
ENRICHING A DEVS META-MODEL WITH OCL CONSTRAINTS 
 

Stéphane GARREDU(a), Evelyne VITTORI(b), Jean-François SANTUCCI(c), Dominique URBANI(d)   
 
 

(a) (b) (c) (d) University of Corsica, UMR-CNRS 6134 
 

(a)garredu@univ-corse.fr, (b)vittori@univ-corse.fr, (c)santucci@univ-corse.fr, (d)durbani@laposte.net  
 
 
 
 
ABSTRACT 
The purpose of this paper is to show how the platform-
independent meta-model for DEVS formalism we have 
been working on can be enriched with Object Constraint 
Language (OCL) constraints. OCL is a declarative 
language (without any side effect) and allows us to 
control both the class attributes and the relationships 
between classes, in order to facilitate the modeling 
process and even the code generation towards a DEVS 
framework. To do so, we chose to follow a MDE, and 
in particular MDA approach, because OCL 2.0 is now 
aligned with UML 2.0 and MOF 2.0, which parts of 
MDA. The implementation of our meta-model with its 
OCL refinements has been done within Eclipse 
Modeling Framework (in which OCL 2.0 has been fully 
implemented) and its meta-meta-formalism Ecore. 

 
Keywords: DEVS, modeling, MDE, MDA, EMF, 
Ecore, OCL, meta-modeling, PIM 

 
1. INTRODUCTION 
Since 20 years, with the great improvements in 
computers science, the interest for modeling and 
simulation has been evolving increasingly. Among the 
several formalisms dedicated to modeling and 
simulation of discrete-event systems, DEVS formalism 
appears to be the most famous one because of its ability 
to represent various systems (with its several 
extensions) and to simulate them. The interoperability 
of DEVS models is reduced because of the existing 
DEVS simulators. 

The approach our team has been working on aims 
to ease the modeling process, increase the 
interoperability of DEVS models and improve code-
writing process (using automated code generation). 
From our point of view, it can be done if we use some 
specific features of Model Driven Engineering (MDE) 
methodology and if we apply them to the world of 
modeling and simulation. The main advantage of MDE 
is that it is composed of a useful set of standards, and 
their purpose is to improve the reusability of the models 
and the code generation process.  

An important part of our approach is to allow the 
description of DEVS models in a unified way: it implies 
that such a description has to be achieved without 
considering the platform in which the models will be 
simulated. To stick to this philosophy, each DEVS 
model should conform to the same pattern. This pattern 

should provide all the necessary DEVS concepts in 
order to create DEVS models in a unified way: such a 
pattern is called a meta-model (it is fully detailed in a 
paper “in press”). It describes the syntax and the 
semantics of a formalism. 

A meta-model has to be described with a meta- 
formalism such as XML, or one of the concrete 
implementations of the well-known OMG Meta Object 
Facility (MOF). The one we used is the Eclipse 
Modeling Framework (EMF) Ecore, and can 
graphically be represented with UML class diagrams : 
we use them in this paper to present the main meta-
classes of our DEVS meta-model. 

The usual meta- formalisms are not refined enough 
to provide all the relevant aspects of a specification. 
They usually are cannot fully specify a modeling 
formalism, and they are often extended with the ability 
to express constraints. Even if those constraints can 
often be expressed with natural language, it is very hard 
to implement. Constraints must be expressed in a formal 
way. Object Constraint Language (OCL) provides such 
an ability. It is used to describe constraints on UML 
models as well as on MOF-typed meta-models, that is 
the reason why we said it was aligned with UML 2.0 
and MOF 2.0. 

We will use this language to define some important 
constraints on our DEVS meta-model : as a 
consequence, the number of meaningful models will be 
limited, but they will be more accurate. The purpose of 
this paper is to show how the needed constraints on our 
DEVS meta-model (and in a general way, on other 
meta-models) can be identified and implemented. Of 
course, those steps can be applied to any other kind of 
meta-models. 

This paper is organized as follows: the first part is 
the background section, it focuses on the essential 
concepts of DEVS formalism and software engineering 
(MDE, and in particular UML and MDA, OCL). We 
conclude it by a presentation of our approach dedicated 
to the improvement of DEVS models interoperability 
and object-oriented code generation towards DEVS 
simulators.  

The second part, which can be seen as a specific 
background, sums-up the most important features of the 
meta-model we defined for DEVS formalism : we give 
an overview of the meta-class hierarchy, then we focus 
on (using package diagrams associated to class-
diagrams) the DEVSExpression and DEVSRule 
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concepts, and we describe how we chose to represent 
the couplings between models. We conclude by a 
discussion, which highlights some conditions, in the 
formal definition of DEVS formalism, which are not 
expressed yet in our meta-model. This will introduce 
the third part, dedicated to the OCL constraints we put 
on the meta-classes which belong to DEVSExpression, 
DEVSRule and Coupling packages. After that, we give 
an example of a model which could have been validated 
without our constraints but which is now not 
meaningful anymore. We finally conclude this paper by 
giving an outline of it, and we say a few words about 
our future work.  
 
2. BACKGROUND 
All caps, bold, flush left. Use Times New Roman Font 
and 10 points in size. Start the text on the next line. 
Please use the “HEADING 1” style.  

The headings for the Abstract, Acknowledgements, 
Appendix, References and Authors Biographies 
sections are not numbered. Please use “HEADING” 
style. Insert one blank line before each heading. 

Do not include any kind of page numbers, headers 
or footers. Final page numbers will be inserted by the 
publisher. 

 
2.1. DEVS 
DEVS formalism, introduced in the 70’s by Pr. B.P. 
Zeigler (Zeigler 1989) (Zeigler et al. 2000) is based on 
discrete events, and it provides a framework with 
mathematical concepts based on the sets theory and 
systems theory concepts to describe the structure and 
the behavior of a system. 

Almost any system can be modeled with DEVS 
formalism, if it has finites states and finite transitions 
between its states, in a finite time interval, and interacts 
with its environment through events sent and received 
on its communication ports. A DEVS model represents, 
as other kinds of models do, a simplified version of 
reality. DEVS formalism is modular and hierarchical; it 
allows the definition of 2 kinds of models: atomic 
models and coupled models. DEVS makes an explicit 
separation between a model and its simulator: the latter 
is “automatically” built from the former. It has been 
formally proved that the entity “simulator” is able to 
execute correctly the behaviour described by the entity 
“model”. It has also been formally proved that DEVS is 
closed under composition, which means that a coupled 
model (composed of several models) can be seen as a 
unique atomic model. 
 As there exist many DEVS-oriented simulators and 
frameworks (DEVS Standardization Group 2012) the 
interoperability of DEVS models is reduced.  

 
2.1.1. DEVS Atomic Models 
The tiniest element in DEVS formalism is the atomic 
model. It is specified as follows. 

 
AM = < X, Y, S, ta, δint, δext, λ >, where : 
 

• X = {(p,v)|p InputPorts, v Xp} is the input 

events set, through which external events are 
received; InputPorts is the set of input ports 
and Xp is the set of possible values for those 
input ports 

• Y = {(p,v)|p OutputPorts, v Yp} is the output 

events set, through which external events are 
sent; OutputPorts is the set of output ports and 
Xp is the set of possible values for those output 
ports 

• S is the states set of the system;  

• ta: S → R0
+  +∞ is the time advance function 

(or lifespan of a state); 
• δint: S → S is the internal transition function; 

• δext: Q × X → S with Q = {(s,e)/s S, 

e [0,ta(s)]} is the external transition function; 

• λ: S → Y, with Y = {(p,v)|p OutputPorts, 

v Yp} is the output function; 

 
The simplest transition is called the internal 

transition : at a given moment, a system is in a state 

s S. Unless an external event occurs on an input port, 

the system remains in the s state for a duration defined 
by ta(s). When ta(s) expires, the model sends the value 

defined by λ(s) on an output port y Y, and then it 
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changes to a new state defined by δint(s). Such a 
transition, which occurs because of the expiration of 
ta(s), is an internal transition. 

The other transition type is called the external 
transition, because it is triggered by an external event. 
In this case, it is the δext(s,e,x) function which defines 
which state is the next one (s is the current state, e is the 

elapsed time since the last transition, and x X is the 

event received). 
In both cases, the system is now in a new state s’ 

for a new duration d’ = ta(s’) and the algorithm restarts. 
 

2.1.2. DEVS Coupled Models 
 

A coupled model is composed of at least one submodel 
(atomic or coupled). A coupled model can be seen as a 
parent-model which describes a hierarchy (i.e. a list of 
sub-models, the links between itself and the submodels 
it is composed of, and the links between the submodels 
themselves). A coupled model is formally defined by 

 

MC = <X, Y, D, {Md|d D}, EIC, EOC, IC, 

select>, where : 

• X = {(p,v)|p InputPorts, v Xp} is the input 

events set, through which external events are 
received; InputPorts is the set of input ports 
and Xp is the set of possible values for those 
input ports 

• Y = {(p,v)|p OutputPorts, v Yp} is the output 

events set, through which external events are 
sent; OutputPorts is the set of output ports and 
Xp is the set of possible values for those output 
ports 

• D is the set of component names, d D 

• Md is a DEVS model (either atomic or 
coupled) 

• EIC is the set of external input couplings; an 
external input coupling is a link between the 
input port of the current coupled model and the 
input port of any of its submodels 

• EOC is the set of external output couplings; an 
external output coupling is a link between the 
output port of the current coupled model and 
the output port of any of its submodels 

• IC is the set of internal couplings; an internal 
coupling is a link which involves the output 
port of a submodel and the input port of 
another submodel 

• select is the tiebreaker function 
 

Figure 1 is an example of a coupled model 
containing two submodels: an atomic model and a 
coupled model, which contains itself two atomic 
models. The coupling functions (EOC, EIC, IC) are 
indicated and the ports are represented by black 
diamonds. For instance, Coupled 2 has two input ports, 
and one output port. Atomic 3, contained by coupled 2, 
has one input port, and one output port. 

 

 
Figure 1: A DEVS coupled model 

 
 

2.2. DEVS Software engineering and meta-modeling 
 

2.2.1. UML 
Unified Modeling Language (UML) is a graphical set of 
modeling formalisms: it provides a toolkit which 
enables one to model the structural aspects of a system 
as well as its behavior (Booch et al. 1998).  

 UML is owned by the Object Management Group, 
and its current version is UML 2.4.1 (OMG 2011). Its 
main advantage is that it is considered as a standard 
formalism by a large worldwide community of users. 
We use in this paper UML class and package diagrams 
to represent the meta-classes of our DEVS meta-model. 

2.2.2. UML and meta-levels 
A UML model, for instance a UML class diagram (that 
we will use later to describe our meta-model) is an 
abstraction of a system from the real world located at 
the lowest abstraction level: M0. Such an abstraction 
takes place at a higher level: M1. It is defined by its 
meta-model at, once more, a higher level: M2. This 
meta-model describes, using a language or formalism, 
the elements that can be used to design the model and 
their relationships with each other. Such a description is 
defined at a higher level by Meta Object Facility 
(MOF), a language used to describe other languages. 
This level is M3. MOF is defined on itself, i.e. it is 
described in MOF terms. Hence, there is no level higher 
than M3 (Figure 2). 
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Figure 2: UML and the “meta” levels 

 
2.2.3. MDE, MDA and EMF 

 
Model Driven Engineering is a software development 
methodology which focuses on creating and 
exploiting domain models. MDE is a generic approach, 
and its most famous implementation is Model Driven 
Architecture, owned by the OMG.  

We can also quote the Eclipse ecosystem of 
programming and modelling tools (Eclipse 2012). EMF 
(EMF 2012) is a particular part of Eclipse which 
contains and implements a set of MDA standards: in 
fact, MDA and EMF are very close one to each other, 
the ladder uses and implements the concepts inherited 
from the former, and we use both of them in our 
approach. MDA (Model Driven Architecture) (OMG, 
2001) is a software design approach initiated by the 
OMG in 2001 to introduce a new way of development 
based upon models rather than code. With MDA 
approach, everything is a model, even the 
transformations between models are considered as 
models.  

MDA defines a set of guidelines for defining 
models at different abstraction levels, starting from 
Computational Independent Models (CIMs) to platform 
independent models (PIMs), then from PIMs to 
platform specific models (PSMs) which are tied to a 
particular technology (i.e. platform). The translation 
from one PIM to one or several PSMs is to be 
performed automatically by using transformation tools. 
MDA also enables transforming a PSM into source 
code. The advantage of such an approach is the great 
reusability of models. OMG provides a set of standards 
dedicated to this approach. Although UML was at the 
beginning the basis of the OMG works on MDA, it is 
now Meta-Object Facility which appears to be the most 
basic standard.  

According to this standard, each formalism 
involved in a MDA process at any level (PIM, PSM) is 

to be specified by a meta-model expressed in terms of 
MOF elements. As MOF was not given a concrete 
syntax, our meta-model was implemented using EMF. 
The MOF equivalent in EMF is Ecore. Ecore can be 
seen as an implementation of MOF, in the same way 
that EMF uses the MDA concepts. 

 
2.2.4. OCL 
Object Constraint Language (OMG 2006) is a formal 
and strongly typed modeling language proposed by the 
OMG in order to specify unambiguous constraints on 
UML 2.0 models, and even MOF 2.0 meta-models (i.e. 
fully aligned with MOF and MDA).  

As it is a pure specification language OCL enables 
us to write expressions without side effects. When an 
OCL expression is evaluated, it simply returns a value. 
It cannot change anything in the model, nor in the meta-
model. Moreover, it is not possible to write program 
logic or flow control in OCL. It is not possible to 
invoke processes or activate non-query operations 
within OCL. Because OCL is a modeling language in 
the first place, OCL expressions are not by definition 
directly executable. 

In this paper, we will use OCL to specify 
invariants on our meta-classes and their relationships 
(i.e. conditions that have to be fulfilled by any instances 
of the meta-classes) so that the instances of the meta-
model must conform to those conditions. 

2.3. Our Approach 

The DEVS meta-model we designed is located at the 
M2 level and uses the concepts given by the highest 
level (M3). The meta-meta-formalism we used is EMF 
Ecore. 

Some theoretical aspects of our approach are 
presented in a more detailed way in (Garredu et al. 
2011). Figure 3 shows a larger view of our philosophy : 
the DEVS meta-model enables to specify platform-
independent models (DEVS PIMs) which are in fact 
instances of this meta-model. Thanks to transformation 
rules, those models can be used for an automated 
object-oriented code generation towards a DEVS 
simulator. But the other huge advantage of following a 
MDE approach is that the DEVS meta-model can be 
seen as a single entry-point for other DEVS-like (i.e. 
based on states, transitions and events) formalisms: also 
using transformation rules at the M3 level, it is possible 
to specify mappings from any DEVS-Like formalism 
towards our DEVS meta-model. In other words, any 
model written in a DEVS-like formalism can be 
transformed in a DEVS model. Then, as a normal 
DEVS model, it can be used, as we said before, to 
generate object-oriented code. 

 
3. MAIN ELEMENTS OF OUR DEVS 

METAMODEL 
 
3.1.1. Overview of the hierarchy 
The most important package of our meta-model is the 
DEVSModel package (Figure 4). It shows that a DEVS 
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model can be either atomic or coupled. If it is coupled, 
it must contain at least a submodel. 

Types are defined differently following the object-
oriented languages. So, our meta-model must be able to 
handle types, in a generic way. We chose to represent 
only 4 basic types, but this can be easily extended. The 
package representing types is given by Figure 5. 

Every DEVS model has at least an output port and 
can have an input port. Every port must be given a name 
and a type, and can be either an input port or an output 
port (Figure 6). 

We introduced with this meta-model an important 
basic concept which is common to many elements of 
this meta-model: the DEVSExpression. 

 
3.1.2. DEVSExpression package 
In a formal point of view, a DEVS atomic model is 
composed of a finite set of its possible states S linked by 
deterministic transitions. Those states are distinct 
values; it implies that the fact of changing a state may 
lead to the creation of another state. 

This is not a problem for the systems of which the 
states are known (and can be enumerated) but it 
becomes one when we have to deal with states which 

take their values in infinite sets, for instance [0;1]  R.  

To solve this problem, we chose to represent a state by 

what we call a state variable. It takes a new value when 
the state changes (i.e. each new state change will lead to 
a change of the value of the state variable). Therefore, 
only a state variable is used to represent a collection of 
states which belong to the “same kind”. A state variable 
must be named, and must be typed. It can also be 
affected a literal value.  

We chose to describe state variables and types, and 
they can be included in a larger set which is called 
DEVSExpression. 

It is one of the basis of our meta-model. As a 
StateVar is a DEVSExpression, a LitteralBasicValue 
(see Figure 9) is also DEVSExpression but a simpler 
one: in fact the simplest one because it is composed of a 
unique typed value. We built this package (see Figure 7) 
in a modular way, in order to facilitate its modification 
by enriching it with other sub-classes. DEVSComplex 
can be a starting point to do so. 

 
3.2. Rule package 
In spite of the differences between the DEVS functions, 
we can notice that every function can describe a test, an 
action on a variable, a message. Those descriptions 
follow a sort of pattern which is often the same: a set of 
enumerations. We call those enumerations DEVS Rules. 

The purpose of a rule is to represent a set of 
operations on specific elements. To be more accurate, 
these are not exactly operations but descriptions. For

instance, the simplest one is given by the ta function; it 
describes the fact of returning a value after evaluating a 
state. 

 

  
 Figure 3: The DEVS meta-model used as a single entry-point towards DEVS simulators 
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Figure 4: The DEVSModel package 

 

 
Figure 5: The Port package 

 

 

 
Figure 6: The Types package 

 
3.3. Rule package 
In spite of the differences between the DEVS functions, 
we can notice that every function can describe a test, an 
action on a variable, a message. Those descriptions 
follow a sort of pattern which is often the same: a set of 
enumerations. We call those enumerations DEVS Rules. 

The purpose of a rule is to represent a set of operations 
on specific elements. To be more accurate, these are not 
exactly operations but descriptions. For instance, the 
simplest one is given by the ta function; it describes the 
fact of returning a value after evaluating a state. A rule 
is always composed of a condition and an action. Figure 
8 shows the organization of the Rule package, it uses 
the two next packages : see Figures 9 and 10. Those 
figures represent the Conditions and Actions used in the 
Rules. A condition (see Figure 9) is described by a test: 
a left member, a comparator, and a right member. It can 
be a test on an input port (in the case of an external 
transition function) or on a state variable (in every 
DEVS atomic function, there is a test on a state 
variable). An action is the description of an action: an 
output action (on a port), or a state change action (in the 
case of a transition function). Figure 10 shows the 
Action package.  

 
Figure 7: The DEVSExpression package 

 
 

 
Figure 8: The Rule package 
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Figure 9: The Condition package 

 
3.4. Coupling Package 
The meta-class which describes the coupling functions 
(in the coupled models) is given by Figure 11. As usual, 
there is an abstract class (Coupling) from which inherit 
3 sub-classes: EIC, EOC, IC. 
 

 

 
Figure 10: The Action package 

 

 
Figure 11: The Coupling package 

 
3.5. Discussion 
The DEVS meta-model we show here is accurate 
enough to specify several DEVS models. Though, the 
modeler must take care of several parameters while he 
designs a system. If we look at the DEVS formal 
definition, we can see that : an IC function involves an 
input port and an output port, an EIC function involves 
two input ports, and an EOC function involves two 
output ports. That is transcribed in the that  a  previous 
figure representing the coupling functions. But, how can 
we specify that, for instance, an IC function must use 

the ports of two sub-models of the current coupled 
model? 

Reasoning in the same way, how can be sure that 
the initial value of a StateVar and its type belong to the 
same type?  How can we verify that a StringValue has 
the correct corresponding type (StringType)? 

 All those questions have the same process: a 
comparison between the formal definition of DEVS and 
our meta-model, or a reasoning on what makes a model 
be meaningful or not (a non-meaningful model always 
leads to “modeling mistakes”). 

The next part is dedicated of all the refinements we 
can apply to our meta-model in order to make it be far 
more accurate than before.  
 

4. ADDING OCL CONSTRAINTS TO OUR 
METAMODEL 

In this part we use the EMF OCL 3.1.0 language to 
describe the constraints on our meta-model. The 
constraints were directly implemented in the EMF 
framework, and (added to the corresponding meta-
classes). 
 

4.1. DEVSExpession Constraints 
4.1.1. StateVar Constraints 
As we have seen before, we must verify that a StateVar 
which is given a String type cannot contain a reference 
to a value from another type. This can easily be done : 

 
invariant StateVarTypeConstraint: 

self.type = self.initial_value.type; 
 

A StateVar must also be identified: its attribute 
DEVSid must not be empty, so we write : 

 
invariant idNotEmpty: 
self.DEVSid.size()>0; 

 

4.1.2. LitteralBasicValue Constraints 
As a child of DEVSExpression, a LitteralBasicValue 
can be a type which is different from the value it carries. 
We must prevent that. Every new LitteralBasicValue 
must have the same type than the type of the value it 
carries. Moreover, a StringValue must not be empty : 

 
• IntValue must be typed with IntegerType 
invariant intIsInt: 
self.type.oclType().name = 
'IntegerType'; 
• CharValue must be typed with CharType 
invariant charIsChar: 
self.is.type.oclType().name = 
'CharType'; 
• BooleanValue must be typed with 

BooleanType 
invariant boolIsBool: 
self.type.oclType().name = 
'BooleanType'; 
• StringValue must be typed with StringType and 

not empty  
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invariant stringIsString: 
self.type.oclType().name = 
'StringType'; 
invariant nameNotEmpty: 
self.str_val.size()>0 

 

4.2. DEVSRules Constraints 
In every comparison, we must verify that the type of the 
left member (a Port, a StateVar…) belongs to the same 
type as the element it is compared to: 

• In the StateVarComparison meta-class : 

invariant svcTypeConstraint: 
self.left_member.type=self.right_memb
er.type; 

• In the InputPortComparison meta-class : 

invariant ipcTypeConstraint: 
self.left_member.type=self.right_memb
er.type; 

 

In the same way, we must verify that the types match in 
an Action. In the case of an OutputAction, we must 
verify that the output port given as a parameter belongs 
to the currrent atomic model : 

 

• For a StateChangeAction : 

invariant stateChangeTypeConstraint: 
self.affected_state.type=self.new_val
ue.type; 

• For an OutputAction : 

invariant outputActionTypeConstraint: 
self.port.type=self.message.type; 

invariant portBelongsToCurrentAtomic: 
self.port.oclContainer()=self.oclCont
ainer(); 

4.3. Coupling Constraints 
Here we present 3 groups containing 3 constraints each. 
Those constraints are very important because they 
prevent hasardous couplings between ports. The last 

constraint of each group verifies that two ports have the 
same type. 

• EIC must have a reference to an input port 
from the current coupled model and a 
reference to the input port of a submodel 

(Md|d D)  

invariant EICcurrentModelInputPort : 
self.oclContainer()=self.EIC_coupled_
in.oclContainer(); 
 
invariant EICsubmodelInputPort : 
self.oclContainer()=self.EIC_in.oclCo
ntainer().oclContainer(); 
 
invariant EICtypes: 
self.EIC_coupled_in.type = 
self.EIC_in.type; 

 
• It is the same thing for EOC, but with output 

ports : 
invariant EOCcurrentModelOutputPort : 
self.oclContainer()=self.EOC_coupled_
out.oclContainer(); 
 
invariant EOCsubmodelOutputPort : 
self.oclContainer()=self.EOC_out.oclC
ontainer().oclContainer(); 
 
invariant EOCtypes: 
self.EOC_coupled_out.type=self.EOC_ou
t.type; 
 

• IC must link the input and output ports of two 
submodels : 

invariant ICsubmodelInputPort : 
self.oclContainer()=self.IC_in.oclCon
tainer().oclContainer(); 
 
invariant ICsubmodelOutputPort : 
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Figure 12: Testing OCL constraints with Eclipse Modeling Framework and our DEVS meta-model 

 
 

self.oclContainer()= 
self.IC_out.oclContainer().oclContain
er(); 
 
invariant ICtypes: 
self.IC_out.is_typed=self.IC_out.is_t
yped; 

 

5. EXAMPLE 
We chose to re-create the hierarchy of Figure 1 in this 
example in order to test the class invariant constraints 
we put on the meta-classes of Coupling package. We 
tried to make voluntary mistakes in the definition of the 
coupling functions and tried to validate our model 
instance. The errors raised by EMF are shown in the  
following screenshot (Figure 12). The other kind of 
constraints we put on other classes are fully functional 
too.  

 
6. CONCLUSION 
In this paper, we have presented the main meta-classes 
of our meta-model for DEVS then we have shown how 
they could be enriched and refined with OCL 
constraints. Without those constraints, even if the 
instantiated models would have been “correct” in terms 
of our meta-model, from a DEVS point of view they 
would not. OCL can be seen as a super-layer which 
cannot work the fundamental layer created by the meta-
model. This super-layer depicts more precisely the 
meta-attributes and the meta-relationships between the 
meta-classes. Using those two layers was possible 
because of the tight links which exist between OCL and 

MOF : those links exist in EMF too between Ecore and 
EMF OCL.  

In a near future, we plan to describe how OCL can 
be used as a super-layer for Model To Model 
transformations. This is another side of OCL usage: 
instead of being used to describe class invariants, it is 
used this time to create queries and navigate in the links 
between the instances of a meta-model. 
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