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ABSTRACT 
Current simulation software typically provides limited 
types of storage components. But for accurate 
simulation results, warehouse operations have to be 
modeled close to reality. The static design of storage 
components found in current simulation software 
complicates the process of modeling. Especially the 
paths for workers or forklifts through a warehouse have 
to be defined manually. Furthermore, when the user 
makes changes to the warehouse layout he also has to 
adjust the paths. This process is cumbersome, time 
consuming and error prone. In this article we describe a 
warehouse system that can be customized to fit a 
diverse variety of storage types. Our implementation 
drives an automated mechanism, re-calculating paths 
when changes to the layout are made. Besides that, 
different storage types can be combined into one 
warehouse and the whole system may be reconfigured 
at runtime. At last we show the integration of the 
presented concepts into our research platform d3fact. 

 
Keywords: material flow systems, d3fact, simulation, 
warehousing 

 
1. INTRODUCTION 
Simulating a system to understand its behavior for 
certain inputs is a well-established scientific method 
and is broadly used in research as well as in the 
industry. Today’s enterprise simulation software uses 
network-based modeling to implement processes 
occurring in a company. Examples are production 
systems, warehousing systems or inter-company 
logistics. For these areas simulation software typically 
offers a wide range of building blocks where each 
contains a specific function or behavior. The 
combination of those blocks allows easy modeling even 
of complex scenarios. One part of a company that needs 
specific and detailed treatment is the storage area, 
because the question “Where to store this specific part?” 
can get quite complex and hard to answer. Some 
software packages therefore offer special products to 
answer just this one question (Incontrol Simulation 

Software 2012). Thus modeling a plausible, complex 
and customizable storage is an important task. Our 
approach of a generic warehouse component allows us 
to define arbitrary warehouse layouts. This includes the 
combination of different storage types, e.g. block or 
rack storages. Furthermore, the storages can be located 
throughout the whole model. 
When modeling a warehouse the definition of the 
drivable paths of the operating units (OU), e.g. forklifts 
or workers, consumes a major part of the deployed time. 
Especially, these paths have to be adjusted by the 
modeler every time the layout of the warehouse 
changes. In this paper we describe a solution that 
automatically adapts to layout changes and to 
reconfigured warehouse components at runtime. In our 
approach we integrate our generic warehouse 
component into a system for automated motion path 
finding (Fischer et al. 2010). This ensures that the OUs 
can be used throughout the model to transport goods. 
Due to the proposed design it makes no difference 
whether the goods are transported between machines, 
storages or, machines and storages. 
In this paper we present our concept of a generic 
warehouse implementation with integration to a generic 
transportation service utilizing OUs like forklifts or 
workers. Furthermore we briefly lay out the 
implementation into our simulator d3fact. 
 
2. CONCEPTS 
In the following we will briefly describe the scenario 
used throughout this paper and the ideas behind our 
concept. To illustrate one possible application of the 
described components we use the multi-floor building 
example, which was introduced in Fischer et al. (2010). 

The building is a factory laid out on three floors 
with production areas on the top floor, a storage area on 
the middle floor and a distribution center at its base (see 
Figure 1). Forklifts or workers either transport the 
production work pieces. Therefore ramps and stairs 
connect the different floors. The factory produces wheel 
caps. Plastic pellets are pressed into unfinished 
components. These components are then further 
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processed into two different finished products. 
Customers can order the unfinished components (for 
individual processing) and of course the finished 
products. The model supports orders in large quantities 
as well as rush orders in small quantities. Products can 
be stored in large quantities on the middle floor. The 
lower floor is used as a packaging and shipping area. 
Forklifts transport large quantities of orders, while the 
workers can retrieve small quantities for rush orders or 
when parts are found to be missing during 
prepackaging. To model these dynamics the workers 
must have access to every storage area in the model, 
even the interim storages. 

We can now use our warehouse component and its 
adaptive logistics to model the (interim) storage on the 
different floors. On each floor, storage racks are 
located. In the front of most of the machines block 
storages for interim storage can be found. Since we are 
not modeling the different storages as different 
warehouses in terms of our warehouse component, we 
can access every stored work piece from everywhere at 
any time. Using our warehouse component we can even 
easily add, move or remove storage racks at runtime 
without caring about the motion paths of the forklifts or 
workers. These paths are adapted to the new layout 
during the simulation. Furthermore, changes made to 
the set of storage components are also directly adapted. 
This enables rapid prototyping of new ideas and easy 
optimization of storage layouts, even throughout the 
whole factory. 

The warehouse component is based on the concept 
of separation of the storage of actual goods from the 
logistic operations, which are executed on the storage. 
Figure 2 shows the basic structure that results from this 
separation. There are two main components that make 
up a warehouse: The Storage and the Logistic 
Component. The first one holds the goods in a specific 
storage structure, e.g. in a block storage or rack storage. 
The latter handles the input and output operations of the 
warehouse by executing appropriate storage/ retrieval 
operations. These operations can involve OUs moving 
the goods. The paths taken by the OUs to process the 
operation must be set manually in current simulation 
software. Because the manual approach takes a lot of 
time, we propose the usage of an automatic motion 
planning system. 

 

 
3. RELATED WORK 
While there are many applications of warehouse 
simulations the number of related works, addressing 
generic and easy-to-use modeling approaches for 
warehouse simulations, are very scarce. 

Muller (1989) identifies components that need 
special attention when building an automated 
warehouse system. He describes three modeling 
approaches and notes that the modeling complexity 
differs for different objectives and uses. Unlike us he 
does not outline a generic component, which lowers the 
modeling time, but gives general advices what to 
consider when modeling a warehouse for different types 
of simulation results. He identifies, among others, the 
warehouse layout and control logic, which we call 
strategy, as important components to consider when 
modeling a warehouse. 

Gunal et al. (1993) provides a simulation model for 
Automated Storage and Retrieval Systems (AS/RS) and 
gives conclusions about the general use of them. The 
authors found that most of their code they had written to 
simulate a particular warehouse could be reused for 
similar scenarios. Since they are focusing on AS/RS 
they do not provide a solution to change the layout of 
the warehouse. So their generalization is limited to 
characteristics of AS/RS like for example the number of 
aisles or the number of pick-and-drop stations. 

Takakuwa (1996) is also focuses on AS/RS and 
utilizes a component (building block) approach. He 
presents predefined AS/RS and Automated Guided 
Vehicles (AGVs) components that can be combined to 
serve different applications. Due to the focus on AS/RS 
systems with AGVs the presented components for the 
warehouse are not as highly customizable as ours. The 
only layout, which is supported, is the aisle based rack 
layout of AS/RS, which is one building block for which 
some parameters could be set. So the approach of 
splitting a warehouse in different components is done in 
that way that AGVs and conveyors are part of 
warehouses. In our simulator there also exists 
components for AGVs and conveyors, but we do not 
limit their application to warehousing scenarios. 

In contrast to that the problem of automated path 
finding in geometrical space is well researched. Motion 
planning in general is e.g. discussed in (Canny 1988) 
and (Brady 1982). de Berg et al. (2008) describes 
motion planning based on trapezoidal space partition, 
obstacle enlargement to support OUs with a size and 
how to support OUs with rotation. Latombe (1991) also 
addresses motion planning in general but furthermore, 

Figure 1: The Scenario: A Multi-Floor Factory 
Building. 

Figure 2: This Figure shows the Main Structure of the 
Warehouse Component in d3fact. 
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he discusses several problems in depth, one has to deal 
with when creating a motion planning system. This 
includes e.g. how to manage obstacles, multiple moving 
objects and kinematic constraints. The system (Fischer 
et al. 2010) utilized in this paper uses an octree as a 
structure to partition the geometric space. It is based on 
a two dimensional approach by Chen et al. (1997). Also 
there are methods, which especially can be used in 
warehouses. Klaas et al. (2011) describe a knowledge-
based approach on automated way finding for AGVs in 
dynamic warehouse environments (He also utilizes the 
method presented by Fischer et al. (2010)). A real-time 
motion planning method for highly dynamic 
environment with multiple participants is given in 
Vannoy and Xiao (2008). 

 
4. THE WAREHOUSE COMPONENT 
As stated before, the warehouse component is based on 
the concept of separating the storage of the actual goods 
from the logistic operations, which are executed on the 
storage (cp. Figure 2). 
 
4.1. The Storage Component 
The Storage Component defines the storage’s structure. 
One part of the structure is the position of the goods. 
This way, the Storage Component can determine the 
position of each good in space and the distance between 
them. This is needed, to compute the time needed to 
access a good and to proper visualize the storage. 

The other part describes through specific rules 
which positions and therefore which goods are 
accessible. In the following we explain the rule system 
on the example of a block storage. However, it is easy 
to model a specific, e.g. custom storage type, by just 
replacing the rules. The block storage depicted in Figure 
3 has a total space for eight goods, where goods occupy 
four spaces. Now the aforementioned access rules for 
block storages define the space B1 as inaccessible, 
because B2 is occupied. One has to remove the good 
from B2 to access B1. Also it is physically not possible 
to store a good in A2 without an occupied A1 space. 
Therefore, A2 is also inaccessible. 

To implement a new storage type, the structure and 
access rules have to be defined and stored goods of to 
be mapped to certain positions. This makes it very easy 
to customize a warehouse for a specific scenario. 

We further separated the goods from the actual 
space they are stored in (cp. Figure 2). This design 
enables the interchangeability of the storage types. The 
storage type can be modified by simply replacing a 
structure by another one and then remapping the stored 
goods to the new structure. Because the set of stored 
goods is not affected, this can be done even at runtime. 
The user now can start a simulation and change the 
parameters of the warehouse - including the storage 
type - while the simulation continues. This is a big 
advantage for rapid prototyping. Even while a 
simulation is running, a user can play around with the 
storage type and test the performance of each getting a 
direct feedback. 

 
 
4.2. The Logistics Component 
Until now, we only discussed the static structure of our 
warehouse. In this section we will explain how the 
goods are transferred in and out of the Storage 
Component. The Logistics Component represents an 
interface to a storage and executes the input and output 
operations on the storage component. 

The component itself is an abstract state machine 
and represents the generic input/output operation and 
the current state of such an operation. In our 
implementation an operation can be in the three states 
Idle, Searching and Delivering. A separate Logistics 
Procedure contains the logic how a particular good is 
stored or retrieved. The supervising component uses the 
procedure to compute the time needed for a particular 
operation. Such a procedure can e.g. implement the 
usage of OUs like forklifts or workers, represent a 
harbor crane, or an AS/RS. More abstract the procedure 
can even be directly related to the storage type and 
allow the implementation of physical processes like 
gravity for chute based storage types. 

In our scenario of the multi-floor factory the racks 
on the second floor are embedded into the usual 
material flow using procedures that utilize forklifts to 
transport the goods. However, the interim storages in 
the top floor at the machines are embedded into the 
material flow using simple procedures with a static 
timed delay. Furthermore, to let workers from the lower 
floor also “see” and access these storages for rush 
orders, the interim storages have a second logistics 
component with a procedure utilizing the workers. In 
Section “MODEL-WIDE MOTION PLANNING 
INTEGRATION” we will cover the implementation of 
this system into a model wide transportation system in 
detail. 

 

A B C D

1

2

Figure 3: This is a Basic Representation of a Block 
Storage. There are Eight Spaces in this Storage. In Four 
of Them Goods are Stored. 

Figure 4: Several Logistics Access One Storage. Each 
Logistic has its own Production Definitions and 
Strategy. 
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This design of the logistics component has several 
advantages. Due to the decoupling of the logistics from 
the storage, it is easy to change the properties, like the 
storage capacity or type - especially at runtime. 
Furthermore, several logistic components can serve one 
storage component at the same time as you can see in 
Figure 4. In that figure you can see an example of two 
Logistic Components accessing one storage object. This 
enables, e.g. the modeling of several harbor cranes 
unloading a container ship or several forklifts serving 
one storage object at the same time. 

 
To allow the combination of all kinds of storage 

types into one “logical” warehouse we use second-level 
Logistics Components. These components aggregate 
several first-level components and the storage structures 
they are attached to as it can be seen in Figure 5. If an 
input/output-operation has to be executed the second-
level component delegates the operation to the 
appropriate first-level component. This allows the 
integration of the first-level components into the 
material flow as usual and furthermore provides the 
same interface for the overall warehouse. Depending on 
the logistics component responsible for the current 
operation, the state of the second-level component is 
adapted. This ensures parallel operations for the 
different first-level components but also sequential 
operations on a particular logistics component. 
Depending on the state of the first-level components 
one could also choose different strategies, although we 
didn’t explore this further. Besides the structural 
planning, the warehouse strategy usually is the focus of 
optimization in real life. Since changes made to the 
strategy usually do not result in expensive investments, 
it is a usual practice to optimize this part first. A 
strategy in the warehouse component determines a free 
storage space for a good to be stored in the component. 
Due to the volatility of the strategy, it is a separate 
component in the Logistic Component. This allows the 
strategy to be exchanged with customized 
implementations for static models and during runtime. 
It is even possible to have the strategy exchanged 
automatically, e.g. triggered by events generated from 
the simulation. 

 
5. LAYOUT-ADAPTIVE WAREHOUSE 

LOGISTICS 
Utilizing an automated motion planning system to 
access a storage object allows the implementation of 
layout-adaptive warehouse logistics. Up to this point, 
we assumed that the storage structure of a warehouse is 
static. The layout of a warehouse component was 

interchangeable, but the layouts themselves are static. 
This circumstance prevents the optimization of some 
important aspects of warehouses and their layouts, 
especially during a simulation run. A modeler might 
want to try different values for the gap between racks in 
a storage object to optimize space utilization and access 
by forklifts. Goetschalckx and Ratliff (1991) explain an 
approach to calculate optimal lane depths in block 
storage systems and compare their results to traditional 
concepts where all lanes have the same depths. With our 
system, a simulation-based comparison could be easily 
done with several different lane configurations. 

The current, static implementation results in a try-
and-error approach, which makes the optimization of a 
warehouse layout slow and cumbersome. One reason 
for this is, that by changing certain values of a 
warehouse, many other values have to be changed as 
well. For example, when using OUs to access a 
warehouse the Logistic Procedures need to know the 
exact positions of the goods to calculate the time needed 
to move. When the position of a storage object is 
changed or the layout of the scene changes, the motion 
paths to the storage spaces can get compromised. In 
current implementation the modeler has to manually 
adapt the paths, which is a complex and cumbersome 
task. 

With the integration of an automated motion 
planning system, we enable the modeler to freely 
reposition storage structures. This enables him to easily 
test different settings. Furthermore, due to the proposed 
separation of the different components, changing the 
location of a storage object does not affect the stored 
goods or current operation. This means, the modeler can 
adjust the layout during a simulation run, getting direct 
feedback. How we integrated the motion planning into a 
model-wide transportation system is explained in the 
next section. 
 
6. MODEL-WIDE MOTION PLANNING 

INTEGRATION 
An important factor for simulation analysis is realistic 
motion paths through a defined factory layout. 
Typically, these paths have to be modeled manually, 
which is a cumbersome, time consuming and error 
prone task. Besides that, these paths have to be 
manually maintained when changing the layout. 

To solve this problem Fischer et al. (2010) present 
a motion planning framework for automatic route 
calculation in three-dimensional environments. The 
framework is capable of automatic analysis of a given 
factory layout and of computation of motion paths for 
moving objects like fork lifts or workers (cp. Figure 6). 
At first the scene is divided into small cubes, called 
voxel. These voxel then are analyzed for a driving 
surface for a specific moving object, taking into account 
the size and the supported slope. 

A problem arises from the usage of these moving 
objects with a warehouse like the one from our scenario 
(cp. Figure 1). Because the racks are located throughout 
the factory, transportation tasks vary with the location 

Figure 5: A Second-Level Logistics Component 
Delegates Operations to Two First-Level Components. 
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of the object carrying out the task. Taking these 
variations into account are very important for the 
overall performance of such a simulation model. 

To solve this problem we use a supervisor that 
schedules transportation tasks to minimize the overall 
processing time. The system is implemented in a very 
generic way so that we can use it to carry out 
transportations from a machine to particular storage 
space or even to drive housekeeping processes. The 
supervisor is a core component of the model-wide 
transportation system. It collects transportation jobs and 
schedules them to the operation units. A job always 
contains a start and an end position. Based on these 
positions a pick-up and a drop-off time can be 
estimated. These are updated whenever the scheduled 
plan changes due to new or updated jobs. As stated 
earlier, the Logistics Procedures are the interfaces 
between the warehouse logistics and the transportation 
system. While the logistics component itself is 
integrated into the material flow. Consider, that one of 
the machines on the top floor of our example finishes a 
product. Now a worker has to transport the product to a 
rack. The logistics component, connected to the 
machine, receives the information about the finished 
product. It asks the procedure, how long does it take to 
transport the item. The procedure itself issues a new job 
with the start position being the machine and the drop-
off position being the rack to the transportation system. 
To control which OU processes which job, only certain 
OUs capable of handling the issued jobs are linked to 
the Logistics Procedure. The transportation system then 
integrates the job into its plan, considering the different 
available OUs and their positions. The procedure then 
notifies its parent of the estimated completion time, 
which changes its state from Idle to Delivering. When 
the job is finished the component returns into the Idle 
state. 

 
7. IMPLEMENTATION INTO D3FACT 
In our discrete event simulation software d3fact 
(Renken et al. 2011) we use a concept called 
composition and aggregation to remove the need for a 
static type hierarchy in our component definitions. 
While static inheritance type hierarchies are simple to 
understand since it is natural for us humans to arrange 

objects taxonomically (Sommerville 2004, Shaw and 
Garlan 1996), they can become hard to maintain 
because of the limited possibilities for enhancement. 
With the two patterns composition and aggregation a 
type hierarchy can be simplified or completely removed 
(Gregory 2009, Deacon 2005). The benefit of this 
concept is exposed when it is used to combine entirely 
different subsystems into one object. In d3fact an object 
is represented by a dynamic set of “properties”. While 
there are very different approaches to identify a set of 
properties, we use a generic container concept to sustain 
the object-oriented approach common in current 
simulation model architectures. The container type 
provides methods to manage its properties (add, delete, 
get by key, etc.). 

Simple properties like numerical values or strings 
are passive, meaning they do not react to state changes 
and also do not cause them. These properties are 
aggregated (the weak ownership): The container object 
owns them but they are not bound to the life cycle of 
the container object. The “logic” instead, is an active 
property, because it does react to state changes. E.g. 
when an event is caught, the “logic” initiates the 
processing of the event as a perception. Composition 
strongly binds a property to a container, which means 
the property is bound to the container’s life cycle and 
also receives a reference to it. Through this reference 
the property can access the container, the simulation 
core, the model and other objects within the model. 

We are able to attach so called “listeners” to 
various objects and also properties. Through these 
properties, objects are able to get notified when various 
events or changes happen in the simulated system, for 
example when other properties are changed. The 
listener concept allows for handling dynamics in the 
system, as well as implementing measuring figures such 
as throughput of a simulation model. 

The components presented in are implemented 
using this object-oriented approach. The Storage 
Component and the Logistic Component each are 
implemented as logic properties combinable in a 
container object. For commencing operations on the 
storage, the Logistic Component has a reference to the 
Storage Component. While the basic operations are 
composed into these containers, the specific behavior of 
the storage and the logistic is each implemented into a 
separate property. These are used by the logic properties 
to process events that are triggered by other parts of the 
scene. 
 
8. CONCLUSION 
We presented a generic and flexible warehouse 
implementation. The presented concept allows the 
modeling of different types of storages with minimum 
effort. The components can be combined to form 
bigger, logical warehouses. This allows the usage of 
model spanning processes like the fork lifts and workers 
retrieving goods from our example. Through the 
separation of the goods and the storage structure we are 
even able to reconfigure the components at runtime, 

Figure 6: Motion Planning in a Production Plant 
Modeled in d3fact. 
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enabling rapid prototyping. In combination with a 
motion planning component, it is possible to change the 
layout of the warehouse without caring about the 
motion paths for the operating units. 
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