
RECONFIGURABLE AND LAYOUT-AWARE STORAGESYSTEM FOR NETWORK-
BASED SIMULATIONMODELS IN THE SIMULATOR D3FACT

Hendrik Renken(a), Felix A. Eichert(b), Markus Monhof(c)

(a)(b)(c)Business Computing, especially CIM
Heinz Nixdorf Institute
University of Paderborn

Fürstenallee 11
33102 Paderborn, Germany

(a)funsheep@mail.upb.de, (b)eichert@mail.upb.de, (c)monhof@mail.upb.de

ABSTRACT
Current simulation software typically provides limited
types of storage components. But for accurate
simulation results, warehouse operations have to be
modeled close to reality. The static design of storage
components found in current simulation software
complicates the process of modeling. Especially the
paths for workers or forklifts through a warehouse have
to be defined manually. Furthermore, when the user
makes changes to the warehouse layout he also has to
adjust the paths. This process is cumbersome, time
consuming and error prone. In this article we describe a
warehouse system that can be customized to fit a
diverse variety of storage types. Our implementation
drives an automated mechanism, re-calculating paths
when changes to the layout are made. Besides that,
different storage types can be combined into one
warehouse and the whole system may be reconfigured
at runtime. At last we show the integration of the
presented concepts into our research platform d3fact.

Keywords: material flow systems, d3fact, simulation,
warehousing

1. INTRODUCTION
Simulating a system to understand its behavior for
certain inputs is a well-established scientific method
and is broadly used in research as well as in the
industry. Today’s enterprise simulation software uses
network-based modeling to implement processes
occurring in a company. Examples are production
systems, warehousing systems or inter-company
logistics. For these areas simulation software typically
offers a wide range of building blocks where each
contains a specific function or behavior. The
combination of those blocks allows easy modeling even
of complex scenarios. One part of a company that needs
specific and detailed treatment is the storage area,
because the question “Where to store this specific part?”
can get quite complex and hard to answer. Some
software packages therefore offer special products to
answer just this one question (Incontrol Simulation

Software 2012). Thus modeling a plausible, complex
and customizable storage is an important task. Our
approach of a generic warehouse component allows us
to define arbitrary warehouse layouts. This includes the
combination of different storage types, e.g. block or
rack storages. Furthermore, the storages can be located
throughout the whole model.
When modeling a warehouse the definition of the
drivable paths of the operating units (OU), e.g. forklifts
or workers, consumes a major part of the deployed time.
Especially, these paths have to be adjusted by the
modeler every time the layout of the warehouse
changes. In this paper we describe a solution that
automatically adapts to layout changes and to
reconfigured warehouse components at runtime. In our
approach we integrate our generic warehouse
component into a system for automated motion path
finding (Fischer et al. 2010). This ensures that the OUs
can be used throughout the model to transport goods.
Due to the proposed design it makes no difference
whether the goods are transported between machines,
storages or, machines and storages.
In this paper we present our concept of a generic
warehouse implementation with integration to a generic
transportation service utilizing OUs like forklifts or
workers. Furthermore we briefly lay out the
implementation into our simulator d3fact.

2. CONCEPTS
In the following we will briefly describe the scenario
used throughout this paper and the ideas behind our
concept. To illustrate one possible application of the
described components we use the multi-floor building
example, which was introduced in Fischer et al. (2010).

The building is a factory laid out on three floors
with production areas on the top floor, a storage area on
the middle floor and a distribution center at its base (see
Figure 1). Forklifts or workers either transport the
production work pieces. Therefore ramps and stairs
connect the different floors. The factory produces wheel
caps. Plastic pellets are pressed into unfinished
components. These components are then further

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 198

processed into two different finished products.
Customers can order the unfinished components (for
individual processing) and of course the finished
products. The model supports orders in large quantities
as well as rush orders in small quantities. Products can
be stored in large quantities on the middle floor. The
lower floor is used as a packaging and shipping area.
Forklifts transport large quantities of orders, while the
workers can retrieve small quantities for rush orders or
when parts are found to be missing during
prepackaging. To model these dynamics the workers
must have access to every storage area in the model,
even the interim storages.

We can now use our warehouse component and its
adaptive logistics to model the (interim) storage on the
different floors. On each floor, storage racks are
located. In the front of most of the machines block
storages for interim storage can be found. Since we are
not modeling the different storages as different
warehouses in terms of our warehouse component, we
can access every stored work piece from everywhere at
any time. Using our warehouse component we can even
easily add, move or remove storage racks at runtime
without caring about the motion paths of the forklifts or
workers. These paths are adapted to the new layout
during the simulation. Furthermore, changes made to
the set of storage components are also directly adapted.
This enables rapid prototyping of new ideas and easy
optimization of storage layouts, even throughout the
whole factory.

The warehouse component is based on the concept
of separation of the storage of actual goods from the
logistic operations, which are executed on the storage.
Figure 2 shows the basic structure that results from this
separation. There are two main components that make
up a warehouse: The Storage and the Logistic
Component. The first one holds the goods in a specific
storage structure, e.g. in a block storage or rack storage.
The latter handles the input and output operations of the
warehouse by executing appropriate storage/ retrieval
operations. These operations can involve OUs moving
the goods. The paths taken by the OUs to process the
operation must be set manually in current simulation
software. Because the manual approach takes a lot of
time, we propose the usage of an automatic motion
planning system.

3. RELATED WORK
While there are many applications of warehouse
simulations the number of related works, addressing
generic and easy-to-use modeling approaches for
warehouse simulations, are very scarce.

Muller (1989) identifies components that need
special attention when building an automated
warehouse system. He describes three modeling
approaches and notes that the modeling complexity
differs for different objectives and uses. Unlike us he
does not outline a generic component, which lowers the
modeling time, but gives general advices what to
consider when modeling a warehouse for different types
of simulation results. He identifies, among others, the
warehouse layout and control logic, which we call
strategy, as important components to consider when
modeling a warehouse.

Gunal et al. (1993) provides a simulation model for
Automated Storage and Retrieval Systems (AS/RS) and
gives conclusions about the general use of them. The
authors found that most of their code they had written to
simulate a particular warehouse could be reused for
similar scenarios. Since they are focusing on AS/RS
they do not provide a solution to change the layout of
the warehouse. So their generalization is limited to
characteristics of AS/RS like for example the number of
aisles or the number of pick-and-drop stations.

Takakuwa (1996) is also focuses on AS/RS and
utilizes a component (building block) approach. He
presents predefined AS/RS and Automated Guided
Vehicles (AGVs) components that can be combined to
serve different applications. Due to the focus on AS/RS
systems with AGVs the presented components for the
warehouse are not as highly customizable as ours. The
only layout, which is supported, is the aisle based rack
layout of AS/RS, which is one building block for which
some parameters could be set. So the approach of
splitting a warehouse in different components is done in
that way that AGVs and conveyors are part of
warehouses. In our simulator there also exists
components for AGVs and conveyors, but we do not
limit their application to warehousing scenarios.

In contrast to that the problem of automated path
finding in geometrical space is well researched. Motion
planning in general is e.g. discussed in (Canny 1988)
and (Brady 1982). de Berg et al. (2008) describes
motion planning based on trapezoidal space partition,
obstacle enlargement to support OUs with a size and
how to support OUs with rotation. Latombe (1991) also
addresses motion planning in general but furthermore,

Figure 1: The Scenario: A Multi-Floor Factory
Building.

Figure 2: This Figure shows the Main Structure of the
Warehouse Component in d3fact.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 199

he discusses several problems in depth, one has to deal
with when creating a motion planning system. This
includes e.g. how to manage obstacles, multiple moving
objects and kinematic constraints. The system (Fischer
et al. 2010) utilized in this paper uses an octree as a
structure to partition the geometric space. It is based on
a two dimensional approach by Chen et al. (1997). Also
there are methods, which especially can be used in
warehouses. Klaas et al. (2011) describe a knowledge-
based approach on automated way finding for AGVs in
dynamic warehouse environments (He also utilizes the
method presented by Fischer et al. (2010)). A real-time
motion planning method for highly dynamic
environment with multiple participants is given in
Vannoy and Xiao (2008).

4. THE WAREHOUSE COMPONENT
As stated before, the warehouse component is based on
the concept of separating the storage of the actual goods
from the logistic operations, which are executed on the
storage (cp. Figure 2).

4.1. The Storage Component
The Storage Component defines the storage’s structure.
One part of the structure is the position of the goods.
This way, the Storage Component can determine the
position of each good in space and the distance between
them. This is needed, to compute the time needed to
access a good and to proper visualize the storage.

The other part describes through specific rules
which positions and therefore which goods are
accessible. In the following we explain the rule system
on the example of a block storage. However, it is easy
to model a specific, e.g. custom storage type, by just
replacing the rules. The block storage depicted in Figure
3 has a total space for eight goods, where goods occupy
four spaces. Now the aforementioned access rules for
block storages define the space B1 as inaccessible,
because B2 is occupied. One has to remove the good
from B2 to access B1. Also it is physically not possible
to store a good in A2 without an occupied A1 space.
Therefore, A2 is also inaccessible.

To implement a new storage type, the structure and
access rules have to be defined and stored goods of to
be mapped to certain positions. This makes it very easy
to customize a warehouse for a specific scenario.

We further separated the goods from the actual
space they are stored in (cp. Figure 2). This design
enables the interchangeability of the storage types. The
storage type can be modified by simply replacing a
structure by another one and then remapping the stored
goods to the new structure. Because the set of stored
goods is not affected, this can be done even at runtime.
The user now can start a simulation and change the
parameters of the warehouse - including the storage
type - while the simulation continues. This is a big
advantage for rapid prototyping. Even while a
simulation is running, a user can play around with the
storage type and test the performance of each getting a
direct feedback.

4.2. The Logistics Component
Until now, we only discussed the static structure of our
warehouse. In this section we will explain how the
goods are transferred in and out of the Storage
Component. The Logistics Component represents an
interface to a storage and executes the input and output
operations on the storage component.

The component itself is an abstract state machine
and represents the generic input/output operation and
the current state of such an operation. In our
implementation an operation can be in the three states
Idle, Searching and Delivering. A separate Logistics
Procedure contains the logic how a particular good is
stored or retrieved. The supervising component uses the
procedure to compute the time needed for a particular
operation. Such a procedure can e.g. implement the
usage of OUs like forklifts or workers, represent a
harbor crane, or an AS/RS. More abstract the procedure
can even be directly related to the storage type and
allow the implementation of physical processes like
gravity for chute based storage types.

In our scenario of the multi-floor factory the racks
on the second floor are embedded into the usual
material flow using procedures that utilize forklifts to
transport the goods. However, the interim storages in
the top floor at the machines are embedded into the
material flow using simple procedures with a static
timed delay. Furthermore, to let workers from the lower
floor also “see” and access these storages for rush
orders, the interim storages have a second logistics
component with a procedure utilizing the workers. In
Section “MODEL-WIDE MOTION PLANNING
INTEGRATION” we will cover the implementation of
this system into a model wide transportation system in
detail.

A B C D

1

2

Figure 3: This is a Basic Representation of a Block
Storage. There are Eight Spaces in this Storage. In Four
of Them Goods are Stored.

Figure 4: Several Logistics Access One Storage. Each
Logistic has its own Production Definitions and
Strategy.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 200

This design of the logistics component has several
advantages. Due to the decoupling of the logistics from
the storage, it is easy to change the properties, like the
storage capacity or type - especially at runtime.
Furthermore, several logistic components can serve one
storage component at the same time as you can see in
Figure 4. In that figure you can see an example of two
Logistic Components accessing one storage object. This
enables, e.g. the modeling of several harbor cranes
unloading a container ship or several forklifts serving
one storage object at the same time.

To allow the combination of all kinds of storage

types into one “logical” warehouse we use second-level
Logistics Components. These components aggregate
several first-level components and the storage structures
they are attached to as it can be seen in Figure 5. If an
input/output-operation has to be executed the second-
level component delegates the operation to the
appropriate first-level component. This allows the
integration of the first-level components into the
material flow as usual and furthermore provides the
same interface for the overall warehouse. Depending on
the logistics component responsible for the current
operation, the state of the second-level component is
adapted. This ensures parallel operations for the
different first-level components but also sequential
operations on a particular logistics component.
Depending on the state of the first-level components
one could also choose different strategies, although we
didn’t explore this further. Besides the structural
planning, the warehouse strategy usually is the focus of
optimization in real life. Since changes made to the
strategy usually do not result in expensive investments,
it is a usual practice to optimize this part first. A
strategy in the warehouse component determines a free
storage space for a good to be stored in the component.
Due to the volatility of the strategy, it is a separate
component in the Logistic Component. This allows the
strategy to be exchanged with customized
implementations for static models and during runtime.
It is even possible to have the strategy exchanged
automatically, e.g. triggered by events generated from
the simulation.

5. LAYOUT-ADAPTIVE WAREHOUSE

LOGISTICS
Utilizing an automated motion planning system to
access a storage object allows the implementation of
layout-adaptive warehouse logistics. Up to this point,
we assumed that the storage structure of a warehouse is
static. The layout of a warehouse component was

interchangeable, but the layouts themselves are static.
This circumstance prevents the optimization of some
important aspects of warehouses and their layouts,
especially during a simulation run. A modeler might
want to try different values for the gap between racks in
a storage object to optimize space utilization and access
by forklifts. Goetschalckx and Ratliff (1991) explain an
approach to calculate optimal lane depths in block
storage systems and compare their results to traditional
concepts where all lanes have the same depths. With our
system, a simulation-based comparison could be easily
done with several different lane configurations.

The current, static implementation results in a try-
and-error approach, which makes the optimization of a
warehouse layout slow and cumbersome. One reason
for this is, that by changing certain values of a
warehouse, many other values have to be changed as
well. For example, when using OUs to access a
warehouse the Logistic Procedures need to know the
exact positions of the goods to calculate the time needed
to move. When the position of a storage object is
changed or the layout of the scene changes, the motion
paths to the storage spaces can get compromised. In
current implementation the modeler has to manually
adapt the paths, which is a complex and cumbersome
task.

With the integration of an automated motion
planning system, we enable the modeler to freely
reposition storage structures. This enables him to easily
test different settings. Furthermore, due to the proposed
separation of the different components, changing the
location of a storage object does not affect the stored
goods or current operation. This means, the modeler can
adjust the layout during a simulation run, getting direct
feedback. How we integrated the motion planning into a
model-wide transportation system is explained in the
next section.

6. MODEL-WIDE MOTION PLANNING

INTEGRATION
An important factor for simulation analysis is realistic
motion paths through a defined factory layout.
Typically, these paths have to be modeled manually,
which is a cumbersome, time consuming and error
prone task. Besides that, these paths have to be
manually maintained when changing the layout.

To solve this problem Fischer et al. (2010) present
a motion planning framework for automatic route
calculation in three-dimensional environments. The
framework is capable of automatic analysis of a given
factory layout and of computation of motion paths for
moving objects like fork lifts or workers (cp. Figure 6).
At first the scene is divided into small cubes, called
voxel. These voxel then are analyzed for a driving
surface for a specific moving object, taking into account
the size and the supported slope.

A problem arises from the usage of these moving
objects with a warehouse like the one from our scenario
(cp. Figure 1). Because the racks are located throughout
the factory, transportation tasks vary with the location

Figure 5: A Second-Level Logistics Component
Delegates Operations to Two First-Level Components.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 201

of the object carrying out the task. Taking these
variations into account are very important for the
overall performance of such a simulation model.

To solve this problem we use a supervisor that
schedules transportation tasks to minimize the overall
processing time. The system is implemented in a very
generic way so that we can use it to carry out
transportations from a machine to particular storage
space or even to drive housekeeping processes. The
supervisor is a core component of the model-wide
transportation system. It collects transportation jobs and
schedules them to the operation units. A job always
contains a start and an end position. Based on these
positions a pick-up and a drop-off time can be
estimated. These are updated whenever the scheduled
plan changes due to new or updated jobs. As stated
earlier, the Logistics Procedures are the interfaces
between the warehouse logistics and the transportation
system. While the logistics component itself is
integrated into the material flow. Consider, that one of
the machines on the top floor of our example finishes a
product. Now a worker has to transport the product to a
rack. The logistics component, connected to the
machine, receives the information about the finished
product. It asks the procedure, how long does it take to
transport the item. The procedure itself issues a new job
with the start position being the machine and the drop-
off position being the rack to the transportation system.
To control which OU processes which job, only certain
OUs capable of handling the issued jobs are linked to
the Logistics Procedure. The transportation system then
integrates the job into its plan, considering the different
available OUs and their positions. The procedure then
notifies its parent of the estimated completion time,
which changes its state from Idle to Delivering. When
the job is finished the component returns into the Idle
state.

7. IMPLEMENTATION INTO D3FACT
In our discrete event simulation software d3fact
(Renken et al. 2011) we use a concept called
composition and aggregation to remove the need for a
static type hierarchy in our component definitions.
While static inheritance type hierarchies are simple to
understand since it is natural for us humans to arrange

objects taxonomically (Sommerville 2004, Shaw and
Garlan 1996), they can become hard to maintain
because of the limited possibilities for enhancement.
With the two patterns composition and aggregation a
type hierarchy can be simplified or completely removed
(Gregory 2009, Deacon 2005). The benefit of this
concept is exposed when it is used to combine entirely
different subsystems into one object. In d3fact an object
is represented by a dynamic set of “properties”. While
there are very different approaches to identify a set of
properties, we use a generic container concept to sustain
the object-oriented approach common in current
simulation model architectures. The container type
provides methods to manage its properties (add, delete,
get by key, etc.).

Simple properties like numerical values or strings
are passive, meaning they do not react to state changes
and also do not cause them. These properties are
aggregated (the weak ownership): The container object
owns them but they are not bound to the life cycle of
the container object. The “logic” instead, is an active
property, because it does react to state changes. E.g.
when an event is caught, the “logic” initiates the
processing of the event as a perception. Composition
strongly binds a property to a container, which means
the property is bound to the container’s life cycle and
also receives a reference to it. Through this reference
the property can access the container, the simulation
core, the model and other objects within the model.

We are able to attach so called “listeners” to
various objects and also properties. Through these
properties, objects are able to get notified when various
events or changes happen in the simulated system, for
example when other properties are changed. The
listener concept allows for handling dynamics in the
system, as well as implementing measuring figures such
as throughput of a simulation model.

The components presented in are implemented
using this object-oriented approach. The Storage
Component and the Logistic Component each are
implemented as logic properties combinable in a
container object. For commencing operations on the
storage, the Logistic Component has a reference to the
Storage Component. While the basic operations are
composed into these containers, the specific behavior of
the storage and the logistic is each implemented into a
separate property. These are used by the logic properties
to process events that are triggered by other parts of the
scene.

8. CONCLUSION
We presented a generic and flexible warehouse
implementation. The presented concept allows the
modeling of different types of storages with minimum
effort. The components can be combined to form
bigger, logical warehouses. This allows the usage of
model spanning processes like the fork lifts and workers
retrieving goods from our example. Through the
separation of the goods and the storage structure we are
even able to reconfigure the components at runtime,

Figure 6: Motion Planning in a Production Plant
Modeled in d3fact.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 202

enabling rapid prototyping. In combination with a
motion planning component, it is possible to change the
layout of the warehouse without caring about the
motion paths for the operating units.

REFERENCES
Brady, M., 1982. Robot motion: Planning and control.

The MIT Press.
Canny, J., 1988. The complexity of robot motion plan-

ning. The MIT Press.
Chen, D.Z. and Szczerba, R.J. and Uhran, J., 1997. A

framed-quadtree approach for determining
Euclidean shortest paths in a 2-D environment.
IEEE Trans. Robotics Automat. 13(5):. 668 – 681.

de Berg, M. and van Kreveld, M. and Cheong, O. and
Overmars, M., 2008. Computational Geometry:
Algorithms and Applications. Springer-Verlag
Berlin Heidelberg.

Deacon, J., 2005. Object-Oriented Analysis and Design.
ADDISON-WESLEY.

Fischer, M. and Renken, H. and Laroque, C. and
Schaumann, G. and Dangelmaier, W., 2010.
Automated 3D-Motion Planning for Ramps and
Stairs in Intra-Logistics Material Flow
Simulations. Proceedings of the 2010 Winter
Simulation Conference (WSC 2010). IEEE,
Omnipress, 1648 – 1660.

Goetschalckx, M. and Ratliff, H., 1991. Optimal lane
depths for single and multiple products in block
stacking storage systems. IIE TRANSACTIONS,
23, no. 3, 245–258.

Gregory, J., 2009. Game engine architecture. A K
Peters, first ed.

Gunal, A. and Grajo, E. and Blanck, D., 1993.
Generalization of an AS/RS model in
SIMAN/CIMENA. Proceedings of the 25th
conference on Winter simulation. ACM, 857–865.

Incontrol Simulation Software, 2012. Enterprise
Dynamics Products. Available from: http://www.
incontrolsim.com/en/products.html [April, 2012].

Klaas, A. and Laroque, C. and Dangelmaier, W. and
Fischer, M., 2011. Simulation aided, knowledge
based routing for AGVs in a distribution
warehouse. Proceedings of the 2011 Winter
Simulation Conference. IEEE, 1668– 1679.

Latombe, J.C., 1991. Robot motion planning. Springer.
Muller, D., 1989. AS/RS and warehouse modeling.

Proceedings of the 21st conference on Winter
simulation. ACM, 802–810.

Renken, H. and Fischer, M. and Laroque, C., 2011. An
Easy Extendable Modeling Framework for
Discrete Event Simulation Models and their
Visualization. Proceedings of The 25th European
Simulation and Modelling Conference -
ESM’2011.

Shaw, M. and Garlan, D., 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice
Hall.

Sommerville, I., 2004. Software Engineering. Addison
Wesley, seventh ed.

Takakuwa, S., 1996. Efficient module-based modeling
for a large-scale AS/RS-AGV system.
Proceedings of the 28th conference on Winter
simulation. IEEE Com- puter Society, 1141–1148.

Vannoy, J. and Xiao, J., 2008. Real-time adaptive
motion planning (ramp) of mobile manipulators in
dynamic environments with unforeseen changes.
Robotics, IEEE Transactions on, 24, no. 5, 1199–
1212.

AUTHORS BIOGRAPHY
Hendrik Renken studied computer science at the
University of Paderborn, Germany. Since late 2007 he
is a research assistant at the Heinz Nixdorf Institute. His
research interests are multi-domain simulation engines
and in particular material flow simulation models.
Felix A. Eichert studies business computing at the
University of Paderborn, Germany. Since early 2008 he
is a student assistant at the Heinz Nixdorf Institute. In
his bachelor thesis, he designed the warehouse
component described in this paper.
Markus Monhof studies business computing at the
University of Paderborn, Germany. Since mid 2011 he
is a student assistant at the Heinz Nixdorf Institute. He
helps to extend the simulator d3fact to new problem
domains.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 203

