
PROJECT MANAGEMENT GAMES USING HIGH LEVEL ARCHITECTURE 
 

 

Ronald Ekyalimpa
(a)

,  Simaan Abourizk
(b)

, Yasser Mohamed
(c)

, Farzaneh Saba
(d)

 

 

 
(a)

 PhD Candidate, Dept. of Civil and Environmental Engineering, 

Univ. of Alberta, Edmonton, Alberta, Canada T6G 2G7. 
 (b)

 Professor, Dept. of Civil and Environmental Engineering, Univ. of 

Alberta, Edmonton, Alberta, Canada T6G 2G7. 
 (c)

 Professor, Dept. of Civil and Environmental Engineering, Univ. of 

Alberta, Edmonton, Alberta, Canada T6G 2G7. 
(a)

 PhD Graduate, Dept. of Civil and Environmental Engineering, 

Univ. of Alberta, Edmonton, Alberta, Canada T6G 2G7. 

 
(a)

rekyalimpa@ualberta.ca, 
(b)

 abourizk@ualberta.ca, 
(c)

 yaly@ualberta.ca, 
(d)

 fsaba@ualberta.ca 

 

 

 

 

ABSTRACT 

Numerous simulation games have been developed since 

the 60’s by researchers within the construction domain. 

These games were developed for a specific purpose and 

possess a unique implementation strategy and structure. 

This paper summarizes some of these games and further 

discusses a subset of them, particularly those developed 

within the COnstruction SYnthetic Environment 

(COSYE). A prototype for a game development 

framework was proposed based on review of these 

games. It is proposed to implement this prototype 

within a distributed simulation environment to ensure 

consistency, interoperability, and reusability of the 

components and the game as a whole. COSYE is 

chosen to provide such an environment because it has 

the necessary ingredients for developing and 

maintaining such a prototype. The paper further 

discusses some concepts of distributed simulation, the 

features that exist within the COSYE framework, and 

the standards on which the COSYE framework operates 

i.e. High Level Architecture (HLA). 

 

Keywords: Simulation games, prototype, COSYE, HLA 

 

1. INTRODUCTION 

The pace of the construction industry has traditionally 

been driven by the needs of its clients and national and 

global economies in general. This makes it a highly 

dynamic industry. Lately, projects within this industry 

have significantly evolved with respect to complexity 

and size.  They are generally larger and more complex, 

demanding more refined competencies, with respect to 

cost and time efficiency, safety and quality from the 

people executing them. As a result, average recent 

university graduates generally find it challenging to 

match this required skill set, especially if they are a 

product of a program that utilizes traditional methods of 

classroom instruction. Moreover, the industry is highly 

competitive at an individual and company level.  

 An effective way of resolving such issues is to  use 

methods complementary to traditional ones. Examples 

of these methods include site visits, the use of 

simulation games, the use of case studies and guest 

lectures from experts in the industry. Simulation games 

have a lot of potential to develop the desired 

competencies amongst students because they create a 

virtual construction site environment with which the 

students interact as though they were on a real job site. 

Also, the implementation of these games does not 

demand significant logistical requirements compared to 

the other methods, and yet, the players experience 

sufficient training time and the desired benefits are 

realized. Therefore, the use of simulation games in 

construction education needs to be given more emphasis 

and the tools required to support their use must be up-

to-date and easy-to-use.         

 This paper reviews the structure and development 

of past simulation games with the objective of deriving 

common features among them from which a generic 

game development prototype can be proposed. It is 

envisaged that this prototype will simplify the 

development process of future games. Although the 

prototype can be applied in any suitable environment 

while developing a game, the authors base their 

discussion in this paper on an environment that supports 

the development and execution of distributed simulation 

systems, COSYE, developed at the University of 

Alberta by the second and third authors of this paper.  

 

2. CONSTRUCTION MANAGEMENT GAMES 

A review of the various simulation-based games that 

have been implemented in the past within the 

construction domain reveals a significant degree of 

diversity with respect to their structure, internal 

processing algorithms and overall purpose. Nonetheless, 

they can be placed within two broad categories: process 

centric games and non-process centric games. 

 Process centric games are those that model site-

level operations using typical process interaction 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 180

mailto:rekyalimpa@ualberta.ca
javascript:popup_imp('/imp/compose.php',700,650,'to=%5C%22Dr.Simaan%20AbouRizk%5C%22%20%3Cabourizk%40ualberta.ca%3E');
mailto:yaly@ualberta.ca
mailto:fsaba@ualberta.ca


modeling approaches. They involve a lot of resource 

manipulations and event scheduling (which replicate the 

complex logical sequence of project activity execution). 

The purpose of such games is to teach students how to 

allocate resources as construction progresses, and how 

to deal with other uncertain events that are typical of 

construction  projects such as labor strikes, equipment 

failures, bad weather and other unforeseen poor site 

conditions. These games develop student skill and 

knowledge regarding how to effectively keep projects in 

control amidst such unfavorable circumstances. 

Examples of games that have been developed in this 

category include: a foundation excavation game (Au 

and Parti 1969), CONSTRUCTO (Halpin 1976), a road 

construction game (Harris et al. 1977), the muck game 

(Al-Jibouri and Mawdesley 2001) and a tunneling game 

(Ekyalimpa et al. 2011). CONSTRUCTO was 

developed by Halpin in 1976 to teach students how to 

deal with unforeseen site conditions such as labor 

shortages and unfavorable weather conditions while 

executing a construction project. It was also aimed at 

teaching students how to manage resources on their 

projects from a constrained global resource pool. The 

foundation game developed by Au and Parti in 1969 

was focused on teaching students how to deal with the 

dynamics and uncertainties associated with building 

foundation excavation and construction. The muck 

game was introduced by Al-Jibouri in 2001 and its main 

purpose was to teach students the concepts involved in 

earth-moving operations.  

 The non-process centric games focus their efforts 

on teaching students the different concepts of bidding 

strategies, cost estimation, scheduling and dispute 

resolution. Examples of games within this category 

include Construction management game (Au and Parti 

1969), SUPERBID (AbouRizk 1993), STRATEGY 

(McCabe et al. 2000), equipment replacement game 

(Nasser 2002), virtual construction negotiation 

(Yaoyuenyoung et al. 2005), Easy Plan (Hegazy 2006), 

and MERIT (Wall and Ahmed 2006). Different versions 

of superbid have been developed since the release of the 

original version by AbouRizk. These have adapted 

different implementation approaches and have had some 

additions made to them, such as the virtual player 

implemented in a version of superbid within COSYE by 

AbouRizk et al (2010).  Details of this version of the 

game, along with other games implemented within 

COSYE, will be discussed in this paper.   

 In their paper, AbouRizk et al (2010) pointed out 

that with the advances in computing technologies, most 

of the games discussed above have been rendered 

obsolete as they can no longer be implemented on 

today’s computers. This could be attributed to the static 

nature of the methodologies that were used to 

implement these games.  Nonetheless, there are a 

number of insights to be gained from reviewing the 

different implementation strategies used for developing 

the games. These approaches can be summarized as 

those that were: (1) operated on standalone computers, 

(2) implemented in a database-server environment, (3) 

developed in a web-based environment and (4) 

implemented in a distributed simulation environment 

like COSYE. For a game setting, a file server, web-

based server and distributed simulation approaches offer 

more implementation flexibility and are acceptable. 

This issue will be further discussed in the conceptual 

framework for game development.   

 

3. DISTRIBUTED SIMULATION USING 

COSYE AND THE HLA 

COSYE is an application programming interface which 

supports the development of large-scale distributed 

synthetic simulation environments. It is based on the 

High Level Architecture (IEEE 1516) standard for 

developing large-scale models (AbouRizk and Hague 

2009) and facilitates the creation of separate simulation 

components (also known as federates) and their 

integration into a single simulation system (known as a 

federation) during execution.  

 The HLA standards are guidelines prescribed by 

the Institute of Electronic and Electrical Engineers 

(IEEE) to ensure that distributed simulation systems are 

developed in an interoperable, reusable and consistent 

manner. The HLA standard is comprised of three 

components, namely: the rules, the Object Model 

Template (OMT) and the Interface specifications.  

A typical distributed simulation system will be 

represented by one federation and a number of 

federates. A federation can be defined as a virtual 

space/environment which represents a distributed 

simulation system. It has different components 

(federates) that are responsible for its simulation 

behavior. A federate on the other hand is a piece of 

software with the capability of participating in a 

federation execution. Figure 1.0 shows a schematic 

layout of a distributed simulation system with the 

different components. Some of these components will 

be explained in detail. The COSYE framework provides 

the services required to create federates and integrates 

them into an executable federation. COSYE has 

different components which facilitate developers to 

achieve this. They include: a Run Time Infrastructure 

(RTI), an OMT editor, a federate host, and a federate 

form.  

 

3.1. The Run-Time Infrastructure (RTI) 

The RTI is software that hosts the virtual distributed 

simulation environment referred to as a federation. It 

also manages communications between the different 

components (federates) within this virtual environment, 

along with other features such as the object instances 

and messages within the environment. COSYE has its 

own RTI which has the ability to support multiple 

instances of federations. Communication exchanges 

between the components are not direct, but rather, to the 

RTI, which delivers these messages in the right order 

and right time. A message thread sent from the source 

to a receipt is referred to as a call while a response to 

such messages is referred to as a callback.  

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 181



 The exchange of messages between the RTI and 

federate is accomplished in the HLA and COSYE 

through the federateambassador and RTIambassador, 

which reside within each federate (as shown in Figure 

1.0). A federate ambassador and RTI ambassador are 

classes defined within the Cosye.Hla.Rti library. These 

classes have methods which permit federate developers 

to make calls and receive call-backs. In COSYE, a 

federate ambassador is created within a federate by 

generating a new instance of the federate ambassador 

class as in any object-oriented programming 

development (using the new keyword). The RTI 

ambassador, on the other hand, is created when the 

federate successfully connects to the RTI server.  This is 

accomplished by invoking the connect method of the 

federate ambassador which takes the location of the RTI 

(i.e. its URL) as a string parameter.  If the call is 

successful, the method returns a reference to an object 

of type RTI ambassador that is stored for later use; 

otherwise an appropriate exception is thrown. 
 

Standard HLA & 

custom methods FedAmb

RTIAmb

R
T

I

RTI calls

RTI callbacks Federaten-1

Federaten

Federate 1

FEDERATION EXECUTION

Event handle 

(event à method)

Figure 1: Conceptual Model of a Typical Federation 

Execution in COSYE 

 

    All this is done before the federate joins any 

federation. Once these exist within the federate, it can 

send a message requesting to create a federation, join it, 

execute, resign and destroy the federation. Most 

communications from the RTI are received by the 

federate ambassador which in turn translates them into 

respective methods in which user defined 

code/algorithms are implemented. It is within these 

methods that a developer defines the overall behavior of 

the federate. The RTI ambassador has methods that 

facilitate a federate to send information/requests to the 

RTI.     

 

3.2. The COSYE OMT Editor and the Federate 

Object Model (FOM) 

The HLA standard stipulates that an OMT is comprised 

of a Federate Object Model (FOM) and a Simulation 

Object Model (SOM). The FOM documents the object 

model for the federation while the SOM documents a 

federate’s object model. The COSYE framework 

provides an OMT editor as a plugin within visual 

studio. This is added to visual studio after referencing 

the Cosye.Hla.OMT library within visual studio. The 

OMT editor allows developers to visually create and 

edit their FOMs or SOMs with ease. Figure 2.0 shows a 

screen shot of an FOM developed in visual studio. 

The FOM is a document that specifies all the 

objects that will participate in a given federation 

execution. It represents a structured way for developers 

to specify the objects and interactions that exist within 

the federation. This is achieved through the use of the 

concept of a class in the Dot Net sense. The HLA 

provides for two types of classes; those that represent 

object classes, and those that represent interaction 

classes. Objects represent instances which persist in the 

simulation while interactions represent messages and do 

not persist during simulation execution. 

 

 
Figure 2: Screen Shot of the COSYE OMT Editor in 

Visual Studio 

 

 The FOM is structured in such a way that allows 

for the definition and storage of these classes and their 

associated fields. For the object classes, the FOM 

documents the name of the class and its attributes. The 

FOM includes specifications of the interaction class 

name and its parameters. However, lacking within the 

FOM are the methods for these classes. In the FOM, the 

developer can also specify the data type of the attributes 

and parameters, permission to publish or subscribe to 

them and the nature of delivery of messages about these 

attributes during the simulation. Every federation must 

have one FOM that is documented according to the 

Object Model Template (OMT), as stipulated in the first 

rule within the HLA standards (Kuhl et al. 2000).  

 

3.3. The COSYE Federate Form, Federate Host and 

Test Federate 

The federate form is a component that exists within 

COSYE in the Cosye.Hla.Framework namespace. It can 

be added to a visual studio development project as an 

inherited form. A sample of a federate windows form 

within visual studio is displayed in Figure 3. 

 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 182



 
Figure 3: COSYE Federate Form in Visual Studio 

  

 This form can be used to develop a federate quickly 

without the need of several lines of code to implement 

its participation within a federation execution.  

 The federate host is a component that can be found 

within the Cosye.Hla.Framework name space in 

COSYE. This component serves as a container in which 

different federates participating in a federation 

execution are put together to provide a simple user 

interface. Figure 4 shows a screen shot of a sample 

federate host in COSYE. 

 

 
Figure 4: Federate Host (Adapted from AbouRizk 2011) 

  

 The federate host can also be used as an interface 

for (1) starting and shutting down the RTI (2) inputting 

specifications required for connecting to the RTI (i.e. 

the RTI host name, the port number and the name of the 

RTI) and (3) receiving inputs for creation of a 

federation (i.e. the federation name and the FOM 

location). The user can add or remove federates from 

the federate host using the respective buttons. The 

federation can also be created, executed and terminated 

within this interface. 

 The test federate is another component within 

COSYE that is used by both inexperienced and 

experienced developers. The former use it as a tool that 

facilitates the fast and easy creation, execution and 

destruction of a federation in COSYE. It helps them 

appreciate the manner in which COSYE manages the 

various services that the HLA provides for, such as 

management of: a federation, time, objects, ownership 

and declaration. The latter users apply it for verifying 

their federation development process. The test federate 

can also be used for verifying the behavior of the RTI. 

Figure 5 is a screen shot of a sample test federate within 

COSYE. 

     

 
Figure 5: The Test Federate Interface in COSYE 

 

The test federate traces a log of all the calls and 

callbacks made within the federation execution, along 

with the exceptions thrown.   

 

4. A REVIEW OF SIMULATION GAMES 

DEVELOPED IN COSYE 

Three games that were previously developed within 

COSYE are reviewed within this section with the 

objective of establishing features that are common to 

them. These features are then used as a basis for 

proposing the generic game development prototype for 

the construction domain. 

    

4.1. The Crane Lift Planning Game 

A “Mobile crane lift planning game” is the first of the 

three COYSE games to be discussed in this paper.  The 

objective of this game is to teach students the concepts, 

knowledge and skills necessary to analyze and plan 

heavy lift operations on a congested site using mobile 

cranes.  

 

 
Figure 6: Scenario Set-up Federate in the Crane Lift 

Planning Game (Adapted from Ekyalimpa and Fayyad 

2010)  

 

 The game comprised of three core federates, 

namely: a scenario-setup federate (developed by 

Ekyalimpa and Fayyad 2010), a player federate 

(developed by Jangmi et al. 2010) and an operations 

simulator (developed by Gonzales et al. 2010). Figures 

6 and 7 show screen shots of interfaces for the scenario-

setup federate and the player federate. 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 183



 

 
Figure 7: Player Federate in the Crane Lift Planning 

Game (Adapted from Jangmi et al. 2010) 

 

 In this game, an industrial construction site is 

assumed in which modules have to be lifted into place 

using mobile cranes. Modules arrive from a 

hypothetical assembly yard and would either be 

temporarily put aside while waiting to be lifted into 

position, or they would be offloaded into storage in case 

the predecessor modules have not yet been installed. 

This is because not all the modules arrive to site in the 

order in which they are to be erected on site. A finite 

number of mobile cranes with specified lift capacities 

were to be assigned to lift modules  the designed 

location. In some cases, a mobile crane would have to 

be moved from one location to another in order to 

complete a lift. Once a lift plan has been generated 

(speculating the modules to be lifted, the cranes to lift 

them and the positions in which the lifts should be 

executed), this information is passed on to an operations 

simulator that executes the plan within a simulation 

environment. From the simulation, we get an indication 

of the time taken to complete the entire operation, 

including vital statistics such as the utilization of the 

crane resources and the time consumed before modules 

are erected (waiting time). This is done in cycles 

(module arrivals lift plan generation and lift plan 

execution).  

 This game was developed as a term project in an 

advanced simulation course that makes use of the 

COSYE environment for simulation implementations. 

The game is comprised of five components (federates), 

namely: administrator, player, operations, visualization 

and emissions. The visualization and emissions 

federates are not discussed in this paper. A conceptual 

model for the game implementation (federation) is 

shown in Figure 8. 

 

1. Modules attributes: arrival 

date to site, weight

2. Cranes attributes: capacity, 

site availability dates

Work load & resource options: 

Modules to be lifted, options of 

cranes to use and possible 

location options for crane lifts

Lift orders: Modules to be lifted, 

cranes to use and selected crane lift 

location

Operations Federate

Player Federate

Administrator Federate

Lift plan execution efficiency: 

modules lifts, modules awaiting 

lift, crane utilization, module 

waiting time, module file length

B

B

B

Stored in 

database

Figure 8: Interaction between Federates in the Crane 

Lift Planning Game 

 

4.2. The Bidding Game (with a Virtual Player) 

Different versions of the bidding game have been 

developed since the release of the original version, 

SUPERBID, by AbouRizk in 1993. However, the 

version discussed in this section is that developed 

within the COSYE framework by AbouRizk et al 

(2010). The primary purpose of the bidding game was 

to teach students bidding strategies. This version of the 

game comprised of six federates (shown in Figure 9). 

At the beginning of the game, a federation is created by 

the administrator federate, into which it subsequently 

joins. If there is a need for a virtual player, the 

administrator federate starts up and enables an instance 

of it to join the federation. Player federates then join the 

federation with each player representing a unique 

general contractor. As each player federate joins the 

execution, an instance of each is created. A bank 

account is created for each player with an initial amount 

of money in it, which is randomly sampled from a 

statistical distribution. The market federate joins the 

federation execution creating an instance of a market in 

which projects and sub-contractors will exist for the 

general contractor to pick from as the game advances. 

The player makes a decision regarding which projects to 

bid on, secures a bond for the bid of interest, selects 

subcontractors, and then submits its bid, which includes 

their profit margin. As the game advances, the project is 

awarded to the contractor that submitted the lowest bid. 

The winning contractor is the one who creates the most 

value (has the most money in their account) at the end 

of the game. The performance of the player in each 

period is dependent on the quality of the subcontractors 

that the contractor chooses to use, their past experience 

in building similar projects and the location of these 

projects relative to the contractor’s location. 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 184



Projects & their attributes: Type, 

location, city index, budget & 

duration

Awarded projects

Project simulator 

Federate

Player Federate

Administrator Federate

Update trade ratings 

& projects

Stored in 

database

Market Federate

Knowledge Bank Federate

Bank Federate

Debits & Credits

Projects for bid

Balance, bonding, 

loans

Awarded projects, 

trade ratings

Projects for bid, 

trade contractors

Request for loans 

& bonds

Request for 

market 

information

Received  

market 

information

Debit for player 

requested 

information

Projects for bid

Projects bidded, 

selected trades

Figure 9: Interaction between Federates in the Bidding 

Game 

 

4.3. The Tunneling Game 

The tunneling game was built off of an existing 

tunneling federation. This federation was initially 

developed to support the planning and analysis of a 

tunnel to be built, or one already in construction. 

Incorporating gaming features into the federation was 

possible because the HLA and COSYE developments 

facilitate extensibility while maintaining their inter-

operability and reusability characteristics. One 

component (federate) was developed from scratch to 

host a number of gaming facilities, namely: the user 

interface, the reporting facilities and the scenario 

generator. Figure 10 presents a screen shot of this 

federate. 

 

 
Figure 10: User Interface of the Tunneling Game 

(Adapted from Ekyalimpa et al. 2010)  

 

 Making use of the existing federate simulating an 

actual tunnel construction, the game created an instance 

of a tunnel which the students would be expected to 

construct. Attributes of the tunnel as such the length, 

depth, soil conditions, diameter, budget and schedule, 

would all be made available to the player. The tunnel 

instances are created from an access database that 

contains a list of different tunnel scenarios. This 

database also contains a list of different resources that 

would be required to execute the project. In this game, 

resource options would be made available to the 

players, such as different sizes of muck carts and 

different quality of TBMs (with respect to excavation 

rate and failure rate). Each of these would have a 

different cost associated with them. At the beginning of 

the game, players would be expected to develop a plan 

in which they decide the rate at which they would like 

to perform the work (meters advanced/day) and the 

resources  they would like to assign to achieve that 

work (size and number of muck carts, type of TBM and 

number of crew members). For each play period, the 

simulator would take this plan as its input and generate 

results (money spent, actual time taken and liner 

distance advanced) at the end of the period which would 

be available for the player to review. If the player were 

not content with their performance in the last period, 

they could change their plan in order to improve. At the 

end of the game session, players would be ranked based 

on their performance using earned value methodology. 

This game teaches students how to plan for the 

construction operations, especially within the domain of 

tunneling. A concept design for this game is presented 

in Figure 11. 

 

1. Tunnel instances & attributes: 

Length, depth, diameter, soil 

conditions, budget & duration

2. Tunnel construction resources & 

attributes: cranes, muck-carts, 

TBMs, trains, crews, surveyors

Tunnel to construct & resource 

options: Construction budget, 

duration; crane, TBM & train 

reliability & rental rates; crew wages

Work plan: TBM to use, train to use, 

number of muck-carts, crew sizes, length 

to excavate using these resources

Tunnel simulator 

Federate

Player Federate

Administrator Federate

Performance: Tunnel length 

advanced, schedule performance 

(SPI), cost performance (CPI), 

TBM and train utilization

A

A

A

Stored in 

database

Figure 11: Interaction between Federates in the 

Tunneling Game 

 

5. A PROTOTYPE FOR GAME 

DEVELOPEMENT 

Based on the review of the games developed in 

COSYE, a prototype for game creation was proposed 

which is intended to simplify the development process. 

The prototype was summarized from a perspective of 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 185



component software and then from an object model 

perspective. These are discussed in the following sub-

sections.  

 Given that there is a diverse range of environments 

in which construction management games have been 

implemented in the past, it should be mentioned that the 

generic game development prototype can also be used 

in any of these i.e. in a database-server setting or a web-

based environment. However, for the sake of discussion 

in this paper, a distributed simulation environment like 

COSYE is proposed for use.  

 

5.1. Software Structure of the Prototype 

The structure of the prototype represents the software 

pieces that need to be created to obtain a fully 

functional game. They include: an administrator, a 

process simulator, player and virtual player (shown in 

Figure 12). This section discusses the features expected 

in each piece, including their anticipated simulation 

behavior.  

 The game administrator is a component which will 

always exist within any simulation-based game because 

it controls the creation and destruction of the game. 

Besides this, the administrator regulates a number of 

features during the game session such as: 

 

 Managing the creation of possible game 

scenarios to be simulated. 

 Managing time (the length of time between 

decision windows and the length of decision 

window). 

 Varying the difficulty level of the game. 

 Tracking the performance of each player. 

 Enabling or disabling the virtual player from 

participating in the simulation. 

 In order to accomplish its time management 

responsibilities, this federate needs to be implemented 

as a time-stepped simulation. It also needs to be linked 

to a storage medium, like a database, from which it 

reads all the possible scenarios to be populated in the 

game. The administrator of the game, who in most cases 

will be a tutor of the instructed course, will require an 

interface for this federate which displays reports of 

player performance and other occurrences in the game 

during execution. This federate should have a criterion 

for rating the performances of each player. To guarantee 

that this federation will destroy the federation, it should 

be the last federate to achieve the “ReadyToTerminate” 

synchronization point, usually after a pre-determined 

criteria is achieved.     

The game simulator represents a component that 

uses the inputs from the player to processes the work 

that needs to be done. It generates performance 

measures based on the actual progress made in 

executing this work. It is also responsible for modeling 

the uncertainty that surrounds the execution of this 

work. In order to do this, the simulator federate needs to 

be implemented using a time management scheme. 

V-1

Administrator Process 

simulator

Virtual PlayerReal Player

Game Federation

RTI

 
Figure 12: Conceptual Model for the Game 

Development Prototype 

 

 This federate may be designed as a next-event 

simulation or a time-stepped simulation depending on 

how the processing of the operation is implemented. It 

is mandatory for all simulator federated implemented as 

next-event simulation to make use of a discrete event 

simulation engine in its implementation. This is not the 

case with a time stepped simulation.   

Regardless of the implementation approach used, 

simulator federates go through two cyclic windows 

during the game execution, namely, a simulation 

window and a decision window. The simulation 

window represents the phase in which the computation 

of algorithms is done to give rise to results which are 

then published. The simulator federate should be 

designed so that this simulation window occurs during 

the time granting state of the federate. The decision 

window, on the other hand, should be implemented in 

the time advancing state. This is shown in the protocol 

diagram in Figure 13. Federates involved in time 

management can have two possible states during 

federation execution, a time advancing state and a time 

granting state. A federate enters a time advancing state 

as soon as a call is made to the RTI to advance its time. 

In COSYE, this may be through a NextMessageRequest 

or a TimeAdvanceRequest. A federate enters a time 

granting state when it receives a time advance grant 

from the RTI.  

 
RunTimeInfrastructure(RTI)Federate A

TAR(T1)

TAG(T1)

TAR(T2)

Reflect Attribute Values(...)

Receive Interaction(...)

Federate in a time 

advancing state

Federate in a time 

granting state

Federate Thread RTI Thread

TAR = Time Advance Request

TAG = Time Advance Grant

 
Figure 13: Schematic of a Protocol Diagram showing 

the States in time-stepped federate 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 186



 

For event-driven federates, the simulation window 

involves invoking the 

DiscreteEventSimulationEngine.Simulate 

(theGrantedTime) and RTIAmb.NextMessageRequest 

(DiscreteEventSimulationEngine.TimeNext) methods 

sequentially. These two methods are implemented 

within the time advance grant call-back of the simulator 

federate (when the federate is in a time granting state). 

This represents the processing of simulation events 

(algorithms) which were scheduled within the 

ReflectAttributeValues and ReceiveInteraction call-back 

methods of this federate during its time advancing state.  

The decision window represents a phase when the 

simulation engine is not doing anything. During this 

window, results are viewed in the player federate. Also, 

choices submitted by each player are received by the 

simulator federate, which translates them into 

corresponding simulation events that are scheduled to 

take place at the appropriate time. 

In time-stepped federates, the simulation window 

is also within the time granting state of the federate. 

Simulation algorithms are processed within the time 

advance grant call-back method. The last statement 

within this method is a request for time advancement 

which changes the state of the federate into a time 

advancing state.  During the time advancing state, the 

ReflectAttributeValues and ReceiveInteraction call-back 

methods of this federate are invoked as messages arrive 

at the federate.       

 In case a process discrete event simulation model 

(such as a Simphony special purpose template model) 

already exists for the domain being modeled, this model 

can be federated so that it participates within the 

respective game federations as an event-driven 

simulator component. This concept was successfully 

applied in the development of the tunneling game. 

 The player component is the portion of the game 

which participants directly interact with. The most 

important aspect of the player is its interface design. 

This should be made so that it is easy for the player to: 

(1) view the different game options available for 

upcoming play periods, (2) make a choice and submit it 

and (3) view their cumulative performance results from 

previous play periods. The game should have the 

capability of creating a unique instance of the federate 

for each participant in the game, with the exception of 

the virtual player which should be created by the 

administrator.    

 A virtual player is an optional, although very useful 

component, which is included in a game execution in 

situations where players engaged within a game session 

are generally inexperienced. The virtual player 

represents an experienced participant from whom the 

other players can learn as a result of the challenges that 

it poses.  

 

5.2. Generic Federation Object Model for the Game 

Prototype 

One other aspect investigated when comparing the three 

simulation games developed in COSYE was the 

federation object model. These were compared to 

establish the existence or non-existence of common 

features amongst them. It was established that there 

were some aspects of commonality amongst them 

which formed a basis for the standard federation object 

model for future game development efforts. Table 1 

summarizes the object classes and parameter classes 

that should be present within an FOM of a game to be 

developed within COSYE. The associated attributes and 

parameters to these classes are also detailed. 

 
Table 1: Specifications of an FOM for the Game Development 

Prototype 

Class 

Type 

Proposed Class 

Name 
Attribute/Parameter 

Object 

class 

Player 

Name, performance 

parameters, 

performance rating 

Scenario - projects TBD 

Scenario - resources TBD 

Interaction 

class 

Simulation window 
Session number, 

time span 

Decision window 
Window number, 

time span 

Game play options  TBD 

Player decisions TBD 

Play period 

performance 
TBD 

 

 Details of the data types and send order (time 

stamped or receive order) are left to the developer to 

determine. For some of the classes, attributes or 

parameters are highly dependent on the nature of the 

game being developed, and hence, are left at the 

discretion of the developer to determine. These have 

been tagged as “TBD.” 

 

6. CONCLUSIONS 

The idea of using construction management simulation 

games as a teaching aide in construction education is 

relevant, especially in today’s industry where there are 

growing expectations for construction graduates to 

perform well on the job, particularly in the early years 

of their careers. Simulation games adequately resolve 

the challenges that such expectations pose by serving as 

tools that are used to develop the skills, knowledge and 

experience (while still in school) required to deal with 

the problems that graduates face. The advances in 

computer technologies provide an opportunity to extend 

the process of developing more relevant and exciting 

games to effectively achieve this goal. A conceptual 

model that structures, guides and simplifies such 

developments has been presented in this paper.  

 The COSYE framework is proposed as an 

appropriate environment in which such a prototype can 

be effectively implemented, although other 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 187



environments, such as  file server or web server systems 

can be used with a few modifications. The main features 

within COSYE that are required for developing a game 

federation have also been discussed.   

 

REFERENCES 

AbouRizk, S., 2010. Enhancing the competitiveness of 

the construction industry in Alberta. IRC Renewal 

Application, Term 4.  

AbouRizk, S. and Hague, S., 2009. An overview of the 

COSYE environment for construction simulation. 

Proceedings of the 2009 Winter Simulation 

Conference, pp. 2624-2634. December 13-16, 

Austin (Texas, USA). 

AbouRizk, S. M., 1993. Stochastic simulation of 

construction bidding and project management. 

Microcomputers in Civil Engineering, 8 (2), 343-

353. 

Al-Jibouri, S. and Mawdesley, M., 2001. Design and 

experience with a computer game for teaching 

construction project planning control. Engineering 

Construction and Architectural Management, 8 (5), 

418-427. 

Au, T., Bostleman, R., and Parti, E., 1969. Construction 

management game – deterministic model. Journal 

of Construction Division, 95 (CO1), 25-38. 

Au, T., and Parti, E. W., 1969. Project planning game 

for foundation excavation. Journal of the 

Construction Division, 95 (CO1), 11-21. 

Ekyalimpa, R., Al-Jibouri, S., Yasser, M., and 

AbouRizk, S., 2011. Design of a tunnel simulation 

game for teaching project control in construction. 

Proceedings of Construction Research Congress 

Conference, pp. 2118-2128, June 14-17, Ottawa 

(Ontario, Canada). 

Ekyalimpa, R., and Fayyad, S., 2010. Administrator 

federate module in the Crane Lift Planning Game, 

internal report for Advanced Simulation course 

(Advanced topics in Construction Engineering and 

Management), University of Alberta.  

Gonzalez, C., Hu, D., and Mogadam, M., 2010. 

Operations federate module in the Crane Lift 

Planning Game, internal report for Advanced 

Simulation course (Advanced topics in Construction 

Engineering and Management), University of 

Alberta. 

Halpin, D., 1976. CONSTRUCTO – an interactive 

gaming environment. Journal of the Construction 

Division, 102 (CO1), 145-156. 

Harris, F. C., and Evans, J. B., 1977. Road construction 

– simulation game for site managers. Journal of the 

Construction Division, 103 (CO3), 405-414. 

Hegazy, T., 2006. Easy plan: computer game for 

simplified project management training. 

Proceedings of the first International Construction 

Specialty Conference (CSCE), n.p. May 23-26, 

Calgary, (Alberta, Canada). 

Jangmi, H., Zhang, H., and Farzaneh, S., 2010. Player 

federate module in the Crane Lift Planning Game, 

internal report for Advanced Simulation course 

(Advanced topics in Construction Engineering and 

Management), University of Alberta.  

Kuhl, F., Weatherly, R., and Dahmann, J., 2000. 

Creating computer simulation systems: an 

introduction to the high level architecture. Prentice-

Hall International PTR, One Lake Street, Upper 

Saddle River, NJ 07458. 

McCabe, B., Ching, K. S., and Rodriguez, S., 2000. 

STRATEGY: a construction simulation 

environment. Proceedings of Construction 

Congress, pp. 115-120. Orlando (Florida, USA). 

Nassar, K., 2002. Simulation gaming in construction: 

ER - the equipment replacement game. Journal of 

Construction Education, 7 (1), 16-30. 

Scott, D. and Culling-ford, G., 1973. Scheduling game 

for construction industry. Journal of the American 

Society of Civil Engineers, 99 (C01), 81-92. 

Yaoyuenyong, C., Hadikusumo, B. H. W., Ogunlana, S. 

O., and Siengthai, S., 2005.  Virtual construction 

negotiation game – an interactive learning tool for 

project management negotiation skill training. 

International Journal of Business and Management 

Education, 13 (2), 21-36. 

 

RONALD EKYALIMPA  

Ronald is a Ph.D. student at the Hole School of 

Construction Engineering in the Department of Civil 

and Environmental Engineering at the University of 

Alberta. His research focus is in the area of construction 

simulation.  

 

SIMAAN M. ABOURIZK  
Simaan holds an NSERC Senior Industrial Research 

Chair in Construction Engineering and Management at 

the Department of Civil and Environmental 

Engineering, University of Alberta, where he is a 

Professor in the Hole School of Construction 

Engineering. He received the ASCE Peurifoy 

Construction Research Award in 2008.  

 

YASSER MOHAMED  
Yasser is an Associate Professor in Construction 

Engineering and Management in the Department of 

Civil and Environmental Engineering, at the University 

of Alberta. His research focuses on simulation 

modelling of construction processes to support project 

planning and control.   

 

FARZANEH SABA 

Farzaneh graduated with her Ph.D. from the Hole 

School of Construction Engineering in the Department 

of Civil and Environmental Engineering at the 

University of Alberta. She now works for AECOM as a 

Structural Engineer.  

 

 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 188


