
ENRICHING A DEVS META-MODEL WITH OCL CONSTRAINTS

Stéphane GARREDU(a), Evelyne VITTORI(b), Jean-François SANTUCCI(c), Dominique URBANI(d)

(a) (b) (c) (d) University of Corsica, UMR-CNRS 6134

(a)garredu@univ-corse.fr, (b)vittori@univ-corse.fr, (c)santucci@univ-corse.fr, (d)durbani@laposte.net

ABSTRACT
The purpose of this paper is to show how the platform-
independent meta-model for DEVS formalism we have
been working on can be enriched with Object Constraint
Language (OCL) constraints. OCL is a declarative
language (without any side effect) and allows us to
control both the class attributes and the relationships
between classes, in order to facilitate the modeling
process and even the code generation towards a DEVS
framework. To do so, we chose to follow a MDE, and
in particular MDA approach, because OCL 2.0 is now
aligned with UML 2.0 and MOF 2.0, which parts of
MDA. The implementation of our meta-model with its
OCL refinements has been done within Eclipse
Modeling Framework (in which OCL 2.0 has been fully
implemented) and its meta-meta-formalism Ecore.

Keywords: DEVS, modeling, MDE, MDA, EMF,
Ecore, OCL, meta-modeling, PIM

1. INTRODUCTION
Since 20 years, with the great improvements in
computers science, the interest for modeling and
simulation has been evolving increasingly. Among the
several formalisms dedicated to modeling and
simulation of discrete-event systems, DEVS formalism
appears to be the most famous one because of its ability
to represent various systems (with its several
extensions) and to simulate them. The interoperability
of DEVS models is reduced because of the existing
DEVS simulators.

The approach our team has been working on aims
to ease the modeling process, increase the
interoperability of DEVS models and improve code-
writing process (using automated code generation).
From our point of view, it can be done if we use some
specific features of Model Driven Engineering (MDE)
methodology and if we apply them to the world of
modeling and simulation. The main advantage of MDE
is that it is composed of a useful set of standards, and
their purpose is to improve the reusability of the models
and the code generation process.

An important part of our approach is to allow the
description of DEVS models in a unified way: it implies
that such a description has to be achieved without
considering the platform in which the models will be
simulated. To stick to this philosophy, each DEVS
model should conform to the same pattern. This pattern

should provide all the necessary DEVS concepts in
order to create DEVS models in a unified way: such a
pattern is called a meta-model (it is fully detailed in a
paper “in press”). It describes the syntax and the
semantics of a formalism.

A meta-model has to be described with a meta-
formalism such as XML, or one of the concrete
implementations of the well-known OMG Meta Object
Facility (MOF). The one we used is the Eclipse
Modeling Framework (EMF) Ecore, and can
graphically be represented with UML class diagrams :
we use them in this paper to present the main meta-
classes of our DEVS meta-model.

The usual meta- formalisms are not refined enough
to provide all the relevant aspects of a specification.
They usually are cannot fully specify a modeling
formalism, and they are often extended with the ability
to express constraints. Even if those constraints can
often be expressed with natural language, it is very hard
to implement. Constraints must be expressed in a formal
way. Object Constraint Language (OCL) provides such
an ability. It is used to describe constraints on UML
models as well as on MOF-typed meta-models, that is
the reason why we said it was aligned with UML 2.0
and MOF 2.0.

We will use this language to define some important
constraints on our DEVS meta-model : as a
consequence, the number of meaningful models will be
limited, but they will be more accurate. The purpose of
this paper is to show how the needed constraints on our
DEVS meta-model (and in a general way, on other
meta-models) can be identified and implemented. Of
course, those steps can be applied to any other kind of
meta-models.

This paper is organized as follows: the first part is
the background section, it focuses on the essential
concepts of DEVS formalism and software engineering
(MDE, and in particular UML and MDA, OCL). We
conclude it by a presentation of our approach dedicated
to the improvement of DEVS models interoperability
and object-oriented code generation towards DEVS
simulators.

The second part, which can be seen as a specific
background, sums-up the most important features of the
meta-model we defined for DEVS formalism : we give
an overview of the meta-class hierarchy, then we focus
on (using package diagrams associated to class-
diagrams) the DEVSExpression and DEVSRule

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 216

concepts, and we describe how we chose to represent
the couplings between models. We conclude by a
discussion, which highlights some conditions, in the
formal definition of DEVS formalism, which are not
expressed yet in our meta-model. This will introduce
the third part, dedicated to the OCL constraints we put
on the meta-classes which belong to DEVSExpression,
DEVSRule and Coupling packages. After that, we give
an example of a model which could have been validated
without our constraints but which is now not
meaningful anymore. We finally conclude this paper by
giving an outline of it, and we say a few words about
our future work.

2. BACKGROUND
All caps, bold, flush left. Use Times New Roman Font
and 10 points in size. Start the text on the next line.
Please use the “HEADING 1” style.

The headings for the Abstract, Acknowledgements,
Appendix, References and Authors Biographies
sections are not numbered. Please use “HEADING”
style. Insert one blank line before each heading.

Do not include any kind of page numbers, headers
or footers. Final page numbers will be inserted by the
publisher.

2.1. DEVS
DEVS formalism, introduced in the 70’s by Pr. B.P.
Zeigler (Zeigler 1989) (Zeigler et al. 2000) is based on
discrete events, and it provides a framework with
mathematical concepts based on the sets theory and
systems theory concepts to describe the structure and
the behavior of a system.

Almost any system can be modeled with DEVS
formalism, if it has finites states and finite transitions
between its states, in a finite time interval, and interacts
with its environment through events sent and received
on its communication ports. A DEVS model represents,
as other kinds of models do, a simplified version of
reality. DEVS formalism is modular and hierarchical; it
allows the definition of 2 kinds of models: atomic
models and coupled models. DEVS makes an explicit
separation between a model and its simulator: the latter
is “automatically” built from the former. It has been
formally proved that the entity “simulator” is able to
execute correctly the behaviour described by the entity
“model”. It has also been formally proved that DEVS is
closed under composition, which means that a coupled
model (composed of several models) can be seen as a
unique atomic model.
 As there exist many DEVS-oriented simulators and
frameworks (DEVS Standardization Group 2012) the
interoperability of DEVS models is reduced.

2.1.1. DEVS Atomic Models
The tiniest element in DEVS formalism is the atomic
model. It is specified as follows.

AM = < X, Y, S, ta, δint, δext, λ >, where :

• X = {(p,v)|p InputPorts, v Xp} is the input

events set, through which external events are
received; InputPorts is the set of input ports
and Xp is the set of possible values for those
input ports

• Y = {(p,v)|p OutputPorts, v Yp} is the output

events set, through which external events are
sent; OutputPorts is the set of output ports and
Xp is the set of possible values for those output
ports

• S is the states set of the system;

• ta: S → R0
+ +∞ is the time advance function

(or lifespan of a state);
• δint: S → S is the internal transition function;

• δext: Q × X → S with Q = {(s,e)/s S,

e [0,ta(s)]} is the external transition function;

• λ: S → Y, with Y = {(p,v)|p OutputPorts,

v Yp} is the output function;

The simplest transition is called the internal

transition : at a given moment, a system is in a state

s S. Unless an external event occurs on an input port,

the system remains in the s state for a duration defined
by ta(s). When ta(s) expires, the model sends the value

defined by λ(s) on an output port y Y, and then it

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 217

changes to a new state defined by δint(s). Such a
transition, which occurs because of the expiration of
ta(s), is an internal transition.

The other transition type is called the external
transition, because it is triggered by an external event.
In this case, it is the δext(s,e,x) function which defines
which state is the next one (s is the current state, e is the

elapsed time since the last transition, and x X is the

event received).
In both cases, the system is now in a new state s’

for a new duration d’ = ta(s’) and the algorithm restarts.

2.1.2. DEVS Coupled Models

A coupled model is composed of at least one submodel
(atomic or coupled). A coupled model can be seen as a
parent-model which describes a hierarchy (i.e. a list of
sub-models, the links between itself and the submodels
it is composed of, and the links between the submodels
themselves). A coupled model is formally defined by

MC = <X, Y, D, {Md|d D}, EIC, EOC, IC,

select>, where :

• X = {(p,v)|p InputPorts, v Xp} is the input

events set, through which external events are
received; InputPorts is the set of input ports
and Xp is the set of possible values for those
input ports

• Y = {(p,v)|p OutputPorts, v Yp} is the output

events set, through which external events are
sent; OutputPorts is the set of output ports and
Xp is the set of possible values for those output
ports

• D is the set of component names, d D

• Md is a DEVS model (either atomic or
coupled)

• EIC is the set of external input couplings; an
external input coupling is a link between the
input port of the current coupled model and the
input port of any of its submodels

• EOC is the set of external output couplings; an
external output coupling is a link between the
output port of the current coupled model and
the output port of any of its submodels

• IC is the set of internal couplings; an internal
coupling is a link which involves the output
port of a submodel and the input port of
another submodel

• select is the tiebreaker function

Figure 1 is an example of a coupled model
containing two submodels: an atomic model and a
coupled model, which contains itself two atomic
models. The coupling functions (EOC, EIC, IC) are
indicated and the ports are represented by black
diamonds. For instance, Coupled 2 has two input ports,
and one output port. Atomic 3, contained by coupled 2,
has one input port, and one output port.

Figure 1: A DEVS coupled model

2.2. DEVS Software engineering and meta-modeling

2.2.1. UML
Unified Modeling Language (UML) is a graphical set of
modeling formalisms: it provides a toolkit which
enables one to model the structural aspects of a system
as well as its behavior (Booch et al. 1998).

 UML is owned by the Object Management Group,
and its current version is UML 2.4.1 (OMG 2011). Its
main advantage is that it is considered as a standard
formalism by a large worldwide community of users.
We use in this paper UML class and package diagrams
to represent the meta-classes of our DEVS meta-model.

2.2.2. UML and meta-levels
A UML model, for instance a UML class diagram (that
we will use later to describe our meta-model) is an
abstraction of a system from the real world located at
the lowest abstraction level: M0. Such an abstraction
takes place at a higher level: M1. It is defined by its
meta-model at, once more, a higher level: M2. This
meta-model describes, using a language or formalism,
the elements that can be used to design the model and
their relationships with each other. Such a description is
defined at a higher level by Meta Object Facility
(MOF), a language used to describe other languages.
This level is M3. MOF is defined on itself, i.e. it is
described in MOF terms. Hence, there is no level higher
than M3 (Figure 2).

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 218

Figure 2: UML and the “meta” levels

2.2.3. MDE, MDA and EMF

Model Driven Engineering is a software development
methodology which focuses on creating and
exploiting domain models. MDE is a generic approach,
and its most famous implementation is Model Driven
Architecture, owned by the OMG.

We can also quote the Eclipse ecosystem of
programming and modelling tools (Eclipse 2012). EMF
(EMF 2012) is a particular part of Eclipse which
contains and implements a set of MDA standards: in
fact, MDA and EMF are very close one to each other,
the ladder uses and implements the concepts inherited
from the former, and we use both of them in our
approach. MDA (Model Driven Architecture) (OMG,
2001) is a software design approach initiated by the
OMG in 2001 to introduce a new way of development
based upon models rather than code. With MDA
approach, everything is a model, even the
transformations between models are considered as
models.

MDA defines a set of guidelines for defining
models at different abstraction levels, starting from
Computational Independent Models (CIMs) to platform
independent models (PIMs), then from PIMs to
platform specific models (PSMs) which are tied to a
particular technology (i.e. platform). The translation
from one PIM to one or several PSMs is to be
performed automatically by using transformation tools.
MDA also enables transforming a PSM into source
code. The advantage of such an approach is the great
reusability of models. OMG provides a set of standards
dedicated to this approach. Although UML was at the
beginning the basis of the OMG works on MDA, it is
now Meta-Object Facility which appears to be the most
basic standard.

According to this standard, each formalism
involved in a MDA process at any level (PIM, PSM) is

to be specified by a meta-model expressed in terms of
MOF elements. As MOF was not given a concrete
syntax, our meta-model was implemented using EMF.
The MOF equivalent in EMF is Ecore. Ecore can be
seen as an implementation of MOF, in the same way
that EMF uses the MDA concepts.

2.2.4. OCL
Object Constraint Language (OMG 2006) is a formal
and strongly typed modeling language proposed by the
OMG in order to specify unambiguous constraints on
UML 2.0 models, and even MOF 2.0 meta-models (i.e.
fully aligned with MOF and MDA).

As it is a pure specification language OCL enables
us to write expressions without side effects. When an
OCL expression is evaluated, it simply returns a value.
It cannot change anything in the model, nor in the meta-
model. Moreover, it is not possible to write program
logic or flow control in OCL. It is not possible to
invoke processes or activate non-query operations
within OCL. Because OCL is a modeling language in
the first place, OCL expressions are not by definition
directly executable.

In this paper, we will use OCL to specify
invariants on our meta-classes and their relationships
(i.e. conditions that have to be fulfilled by any instances
of the meta-classes) so that the instances of the meta-
model must conform to those conditions.

2.3. Our Approach

The DEVS meta-model we designed is located at the
M2 level and uses the concepts given by the highest
level (M3). The meta-meta-formalism we used is EMF
Ecore.

Some theoretical aspects of our approach are
presented in a more detailed way in (Garredu et al.
2011). Figure 3 shows a larger view of our philosophy :
the DEVS meta-model enables to specify platform-
independent models (DEVS PIMs) which are in fact
instances of this meta-model. Thanks to transformation
rules, those models can be used for an automated
object-oriented code generation towards a DEVS
simulator. But the other huge advantage of following a
MDE approach is that the DEVS meta-model can be
seen as a single entry-point for other DEVS-like (i.e.
based on states, transitions and events) formalisms: also
using transformation rules at the M3 level, it is possible
to specify mappings from any DEVS-Like formalism
towards our DEVS meta-model. In other words, any
model written in a DEVS-like formalism can be
transformed in a DEVS model. Then, as a normal
DEVS model, it can be used, as we said before, to
generate object-oriented code.

3. MAIN ELEMENTS OF OUR DEVS

METAMODEL

3.1.1. Overview of the hierarchy
The most important package of our meta-model is the
DEVSModel package (Figure 4). It shows that a DEVS

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 219

model can be either atomic or coupled. If it is coupled,
it must contain at least a submodel.

Types are defined differently following the object-
oriented languages. So, our meta-model must be able to
handle types, in a generic way. We chose to represent
only 4 basic types, but this can be easily extended. The
package representing types is given by Figure 5.

Every DEVS model has at least an output port and
can have an input port. Every port must be given a name
and a type, and can be either an input port or an output
port (Figure 6).

We introduced with this meta-model an important
basic concept which is common to many elements of
this meta-model: the DEVSExpression.

3.1.2. DEVSExpression package
In a formal point of view, a DEVS atomic model is
composed of a finite set of its possible states S linked by
deterministic transitions. Those states are distinct
values; it implies that the fact of changing a state may
lead to the creation of another state.

This is not a problem for the systems of which the
states are known (and can be enumerated) but it
becomes one when we have to deal with states which

take their values in infinite sets, for instance [0;1] R.

To solve this problem, we chose to represent a state by

what we call a state variable. It takes a new value when
the state changes (i.e. each new state change will lead to
a change of the value of the state variable). Therefore,
only a state variable is used to represent a collection of
states which belong to the “same kind”. A state variable
must be named, and must be typed. It can also be
affected a literal value.

We chose to describe state variables and types, and
they can be included in a larger set which is called
DEVSExpression.

It is one of the basis of our meta-model. As a
StateVar is a DEVSExpression, a LitteralBasicValue
(see Figure 9) is also DEVSExpression but a simpler
one: in fact the simplest one because it is composed of a
unique typed value. We built this package (see Figure 7)
in a modular way, in order to facilitate its modification
by enriching it with other sub-classes. DEVSComplex
can be a starting point to do so.

3.2. Rule package
In spite of the differences between the DEVS functions,
we can notice that every function can describe a test, an
action on a variable, a message. Those descriptions
follow a sort of pattern which is often the same: a set of
enumerations. We call those enumerations DEVS Rules.

The purpose of a rule is to represent a set of
operations on specific elements. To be more accurate,
these are not exactly operations but descriptions. For

instance, the simplest one is given by the ta function; it
describes the fact of returning a value after evaluating a
state.

 Figure 3: The DEVS meta-model used as a single entry-point towards DEVS simulators

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 220

Figure 4: The DEVSModel package

Figure 5: The Port package

Figure 6: The Types package

3.3. Rule package
In spite of the differences between the DEVS functions,
we can notice that every function can describe a test, an
action on a variable, a message. Those descriptions
follow a sort of pattern which is often the same: a set of
enumerations. We call those enumerations DEVS Rules.

The purpose of a rule is to represent a set of operations
on specific elements. To be more accurate, these are not
exactly operations but descriptions. For instance, the
simplest one is given by the ta function; it describes the
fact of returning a value after evaluating a state. A rule
is always composed of a condition and an action. Figure
8 shows the organization of the Rule package, it uses
the two next packages : see Figures 9 and 10. Those
figures represent the Conditions and Actions used in the
Rules. A condition (see Figure 9) is described by a test:
a left member, a comparator, and a right member. It can
be a test on an input port (in the case of an external
transition function) or on a state variable (in every
DEVS atomic function, there is a test on a state
variable). An action is the description of an action: an
output action (on a port), or a state change action (in the
case of a transition function). Figure 10 shows the
Action package.

Figure 7: The DEVSExpression package

Figure 8: The Rule package

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 221

Figure 9: The Condition package

3.4. Coupling Package
The meta-class which describes the coupling functions
(in the coupled models) is given by Figure 11. As usual,
there is an abstract class (Coupling) from which inherit
3 sub-classes: EIC, EOC, IC.

Figure 10: The Action package

Figure 11: The Coupling package

3.5. Discussion
The DEVS meta-model we show here is accurate
enough to specify several DEVS models. Though, the
modeler must take care of several parameters while he
designs a system. If we look at the DEVS formal
definition, we can see that : an IC function involves an
input port and an output port, an EIC function involves
two input ports, and an EOC function involves two
output ports. That is transcribed in the that a previous
figure representing the coupling functions. But, how can
we specify that, for instance, an IC function must use

the ports of two sub-models of the current coupled
model?

Reasoning in the same way, how can be sure that
the initial value of a StateVar and its type belong to the
same type? How can we verify that a StringValue has
the correct corresponding type (StringType)?

 All those questions have the same process: a
comparison between the formal definition of DEVS and
our meta-model, or a reasoning on what makes a model
be meaningful or not (a non-meaningful model always
leads to “modeling mistakes”).

The next part is dedicated of all the refinements we
can apply to our meta-model in order to make it be far
more accurate than before.

4. ADDING OCL CONSTRAINTS TO OUR
METAMODEL

In this part we use the EMF OCL 3.1.0 language to
describe the constraints on our meta-model. The
constraints were directly implemented in the EMF
framework, and (added to the corresponding meta-
classes).

4.1. DEVSExpession Constraints
4.1.1. StateVar Constraints
As we have seen before, we must verify that a StateVar
which is given a String type cannot contain a reference
to a value from another type. This can easily be done :

invariant StateVarTypeConstraint:

self.type = self.initial_value.type;

A StateVar must also be identified: its attribute
DEVSid must not be empty, so we write :

invariant idNotEmpty:
self.DEVSid.size()>0;

4.1.2. LitteralBasicValue Constraints
As a child of DEVSExpression, a LitteralBasicValue
can be a type which is different from the value it carries.
We must prevent that. Every new LitteralBasicValue
must have the same type than the type of the value it
carries. Moreover, a StringValue must not be empty :

• IntValue must be typed with IntegerType
invariant intIsInt:
self.type.oclType().name =
'IntegerType';
• CharValue must be typed with CharType
invariant charIsChar:
self.is.type.oclType().name =
'CharType';
• BooleanValue must be typed with

BooleanType
invariant boolIsBool:
self.type.oclType().name =
'BooleanType';
• StringValue must be typed with StringType and

not empty

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 222

invariant stringIsString:
self.type.oclType().name =
'StringType';
invariant nameNotEmpty:
self.str_val.size()>0

4.2. DEVSRules Constraints
In every comparison, we must verify that the type of the
left member (a Port, a StateVar…) belongs to the same
type as the element it is compared to:

• In the StateVarComparison meta-class :

invariant svcTypeConstraint:
self.left_member.type=self.right_memb
er.type;

• In the InputPortComparison meta-class :

invariant ipcTypeConstraint:
self.left_member.type=self.right_memb
er.type;

In the same way, we must verify that the types match in
an Action. In the case of an OutputAction, we must
verify that the output port given as a parameter belongs
to the currrent atomic model :

• For a StateChangeAction :

invariant stateChangeTypeConstraint:
self.affected_state.type=self.new_val
ue.type;

• For an OutputAction :

invariant outputActionTypeConstraint:
self.port.type=self.message.type;

invariant portBelongsToCurrentAtomic:
self.port.oclContainer()=self.oclCont
ainer();

4.3. Coupling Constraints
Here we present 3 groups containing 3 constraints each.
Those constraints are very important because they
prevent hasardous couplings between ports. The last

constraint of each group verifies that two ports have the
same type.

• EIC must have a reference to an input port
from the current coupled model and a
reference to the input port of a submodel

(Md|d D)

invariant EICcurrentModelInputPort :
self.oclContainer()=self.EIC_coupled_
in.oclContainer();

invariant EICsubmodelInputPort :
self.oclContainer()=self.EIC_in.oclCo
ntainer().oclContainer();

invariant EICtypes:
self.EIC_coupled_in.type =
self.EIC_in.type;

• It is the same thing for EOC, but with output

ports :
invariant EOCcurrentModelOutputPort :
self.oclContainer()=self.EOC_coupled_
out.oclContainer();

invariant EOCsubmodelOutputPort :
self.oclContainer()=self.EOC_out.oclC
ontainer().oclContainer();

invariant EOCtypes:
self.EOC_coupled_out.type=self.EOC_ou
t.type;

• IC must link the input and output ports of two
submodels :

invariant ICsubmodelInputPort :
self.oclContainer()=self.IC_in.oclCon
tainer().oclContainer();

invariant ICsubmodelOutputPort :

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 223

Figure 12: Testing OCL constraints with Eclipse Modeling Framework and our DEVS meta-model

self.oclContainer()=
self.IC_out.oclContainer().oclContain
er();

invariant ICtypes:
self.IC_out.is_typed=self.IC_out.is_t
yped;

5. EXAMPLE
We chose to re-create the hierarchy of Figure 1 in this
example in order to test the class invariant constraints
we put on the meta-classes of Coupling package. We
tried to make voluntary mistakes in the definition of the
coupling functions and tried to validate our model
instance. The errors raised by EMF are shown in the
following screenshot (Figure 12). The other kind of
constraints we put on other classes are fully functional
too.

6. CONCLUSION
In this paper, we have presented the main meta-classes
of our meta-model for DEVS then we have shown how
they could be enriched and refined with OCL
constraints. Without those constraints, even if the
instantiated models would have been “correct” in terms
of our meta-model, from a DEVS point of view they
would not. OCL can be seen as a super-layer which
cannot work the fundamental layer created by the meta-
model. This super-layer depicts more precisely the
meta-attributes and the meta-relationships between the
meta-classes. Using those two layers was possible
because of the tight links which exist between OCL and

MOF : those links exist in EMF too between Ecore and
EMF OCL.

In a near future, we plan to describe how OCL can
be used as a super-layer for Model To Model
transformations. This is another side of OCL usage:
instead of being used to describe class invariants, it is
used this time to create queries and navigate in the links
between the instances of a meta-model.

REFERENCES

G. Booch, J. Rumbaugh, and I. Jacobson. 1998. “The
unified Modeling Language User Guide”. Addison-
esley.

DEVS Standardization Group, Carleton University
Website, 2012

http://cell-
devs.sce.carleton.ca/devsgroup/?q=node/8

Eclipse 2012 http://www.eclipse.org/
EMF 2012 http://www.eclipse.org/modeling/emf/
S. Garredu, E. Vittori, J.-F. Santucci, D. Urbani, “A

methodology to specify DEVS domain specific
profiles and create profile-based models”, IEEE-
IRI 2011, 3-5 Aug. 2011, Las Vegas, NV, USA,
pp. 353 - 359

OMG 2001. Model Driven Architecture homepage
http://www.omg.org/mda/

OMG 2006. Object Management Group website, OCL
section, http://www.omg.org/spec/OCL/2.0/

OMG 2011. Unified Modeling Language:
Superstructure and infrastructure, version 2.4.1,
August 2011
http://www.omg.org/spec/UML/2.4.1/

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 224

Zeigler B.P., 1989. "DEVS Representation of
Dynamical System", in Proceedings of the IEEE,
Vol.77, pp. 72-80

Zeigler, B. P., H. Praehofer, and T.Kim. 2000. Theory
of Modeling and simulation. 2nd ed. Academic
Press

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 225

