
RETRIEVING THE PERFORMANCE OVERHEAD OF SYNCHRONIZATION
MECHANISMS OF VARIOUS POPULAR OPERATING SYSTEMS

Michael Bogner (a), Johannes Schütz (b), Franz Wiesinger (c)

(a, b, c) University of Applied Sciences Upper Austria,
Hardware/Software Design & Embedded Systems Design

(a) michael.bogner@fh-hagenberg.at, (b) johannes.schuetz@fh-hagenberg.at, (c) franz.wiesinger@fh-hagenberg.at

ABSTRACT
The importance of multi-core processors increases
every day. So multi-threaded programming also
becomes more important. Due to data consistency it is
necessary to synchronize specific parts of the code.
These synchronizing methods cause an overhead during
program execution. This paper analyses this overhead
based on time on different operating systems. On the
one hand, the paper gives a short introduction to the
most important synchronization methods, on the other
hand a test application is introduced to determine the
delay time of each of these methods. All tests are
designed to give real world examples of how much
overhead is produced. Following the given data of the
test application, the delay times of different operating
systems are compared to each other. The paper shows
that some methods perform better on one system and
others perform better on the other systems.

Keywords: synchronization methods, synchronization
performance, multi-threaded performance, decision
support

1. INTRODUCTION

1.1. Motivation
The development of new processors, such as faster
single-core processors and multi-core processors,
resulted in new opportunities in software development.
On multi-core processors it is now possible to achieve
real parallelism of software by running various software
components on different cores.

Alongside these new opportunities also new
difficulties came. One primary difficulty is the
synchronization of software components which run
independently. Synchronization refers to controlling the
application flow of paralleled software components.

There are certain techniques required to perform
synchronization. Because of the various
implementations of these techniques, different overhead
is produced depending on the way of the
implementation.

This paper analyses the overhead on the popular
operating systems Windows XP, Windows 7 and
Ubuntu 10.04 LTS in each case 32-bit edition.

1.2. Objective
The primary objective is to accomplish a comparison of
various synchronization techniques on different
operating systems. This is achieved by measuring the
delay time by modelling real-world usage of the
different techniques and simulating their real-world
behaviour in the test environment.

The paper is divided into two main sections. The
first section gives an overview to the basics of each
synchronization method. Especially the usage of the
methods using Win32-API and using POSIX (IEEE
1003.1-2008, 2008) is described.

The second section describes the test scenario, the
implementation and the analysis of the results. Both,
modelling and simulation of the test scenario is done
with industrial applications in mind.

1.3. Related work

A similar approach of analysing synchronization
techniques can be found in the paper “A new Look at
the Roles of Spinning and Blocking” (Johnson, 2009).
There the trade-off between spinning and blocking
synchronization is analysed and observed that the trade-
off can be simplified by isolating the load control
aspects of contention management.

Another approach can be found in the article
“Multi-threaded Performance” (Asche, 1996) where
strategies for rewriting single-threaded applications to
be multi-threaded applications are discussed. It analyses
the performance of multi-threaded computations over
compatible single-threaded ones in terms of throughput
and response.

2. THE BASICS

2.1. Multi-threaded programming
Multi-threaded programming allows the creation of
parallel software. Since C++ does not provide
mechanisms for multi-threaded applications until C+
+11 (ISO, 2011), operating system functions have to be
accessed. The problem with these functions is that they
are implemented differently on various operating
systems and also provide different results in regard to
performance. C++11 already provides multi-threaded
mechanisms on the basis of POSIX-threads, but there

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 21

mailto:michael.bogner@fh-hagenberg.at
mailto:franz.wiesinger@fh-hagenberg.at
mailto:johannes.schuetz@fh-hagenberg.at

are hardly any compilers or commercial software since
it was released in August 2011.

Multi-threaded code is program code which is
executed simultaneously by the operating system.

On Linux systems these functions are defined by
the POSIX standard and implemented in the kernel. On
Windows systems they are defined by the Win32-API
and also implemented in the kernel.

Because of parallel execution of software
components, which also share resources and
communicate with each other, the control flow is
synchronized. But this synchronized execution also
causes problems in the form of deadlocks, race
conditions, starvation and live-locks. These problems
occur when synchronization methods are used
carelessly.

Further discussions on multi-threaded
programming can be found in (Akhter & Roberts,
2006), (Williams, 2012) and (Johnson, Athanassoulis,
Stoica, & Ailamaki, 2009).
2.2. Why synchronization?
Due to the previously mentioned problems with multi-
threaded programming a synchronization of the control
flow is needed.

Synchronization is always needed when parallel
reading and writing on memory occurs and when a
specific sequence of the control flow has to be
guaranteed. Also synchronization is needed when only
writing parallel on memory but reading sequential. No
synchronization is needed when the memory is written
sequential.

In general, synchronization is always necessary
when several threads write to a specific memory area.

2.3. POSIX-standard
The POSIX-standard defines a consistent standard
system interface for UNIX-systems and Windows-
systems. POSIX is the abbreviation for Portable
Operating System Interface for UNIX. POSIX has been
created to enable portable code for various UNIX-
systems. POSIX includes the PThread-library for
programming multi-threaded applications for UNIX-
systems.

2.4. Synchronization mechanisms
There are various synchronization primitives, depending
on the operating system and the underlying CPU. Each
primitive has its special purpose:

• Critical Sections: atomic areas within a process
for exclusive access.

• Events: signal that a certain state of the
application occurred.

• Wait-functions: blocked waiting for an event
or other signal.

• Mutex: similar to critical sections which work
outside process boundaries.

• Semaphore: similar to mutex with an internal
counter for handling several threads.

• Spin-lock: similar to critical sections but with
short active waiting before passive waiting.

• Interlocked functions: hardware depended
atomic operations which directly execute CPU-
instructions

Further discussions on these techniques can be
found in (Hart, 2010) and (Jones, 2008).

3. TEST SCENARIO

3.1. Introduction
As basis for the tests the Microsoft operating systems
Windows XP and Windows 7, as well as the UNIX
based free operating system Ubuntu 10.04 LTS are
used. Windows XP and Windows 7 have been taken
because they are the most commonly used Microsoft
operating systems in industry. Ubuntu 10.04 LTS is
used because it’s one of the most commonly used UNIX
based operating systems. The test environment is built
with C++ and uses its object oriented capabilities.

3.2. Time measurement
The time measurement is carried out by operating
system internal time measurement operations with high
accuracy. The measurement uses an accuracy of 1 us
which is accurate enough for our real world
measurement approach.

Not the absolute time delay is measured, but the
delay relative to the current CPU-tick count. This
allows a better comparison by disregarding the blur of
each operating system because their similar scheduling
algorithms.

To keep the source code compatible between
Windows and UNIX the Win32-API functions
QueryPerformanceCounter and
QueryPerformanceFrequency were implemented using
gettimeofday (Linux High-Resolution Timer, 2009).
The functions have the same interface like the Win32-
API functions and are implemented using compiler
directives.

3.3. Test flow
Given that the different synchronization techniques
primarily differ in their field of application and
therefore similar in usage also the test flow is structured
similar for each technique.

Basically a test consists of initialization, start of the
components, time measurement and analysis.

1. Initialization: The synchronization
mechanisms and program components are
initialized according to their usage.

2. Execution: The execution and time
measurement are carried out in parallel and are
repeated to generate a more accurate median.

3. Analysis: The median is calculated and written
into an Excel file for further processing.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 22

3.4. Constraints
Given that there are a lot of multi-core processors with
various numbers of cores and clock frequencies and the
different operating systems, it needs to be ensured that
the average result is only exposed to low deviation.

It has to be ensured that the whole program
inclusive all its components is executed on only one
CPU core. This is needed because the switch of the
execution to another CPU core also produces overhead
and to avoid inter-core communication influence.

Also it has to be ensured that the overhead of
context switches between parallel executed components
is minimized. This is done by setting the process
priority to the highest priority available.

4. IMPLEMENTATION

4.1. Introduction
This section describes the architecture and
implementation of the test application for each
synchronization technique.

4.1.1. Software architecture
The architecture is built up from two base classes, one
for the test flow and one for threads. Derived from this
base classes are all classes needed for testing each
synchronization technique. Classes are named after the
technique they are used for with the suffixes ‘Test’ and
‘Thread’ to differentiate between the test flow and the
threads.

Figure 1: Test Classes

Figure 1 shows the class hierarchy of the test
classes. Each test class implements methods for
controlling the test flow and interpreting the test results.

Figure 2: Thread Classes

Figure 2 shows the class hierarchy of the thread classes.
The base class is used for controlling the typical thread
flow such as creating, starting or suspending. The
derived classes implement the specific methods for each
synchronization technique and the control flow. The
threads are implemented as fire-and-forget threads so

there is no need to stop and delete them. They are used
for calculating the overhead of the various
synchronization techniques.

Because the POSIX-standard doesn’t provide an
implementation for manual-reset-events, they are self-
implemented using a conditional variable and a mutex.
There are methods and a structure realized which
implement the functionality.

4.1.2. Test flow
Figure 3 shows the typical test flow with the help of the
base classes. The user creates a new test class and
initializes it. The test class then creates the
corresponding thread class and starts the testing. The
testing is repeated as often the as MEASURES declares.
After the tests are completed the average overhead is
calculated and written to a file for further processing.

Figure 3: Test flow

4.1.3. Choosing processor core and
process priority

As described in section 3.4 the overhead of context
switches and switching to another core needs to be
reduced so the results don’t get falsified.

To reduce the number of context switches the
process priority is set to real-time. To block core
switching the process affinity mask has to be set. It
doesn’t matter on which core the program is executed as
long as it is only one core.

Listing 1 and Listing 2 show the Windows
implementation and respectively the UNIX
implementation of setting process priority and affinity
mask.

Listing 1: Windows Process Priority and Affinity Mask
(without error handling)
HANDLE h_process = GetCurrentProcess();
// set process priority to high
SetPriorityClass(h_process, REALTIME_PRIORITY_CLASS);
// set process affinity mask to only use core 0
SetProcessAffinityMask(h_process, AFFINITY_MASK);

Listing 2: UNIX Process Priority and Affinity Mask
(without error handling)
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(0, &mask);

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 23

// set process priority to high
setpriority(PRIO_PROCESS,0,-20);
//set process affinity mask to only use core 0
sched_setaffinity(0, sizeof(mask), &mask);

4.2. Synchronization techniques
All tests are designed to give real world examples of
how much overhead is produced by the various
techniques and not just laboratory values.

4.2.1. Critical sections
The test flow is shown in Figure 4. The delay time
measured is the delay from entering and respectively
leaving the critical section. This way of measurement is
done because critical sections are used for short sections
only so there is not much overhead.

Figure 4: Measuring Critical Sections

4.2.2. Events
The test flow is shown in Figure 5. After starting the
test a thread is created which initially waits for an event
to continue execution. In the test method this event is
signalled and the thread continues its execution. After
signalling the event the test method waits for an event
signalled by the thread. After continuing execution the
thread sets the event and finishes its work. The delay of
events is calculated by measuring the time from
signalling the event to recognizing the signalled event.
With this method of measurement not only the
execution time of the technique is measured but also the
overhead produced by context switches which gives a
real world example of the overhead.

Figure 5: Measuring Events

4.2.3. Wait-functions
Because there are no directly equivalent functions in the
POSIX-standard this tests measures the delay of
recognizing the exiting of a thread. And also wait-
functions from Win32-API which are used to wait for
signals of mutex, semaphores and events are measures
in the corresponding tests.

Figure 6 shows the test flow of measuring the wait-
functions. After the test is started a thread is created and
started and the test method waits for it to complete. The
time is measured after the thread was started and after
the thread completed execution.

Figure 6: Measuring Wait-functions

4.2.4. Mutex
The test flow of testing mutex is similar to that of
testing critical sections with the difference that there is a
thread to communicate with.

Figure 7 shows the test flow. After starting the test
a mutex is created in blocked mode and a thread is
created and started. The thread opens the mutex and
waits for it to be released. After the thread owns the
mutex the test method waits for it to be released. The
overhead is calculated by measuring the time from
releasing the mutex in the test method and respectively
in the thread and getting to own the mutex in the thread
and respectively the test method.

Figure 7: Measuring Mutex

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 24

4.2.5. Semaphore
The test flow of the semaphore test, shown in Figure 8,
works corresponding to the mutex test with the
difference that more threads are used.

4.2.6. Spin-locks
The test flow of the spin-locks test is corresponding to
that of testing critical sections with the only difference
being spin-locks in testing instead of critical sections.
Because of this nearly equivalent test flow there is now
explicit figure given to illustrate it.

Figure 8: Measuring Semaphore

4.2.7. Interlocked functions
The test flow of measuring interlocked functions, shown
in Figure 9, is very simple. Each function is executed
and its execution time is measured.

Figure 9: Measuring Interlocked Functions

5. ANALYSIS

5.1. General Findings
Through the evaluation of the test results insights could
be gained on how the performance of synchronization
techniques differs on different operating systems. When
viewing the test results it is important to differ between
synchronization techniques, which are influenced by the
operating system and those without. Influenced by the
operating system are mutex, semaphore, events and
wait-functions. Without influence are critical sections,
spin-locks and interlocked functions.

If synchronization does not depended on the
operating system, less overhead can clearly be

recognized. In general, for process-internal
synchronization critical sections should be used and for
calculations interlocked functions if available. Spin-
locks are particularly well suited for synchronization of
small areas which are divided among multiple processor
cores, but produce more overhead if the number of
critical areas exceeds the number of processor cores.

If synchronization depends on the operating
system, wait-functions cause the least overhead because
they only wait for a certain signal, usually in a blocked
manner. Because of the operating system influenced
token system of mutexes they produce more overhead
than critical sections. Semaphores produce similar
overhead to mutex but have even more impact due to
the internal counter. The overhead of events exists of
operating system influence and the expense to signal the
wait-function to continue execution.

Table 1 shows the results of the tests on Windows
7, Windows XP and Ubuntu 10.04 LTS. As it can be
seen clearly, synchronization techniques without the
influence of the operating system are by far, the fastest.
Values of 1us indicate that the measurement is near or
beyond its precision, which doesn’t mind as the high
values are important in real-world applications. That
confirms the knowledge that for process internal
synchronization critical sections and for calculations
interlocked functions should be used. Also recognizable
is that wait-functions produce nearly the same overhead
regardless of whether they are waiting on one or more
signals. Mutex, semaphore and events produce very
different overhead on the several operating systems; this
will be illustrated in the next section.

Looking at the results of operating system
influenced synchronization techniques it can be said,
that semaphores should be avoided when possible. If
synchronization is needed outside of process boundaries
use events or mutex under Windows but try to avoid
events under UNIX.

Table 1: Results Windows XP, Windows 7,
Ubuntu 10.04 LTS (time in us)

Synchronization
technique

Win
7

Win
XP Ubuntu

EnterCriticalSection 1 1 1
Interlocked Decrement 1 1 1
Interlocked Increment 1 1 1
LeaveCriticalSection 1 1 1
Lock Spinlock 1 1 1
ReleaseMutex 21 59 14
ReleaseSemaphore 39 27 11
SetEvent 32 20 51
Unlock Spinlock 1 1 1
WaitForMultipleObjects 18 20 19
WaitForSingleObject 18 19 15
Waiting for Mutex 24 26 42
Waiting for Semaphore 145 105 106

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 25

5.2. Differences between Windows XP,
Windows 7 and Ubuntu 10.04 LTS

In a direct comparison of windows and UNIX it can be
seen that in general the mechanisms require less effort
under UNIX than under Windows.

On all systems critical sections, spin-locks and
interlocked functions only produce such a small
overhead that no difference is recognizable. The same
can be seen by looking at wait-functions, which produce
nearly the same overhead on the several operating
systems. A big difference can be seen when looking at
mutex, which produces more than twice the overhead
when it is released on Windows XP than on Windows 7
or Ubuntu. Acquiring a mutex produces more overhead
on Ubuntu than on Windows XP or Windows 7 which
produce similar overhead. Another big difference can be
seen at semaphores. Acquiring a semaphore on
Windows XP or Ubuntu produces nearly the same
overhead but produces a lot more overhead on Windows
7. This could be explained due to the internal
implementation of the semaphore counter. In general,
acquiring a semaphore produces the most overhead of
all synchronization techniques. Releasing a semaphore
produces very different overhead on all operating
systems. On Windows XP the overhead is twice as
much as on Ubuntu and on Windows 7 three times as
much overhead. Also events produce different overhead
on each operating system. The least overhead is
produced on Windows XP, a little more overhead is
produced on Windows 7 but on Ubuntu the overhead is
more than twice the overhead produced on Windows
XP. This can be explained by looking at the
implementation of the manual-reset-event on Ubuntu
which uses a mutex and a conditional variable, so the
overhead of two mechanisms is included in this test.

In general, it can be seen beside a few exceptions
that Ubuntu operating system produces less overhead
than both Windows operating systems. With the
Windows operating systems it is more complicated,
because some mechanisms produce less overhead on
Windows XP and some on Windows 7.

A visual representation of these differences can be
seen in Figure 10.

Figure 10: Difference between Windows and Linux

CONCLUSION
The performed tests have shown what average overhead
is expected on the various operating systems. Also it
was pointed out that UNIX comparing all mechanism
produces less overhead than Windows operating
systems. It can be seen that each operating system has
its strengths and weaknesses in the implementation of
synchronization techniques.

Based on these measurements it can now be shown
which operating systems are the better option for each
synchronization technique, provided a free selection is
an option. In the field of synchronization Linux would
be in almost every field the better option, except for
events which have less overhead under Windows than
under Linux.

On UNIX-systems it cannot be assumed, despite
the POSIX-standard that the overhead on average is the
same, since different UNIX-derivatives also have
different kernel implementations. But in general it can
be assumed that different Linux-distributions with the
same kernel produce the same overhead.

Due to the different performance of
synchronization techniques it is important to analyse in
advance which mechanisms will be needed to not
slowing down a multi-threaded application
unnecessarily.

REFERENCES
Akhter, S., Roberts, J., 2006. Multi-Core

Programming: Increasing Performance
through Software Multi-threading. Intel Press.

Asche, R. R., 1996. Multithreaded Performance.
Available from: http://msdn.microsoft.com/en-
us/library/ms810437.aspx [accessed April
2012]

Hart, J. M., 2010. Windows System Programming.
Addison-Wesley Professional.

IEEE 1003.1-2008., 2008. 1003.1-2008 - IEEE
Standard for Information Technology -
Portable Operating System Interface
(POSIX(R)). IEEE.

ISO, 2011. ISO/IEC 14882:2011, Information
technonology - Programming languages – C+
+. Available from: www.iso.org [accessed
April 2012]

Johnson, R., et al. 2009. A new look at the roles of
spinning and blocking. In Proceedings of the
Fith International Workshop on Data
Management on New Hardware (DaMoN ’09).
ACM, New York

Jones, M. T., 2008. GNU/Linux Application
Programming. Charles River Media.

Williams, A., 2012. C++ Concurrency in Action:
Practical Mutlithreading. Available from:
http://www.manning.com/williams/ [accessed
April 2012]

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 26

http://www.manning.com/williams/
http://www.iso.org/
http://msdn.microsoft.com/en-us/library/ms810437.aspx
http://msdn.microsoft.com/en-us/library/ms810437.aspx

