

 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 260



and . Similarly for the point : 

. As the flux is 

time invariant and continuous, we can put it out of the 

integral and, setting  under 

the condition (35), the scheme can be written as: 

.  (33) 

 
In general the numerical flux of Godunov is 
 

  (34) 

 
4.1. Boundary condition 
Fix a condition at the incoming boundary (incoming 

flow) : , and study equation 

only for . Inserting a ghost cell, we define the 
numerical condition as 
 

,  (35) 

 

where  takes the place of . 

Analogously, the outgoing boundary is defined as 
follows. Let , then we have 

 

, (36) 

 

where  takes the place of  that 

is a ghost cell value. 
 
4.2. Condition at junctions 
For roads connected to a junction at the right endpoint 
we set 
 

,  (37) 

 
while for roads connected to a junction at the left 
endpoint we have 
 

,  (38) 

 
where  are the flux solutions. 

 
 
 

5. SIMULATION RESULTS 
In what follows we choose a flux function 

( ) ( )1f ρ ρ ρ= −   which admits a unique maximum 

1

2
σ = . 

5.1. Simple Junction Scenario 
Now we focus on a typical scenario of a  junction 
with a traffic light, where 2 ,1  are the incoming roads 
and 4 ,3  are the outgoing ones, as shown in Figure 8. 

Consider the length of each road as normalized, a 
simulation time interval  with  (which 

represents a time horizon of observation) and a 
numerical grid with  and 

 where . The number 

of discrete time instants is given by the ratio  

and accordingly the time variable  is referred to these 
instants. Further we assume the following data: 

 
 ,  
 ,  

where for 4 ,3 ,2 ,1=i , ,0iρ  is the initial density data, 

 is the boundary density data. 

From (3) and (4) we get that the maximal fluxes 
 are the following: 

 
The traffic light is modeled by two functions, one 

for each incoming road,  and : 
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Finally, for the distribution coefficient  we 

consider two different cases: 
•  constant; 

• , i.e. time varying. 

5.1.1. Case of constant distribution 
The distribution matrix is given by 
  
 

,  

 
which means that the same quantity of cars is 
distributed on outgoing roads. 

The evolution of traffic density on each road is 
shown in the following figures. 
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Figure 9: density on road . 

 

 
Figure 10: density on road . 

 

 
Figure 11: density on roads . 

 
As we can see from Figures 9 e 10, in the first time 

interval , when the traffic light is green on 

incoming road ,  increases until the value , i.e. 

it reaches the boundary condition, while  tends to the 

value , which means that the road  is saturated and, 
consequently, congests. Then, in the successive interval 

, when the traffic light is green on road ,  

decreases in such way that the road decongests until it 
reaches the value of density , i.e. when the flux 
attains the maximum. Observe that this behavior is 
periodic since we choose the same alternate traffic light 
cycles. 

For the outgoing roads (Figure 11), considering the 

same distribution coefficients, we see that in  

 as we expect; in fact from the only 

incoming road, i.e. road , the incoming density is . 

Then, in , since the incoming density from road 

2 is equal to  but , the corresponding 

incoming density is , so that . 

 
5.1.2. Case of time-varying distribution 
The distribution matrix is given by 
 

( )

1 ( )

t
A

t

α
α

 
=  −   

where  

Here the evolution of traffic density on the 
incoming roads is the same of the previous case with 
constant , while on the outgoing roads it is shown in 
the following figures. 

 

Figure 12: density on road . 

 

 
Figure 13: density on road . 

 
We can observe that the effect of time-varying 

distribution consists in a modulation of the whole 
outgoing traffic. In general, the behavior of the drivers 
is captured more realistically finding the right dynamic 
modeling of distribution coefficients. 

 
5.2. Network Scenario 
In this section, we study a network scenario with three 
different junctions: 

•  , 

•  with distribution coefficients 

and , 

•  with priority parameters , 

 and , 

linked as in Figure 14. 
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Figure 14: a network with three junctions. 

 
On each road, we set , and boundary 

condition . In accordance to CFL condition we 

set . 
Now, the goal is to compare the effects due to 

changes of traffic light cycles on the evolution of fluxes 
outgoing from the network such as to choose the better 
strategy able to minimize congestion phenomena. 

First, we assume in  and  two traffic lights 

having the green-red cycles as in Table 1. 
 

Table 1: green-red cycles for  and  

   

Time 
instants 

Road 1 Road 2 Road 3 Road 5 

0 - 99 Green Red Green Red 
100 - 199 Red Green Red Green 
200 - 299 Green Red Green Red 
300 - 399 Red Green Red Green 
400 - 499 Green Red Green Red 
500 - 599 Red Green Red Green 
600 - 699 Green Red Green Red 
700 - 799 Red Green Red Green 
800 - 903 Green Red Green Red 
 

Focusing on the network outgoing roads, i.e. roads 
4 and 7, the simulation results of the density evolution 
are shown, respectively, in Figures 15 and 16. 
 

 
Figure 15: density on road 4. 

 
Figure 16: density on road 9. 

 
Now, we change the traffic light cycles as shown 

in Table 2 and Table 3, setting different time instants. 
 

 
Table 2: green-red cycles for  . 

  

Time 
instants 

Road 1 Road 2 

0 - 99 Green Red 
100 - 199 Red Green 
200 - 299 Green Red 
300 - 399 Red Green 
400 - 499 Green Red 
500 - 599 Red Green 
600 - 699 Green Red 
700 - 799 Red Green 
800 - 903 Green Red 

 
 

Table 3: green-red cycles for  

  

Time 
instants 

Road 3 Road 5 

0 - 49 Green Red 
50 - 149 Red Green 
150 - 249 Green Red 
250 - 349 Red Green 
350 - 449 Green Red 
450 - 549 Red Green 
550 - 649 Green Red 
650 - 749 Red Green 
750 - 849 Green Red 

 
 
In this case the density evolution on roads 4 and 7 

is represented in Figures 18 and 19. 
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Figure 18: density on road 4. 

 
Figure 19: density on road 9. 

 
Notice that, in the second configuration case of 

traffic lights, the outgoing fluxes are greater than the 
first case. 

Finally, we conclude that, choosing a right policy 
for the management of fluxes at a junction, playing on 
distribution coefficients and traffic lights cycles, it is 
possible to improve traffic conditions and minimize 
congestion effects. 
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