
EFFICIENT EXPLORATION OF COLOURED PETRI NET BASED SCHEDULING
PROBLEM SOLUTIONS

Gašper Mušič(a)

(a)University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

(a)gasper.music@fe.uni-lj.si

ABSTRACT
The paper deals with simulation-optimization of schedules
that are modelled by simple Coloured Petri nets (CPNs).
CPN modelling is combined by predefined transition
sequence conflict resolution strategy to enable generation
of neighbouring solutions that are always feasible. This
way standard local search optimization algorithms can be
effectively applied to CPN models. Modelling approach
and neighbourhood construction procedure are explained
in detail. Some preliminary results of tests on standard job
shop benchmark problems are provided.

Keywords: Petri nets, simulation, optimization, schedul-
ing, local search

1. INTRODUCTION
Among modelling formalisms suitable for description of
systems with highly parallel and cooperating activities,
Petri nets are perhaps the most widely used one. With Petri
nets, production systems’ specific properties, such as con-
flicts, deadlocks, limited buffer sizes, and finite resource
constraints can be easily represented in the model (Tuncel
and Bayhan 2007).

Optimization of planning and scheduling problems
has been investigated within the production control com-
munity for several years. This is one of the fields where in-
formation technology has an immediate and considerable
impact on the efficiency and quality of production control
and related manufacturing processes. The simplicity of
model building, the possibility of realistic problem formu-
lation as well as the ability of capturing functional, tem-
poral and resource constraints within a single formalism
motivated the investigation of Petri net based optimization
of planning and scheduling problems.

In our previous work a simulation based optimiza-
tion approach applying Petri nets was intensively stud-
ied, as well as other, more classical approaches, such
as dispatching rules and reachability tree based heuristic
search (Gradišar and Mǔsič 2007, L̈oscher, Mǔsič and Bre-
itenecker 2007, Mǔsič, Löscher and Breitenecker 2008,
Mušič 2008).

In the reported works, Petri nets based scheduling
methods were compared and a certain level of experience
was gained about the behaviour of the methods in relation

to different scales of problems. Among others, reacha-
bility tree based heuristic search methods (Lee and DiCe-
sare 1994, Yu, Reyes, Cang and Lloyd 2003, Mujica, Piera
and Narciso 2010) were of particular interest, since the
rich structural analysis framework of Petri nets seemed a
promising way to derive a suitable heuristic function that
would significantly improve the efficiency of the search
and obtained results.

The obtained results meet the expectations for small
or moderate size problems. Unfortunately, the results for
complex problems, such as standard job-shop benchmark
problems (Taillard 1993), are not satisfactorily, even with
the advanced heuristic functions.

Local search methods, on the other hand, are widely
used in operational research (OR) community (Blazewicz,
Domschke and Pesch 1996, Vaessens, Aarts and Lenstra
1996). Their performance is not significantly decreased
for larger problems. The optimality of obtained solutions
is not guaranteed (Pinedo 2008) but they can be obtained in
computational time that is significantly shorter compared
to other methods. In particular, the Tabu search algorithms
(Dell’Amico and Trubian 1993, Taillard 1994, Nowicki
and Smutnicki 1996) are claimed to represent the state-of-
the-art by a comfortable margin over the closest competi-
tion (Watson, Whitley and Howe 2005).

This motivated the investigations on combination of
Petri net modelling approach and local search methods
(Löscher, Mǔsič and Breitenecker 2007). In particular, a
combination of efficient generation of feasible neighbour-
ing solutions from Coloured Petri net representation of the
problem and local search is tested in this paper.

The paper shows how a Coloured Petri net model of a
scheduling problem can be used in conjunction with state-
of-the-art local search algorithms provided a special type
of parameterized conflict resolution strategy and neigh-
bouring solution generation procedure are adopted. Pa-
rameters in a form of sequence vectors are adjoined to
shared resources in the system. The makespan of a feasi-
ble schedule is calculated through CPN model simulation,
which is supervised by the sequence vectors. Constrained
permutations on these vectors are used to generate neigh-
boring schedule solutions that are always feasible, which
improves the effectiveness of CPN based exploration of so-
lutions compared to previous works.

681

2. JOB-SHOP SCHEDULING AND LOCAL
SEARCH
A job-shop scheduling problem is a well known problem
in the field of operations research. It is defined as the
determination of the order in which a set of jobs (tasks)
{Ji|i = 1, . . . , n} is to be processed through a set of ma-
chines (resources){Mk|k = 1, . . . ,m}.

Job i is specified by a set of operations{oj |j =
1, . . . ,mj} representing the processing requirements on
various machines. Processing times are assigned to indi-
vidual operations. Job shop problem assumes that all jobs
have to be processed on all machines while the operations
processing order (routing) is fixed but not identical for in-
dividual jobs. The objective of a job shop scheduling prob-
lem is most often to determine a job sequence schedule for
every machine, which will minimize the total processing
time, i.e., makespan.

This objective can be reached with various strategies
including heuristic based dispatching rules, simulation-
optimization and local search methods.

Local search is an iterative procedure which moves
from one solution in the search spaceS to another as long
as necessary. In order to systematically search throughS,
the possible moves from a solutions to the next solution
should be restricted in some way. To describe such restric-
tions a neighbourhood structureN : S → 2S is intro-
duced onS. For eachs ∈ S, N(s) describes the subset
of solutions which can be reached in one step by mov-
ing from s. The setN(s) is called the neighbourhood of
s. Usually it is not possible to calculate the neighbour-
hood structureN(s) beforehand becauseS has an expo-
nential size. To overcome this difficulty, a setAM of
allowed modificationsF : S → S is introduced. For a
given solution s, the neighbourhood ofs can be defined by
N(s) = {F (s) |F ∈ AM}.

A general local search method may be described as
follows. Each iteration starts with a solutions ∈ S and
then a solutions′ ∈ N(s) or a modificationF ∈ AM
which providess′ = F (s) is chosen. Based on the values
of the objective functionf : S → R, f(s) andf(s′), the
new solution is adopted or discarded. The next iteration
starts with either the old or the new solution. Different
methods of choice of solution for the next iteration lead to
different local search techniques, e.g. simulated annealing,
tabu search, and genetic algorithms (Brucker 2001).

Local search algorithms are simple to implement and
fast in execution, but they have the main disadvantage that
they can terminate in the first local minimum, which might
give an objective function that deviates substantially from
the global minimum. The useful algorithms should be
able to leave the local minimum by sometimes accepting
transitions leading to an increase in the objective func-
tion. Simulated Annealing is an example of such an ap-
proach where cost-increasing transitions are accepted with
a non-zero probability which decreases gradually as the al-
gorithm continues its execution (van Laarhoven, Aarts and
Lenstra 1992).

The previously described scheduling methods can be
used in combination with various modelling formalisms.
As mentioned in the introduction, a Coloured Petri net
framework will be used here.

3. COLOURED PETRI NETS
Coloured Petri nets (CPNs) used for modelling o schedul-
ing problems in this paper are defined as follows. Note that
the definition is different from (Jensen 1997) in the sense
that it does not alow for transition guards. Instead it closely
follows one of the representations used in (Basile, Carbone
and Chiacchio 2007) with an important difference: a dif-
ferent interpretation of transition delays is used, which is
closer to that of (Jensen 1997).

A CPN = (N ,M0) is a Coloured Petri net system,
where:N = (P, T, Pre, Post, Cl, Co) is a Coloured Petri
net structure:

– P = {p1, p2, . . . , pk}, k > 0 is a finite set of places.

– T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions
(with P ∪ T 6= ∅ andP ∩ T = ∅).

– Cl is a set of colours.

– Co : P ∪ T → Cl is a colour function defining place
marking colours and transition occurrence colours.
∀p ∈ P,Co(p) = {ap,1, ap,2, . . . , ap,up

} ⊆ Cl is
the set ofup possible colours of tokens inp, and
∀t ∈ T,Co(t) = {bt,1, bt,2, . . . , bt,vt

} ⊆ Cl is the
set ofvt possible occurrence colours oft.

– Pre(p, t) : Co(t) → Co(p)MS is an element of the
pre-incidence function and is a mapping from the set
of occurrence colours oft to a multiset over the set of
colours ofp, ∀p ∈ P,∀t ∈ T . It can be represented
by a matrix whose generic elementPre(p, t)(i, j) is
equal to the weight of the arc fromp w.r.t colourap,i

to t w.r.t colourbt,j . When there is no arc with respect
to the given pair of nodes and colours, the element is
0.

– Post(p, t) : Co(t) → Co(p)MS is an element of
the post-incidence function, which defines weights of
arcs from transitions to places with respect to colours.

M(p) : Co(p) → N is the marking of placep ∈ P
and defines the number of tokens of a specified colour in
the place for each possible token colour inp. Place mark-
ing can be represented as a multisetM(p) ∈ Co(p)MS and
the net markingM can be represented as ak × 1 vector of
multisetsM(p). M0 is the initial marking of a Colured
Petri net.

3.1. Timed models
As described in (Bowden 2000), there are three basic ways
of representing time in Petri nets: firing durations (FD),
holding durations (HD) and enabling durations (ED). The
FD principle says that when a transition becomes enabled
it removes the tokens from input places immediately but
does not create output tokens until the firing duration has
elapsed. When using HD principle, a firing has no duration
but a created token is considered unavailable for the time
assigned to transition that created the token. The unavail-
able token can not enable a transition and therefore causes
a delay in the subsequent transition firings. With ED prin-
ciple, the firing of the transitions has no duration while the
time delays are represented by forcing transitions that are
enabled to stay so for a specified period of time before they
can fire.

682

The ED concept is more general than HD. Further-
more, in (Lakos and Petrucci 2007) an even more general
concept is used, which assigns delays to individual arcs,
either inputs or outputs of a transition. This way both ED
and HD concepts are covered, and the enabling delay may
even depend on the source of transition triggering while
holding delay may differ among different activities started
by the same transition.

When modelling several performance optimization
problems, e.g. scheduling problems, such a general frame-
work is not needed. It is natural to use HD when modelling
most scheduling processes as transitions represent starting
of operations, and generally once an operation starts it does
not stop to allow another operation to start in between. HD
principle is also used in timed version of CPNs defined by
Jensen, although the unavailability of the tokens is only
defined implicitly through the corresponding time stamps.
While CPNs allow the assignment of delays both to tran-
sition and to output arcs, we further simplify this by al-
lowing time delay inscriptions to transitions only. This is
sufficient for the type of examples investigated here, and
can be generalized if necessary.

To include a time attribute of the marking tokens,
which implicitly defines their availability and unavailabil-
ity, the notation of (Jensen 1997) will be adopted. Colours
are adjoined to token number by ‘c notation and coloured
tokens are accompanied with a timestamp, which is written
next to the token number and colour and separated from the
colour by @. E.g., two c-coloured tokens with time stamp
10 are denoted 2‘c@10. A collection of tokens with differ-
ent colours and/or time stamps is defined as a multiset, and
written as a sum (union) of sets of timestamped coloured
tokens. E.g., two c-coloured tokens with time stamp 10
and three d-coloured tokens with timestamp 12 are written
as 2‘c@10+3‘d@12. The timestamp of a token defines the
time from which the token is available.

Time stamps are elements of a time setTS, which is
defined as a set of numeric values. In many software im-
plementations the time values are integer, i.e.TS = N,
but will be here admitted to take any positive real value in-
cluding 0, i.e.TS = R

+
0 . Timed markings are represented

as collections of time stamps and are multisets overTS:
TSMS . By using HD principle the formal representation
of a Coloured Timed Petri net is defined as follows.

CTPN = (N ,M0) is a Coloured Timed Petri net
system, where:

– N = (P, T, Pre, Post, Cl, Co, f) is a Coloured
Time Petri net structure with(P, T, Pre, Post, Cl,
Co) as defined above.

– f : Co(t) → TS is the time function that assigns a
non-negative deterministic time delay to every occur-
rence colour of transitiont ∈ T .

– M(p) : Co(p) → TSMS is the timed marking,M0 is
the initial marking of a timed Petri net.

3.2. Firing rule
FunctionsPre and Post define the weights of directed
arcs, which are represented by arc inscriptions in the ma-
trix form. In the case when the all the weights in the matrix

are 0, the arc is omitted. Let•tb ⊆ P × Cl denote the set
of places and colours which are inputs to occurrence colour
b ∈ Co(t) of transitiont ∈ T , i.e., there exists an arc from
every(p, a) ∈ •t to t with respect to coloursa ∈ Co(p)
andb ∈ Co(t).

To determine the availability and unavailability of to-
kens, two functions on the set of markings are defined.
The set of markings is denoted byM. Given a marking
and model time,m : P × M × TS → Co(p)MS de-
fines the number of available coloured tokens, andn :
P × M × TS → Co(p)MS the number of unavailable
coloured tokens for each place of a TPN at a given model
time τk ∈ TS.

Two timed markings can be added (denoted+τ) in
a similar way as multisets, i.e. by making a union of the
corresponding multisets. The definition of subtraction is
somewhat more problematic. To start with, a comparison
operator is defined. LetM1 andM2 be markings of a place
p ∈ P . By definition, M1 ≥τ M2 iff m(p,M1, τk) ≥
m(p,M2, τk),∀τk ∈ TS,∀a ∈ Co(p).

Similarly, the subtraction is defined by the number of
available tokens, and the subtrahend should not contain
any unavailable tokens. LetM1, M2 and M3 be mark-
ings of a placep ∈ P , M1 ≥τ M2, andm(p,M1, τk),
m(p,M2, τk), and m(p,M3, τk), be the corresponding
numbers of available tokens at timeτk, andn(p,M2, τk) =
0. The differenceM3 = M1 −τ M2 is then defined as
any M3 ∈ M having m(p,M3, τk) = m(p,M1, τk) −
m(p,M2, τk).

Using the above definitions, the firing rule of a CTPN
can be defined. Given a markedCTPN = (N ,M),
a transitiont is time enabled at timeτk w.r.t occurrence
colour b ∈ Co(t), denotedM [tb〉τk

iff m(p,M, τk) ≥
Pre(p, t)(b), ∀p ∈ •t. An enabled occurrence transi-
tion can fire, and as a result removes tokens from in-
put places and creates tokens in output places. If transi-
tion t fires w.r.t occurrence colourb, then the new mark-
ing is given byM ′(p) = M(p) −τ Pre(p, t)(b)@τk +τ

Post(p, t)(b)@(τk + f(t, b)),∀p ∈ P . Here the subtrac-
tion operation is implemented in such a way that in case
of several choices, the token with the oldest timestamp is
always removed first. If markingM2 is reached fromM1

by firing tb at timeτk, this is denoted byM1[tb〉τk
M2. The

set of markings of TPNN reachable fromM is denoted
by R(N ,M).

4. COLOURED PETRI NET MODELLING OF
SCHEDULING PROBLEMS
An important concept in PNs is that of conflict. Two tran-
sition firings are in conflict if either one of them can occur,
but not both of them. Conflict occurs between transitions
that are enabled by the same marking, where the firing of
one transition disables the other transition.

The conflicts and the related conflict resolution strat-
egy play a central role when modelling scheduling prob-
lems. This may be illustrated by a simple example,
shown in Figure 1. The example involves two machines
M = {M1,M2}, which should process two jobsJ =
{J1, J2}, and whereJ1 = {o1(M1) ≺ o2(M2)} and
J2 = {o3(M1)}. JobJ1 therefore consist of two opera-

683

p

p

J1

J1

p

p

J2

J2

p

p

o1

11

p
11

p
21

p

p

m1

m1

t
1f

t
3fp

p

o3

21

t

t

1b

1

t

t

3b

3

p
12

t
2fp

p

o2

12

t

t

2b

2

O3

O3

O1

O1

O2

O2

p

p

m2

m2

J1

J1

J2

J2

M1

M1

M2

M2

Figure 1: A PN model of a simple scheduling problem

tions, the first one using machineM1 and the second one
machineM2, while jobJ2 involves a single operation us-
ing machineM1. Obviously, the two jobs compete for ma-
chineM1. This is modelled as a conflict between transi-
tions starting corresponding operations.

Placepm1 is a resource place. It models the machine
M1 and is linked tot1b andt3b, which start two distinct op-
erations. Clearly, the conflict betweent1b andt3b models a
decision, whether machineM1 should be allocated to job
J1 or J2 first.

Similarly, other decisions are modelled as conflicts
linked to resource places. The solution of the scheduling
problem therefore maps to a conflict resolution in the given
Petri net model.

The transitions that model finishing of operation (tif
in Figure 1) are not relevant for scheduling and can be re-
moved. Same holds for intermediate buffer places since the
holding duration interpretation of transition delays guar-
antees that a subsequent transition can not fire before the
precedent transition delay expires. The model can be there-
fore simplified as shown in the lower part of Figure 1. The
occupation of a shared resourceMi during the evolution of
the system is marked by a presence of unavailable token in
the corresponding placepmi.

With the introduction of token and occurrence
colours, the resource sharing as described above can be
represented in even much more compact model. Several
jobs that go through a similar operation sequence can be
folded together and represented by a single place/transition
sequence with different token colours. The transition oc-
currence colours enable to distinguish different jobs both
in terms of operation durations as well as in terms of their
dependence on shared resources. The model from Figure 1
therefore maps to the model in Figure 2. The two jobs are
represented by two token colours while a third colour is
added to model resource availability. Both remaining tran-
sitions appear with two occurrence colours to model differ-
ent durations where the absence of the second operation in

p
J p

1

p
m1

t
1 p

2
t
2

O1,O3 O2

p
m2

J1,J2

M1 M2

Figure 2: A CTPN model of a simple scheduling problem

p
J

p
1

p
2 p

3
p

4

M1 M2 M3 M4

t
1 t

2
t
3

t
4

Figure 3: A simple job shop problem

Table 1: Operation durations for a simple job shop problem

Operation\Job J1 J2 J3 J4

o1 54 9 38 95
o2 34 15 19 34
o3 61 89 28 7
o4 2 70 87 29

Table 2: machine requirements for a simple job shop prob-
lem

Operation\Job J1 J2 J3 J4

o1 3 4 1 1
o2 1 1 2 3
o3 4 2 3 2
o4 2 3 4 4

job J2 is simply modelled by setting the duration to zero.

A more elaborated example is shown in Figure 3. The
model is based on a test example from Taillard (1993).
It consists of four jobs and four machines. Every job in-
cludes four operations. Operation durations are shown in
Table 1 and resource requirements in Table 2. Note that
arc weights are not shown in the figure, they will be shown
in the sequel. Nevertheless, only the arcs with at least one
nonzero weight for any occurrence colour are shown.

Further compaction can be achieved by folding the
operation places. Job sequences, operation durations
and resource requirements are coded by different sets of
colours and corresponding transition guards and expres-
sions (Mujica, Piera and Narciso 2010). Since the transi-
tion guards and expressions are not supported by the type
of CTPNs used in this paper, this representation can not
be used here. The proposed representation is therefore not
the most compact one but has the advantage of a very ef-
ficient coding in a general mathematical analysis software,
e.g. Matlab.

In Matlab, the flow matrices of a CPN can be repre-
sented as cell matrices of size|P | × |T |, where each ele-
ment is a cell containing weight matrix of size|Co(p)| ×
|Co(t)|. E.g. for example in Figure 3 the corresponding

684

pre-incidence matrix is

Pre =

I4 0 · · · 0
0 I4 0 0
0 0 I4 0
0 · · · 0 I4

0 · · · 0
R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

(1)

whereI4 stands for4 × 4 identity matrix and zeros should
be interpreted as4 × 4 zero matrices.Rij define i-th re-
source requirements of j-th operation within jobs:

R11 =
[
0 0 1 1

]
R12 =

[
1 1 0 0

]
R21 =

[
0 0 0 0

]
R22 =

[
0 0 1 0

]
R31 =

[
1 0 0 0

]
R32 =

[
0 0 0 1

]
R41 =

[
0 1 0 0

]
R42 =

[
0 0 0 0

]

R13 =
[
0 0 0 0

]
R14 =

[
0 0 0 0

]
R23 =

[
0 1 0 1

]
R24 =

[
1 0 0 0

]
R33 =

[
0 0 1 0

]
R34 =

[
0 1 0 0

]
R43 =

[
1 0 0 0

]
R44 =

[
0 0 1 1

]

(2)

Furthermore, the cell matrix can be any time con-
verted to an incidence matrix of the corresponding un-
folded P/T net and reverse, the P/T net can be folded back.
The only information necessary consists of the place and
transition colour sets of individual nodes in the CPN.

For example, the Matlab command

>> PTPre=cell2mat(Pre)

unfolds the pre-incidence matrix from the previous exam-
ple into a pre-incidence matrix of an equivalent P/T Petri
net and the command

>> Pre=mat2cell(PTPre, ncolP, ncolT)

reproduces back the original cell matrix, provided that
vectors ncolP and ncolT contain information about
numbers of token and occurrence colours for allp ∈
P and t ∈ T . E.g., for the above exam-

ple ncolP =
[
4 4 4 4 4 1 1 1 1

]T
and

ncolP =
[
4 4 4 4

]T
.

This way the CPN framework can be used to effi-
ciently encode various scheduling problems into a com-
pact representation. Later the CPN representation can be
analyzed directly, or can be translated into an equivalent
P/T Petri net, which enables the application of standard
PN analysis methods as well as PN based scheduling tech-
niques.

4.1. Derivation of optimal or sub-optimal schedules
A derived Coloured Petri net model can be simulated by an
appropriate simulation algorithm. During the simulation,
the occurring conflicts are resolved ’on the fly’, e.g. by
randomly choosing a transition in conflict that should fire.
Instead,heuristic dispatching rules (Haupt 1989), such
as Shortest Processing Time (SPT) or Longest Processing

Time (LPT), can be introduced when solving the conflict-
ing situations. By introducing different heuristic dispatch-
ing rules (priority rules) decisions can be made easily. In
this way, only one path from the reachability graph is cal-
culated, which means that the algorithm does not require a
lot of computational effort. The schedule of process oper-
ations can be determined by observing the marking evolu-
tion of the net. Depending on the given scheduling prob-
lem a convenient rule should be chosen. Usually, different
rules are needed to improve different predefined produc-
tion objectives (makespan, throughput, production rates,
and other temporal quantities).

A more extensive exploration of the reachability tree
is possible byPN-based heuristic search methodpro-
posed by Lee and DiCesare (1994). It is based on gen-
erating parts of the Petri net reachability tree, where the
branches are weighted by the time of the corresponding
operations. Sum of the weights on the path from the initial
to a terminal node gives a required processing time by the
chosen transition firing sequence. Such a sequence corre-
sponds to a schedule, and by evaluating a number of se-
quences a (sub)optimal schedule can be determined.

Recent reports in scheduling literature show an in-
creased interest in the use ofmeta-heuristics, such as ge-
netic algorithms (GA), simulated annealing (SA), and tabu
search (TS). Meta-heuristics have also been combined with
Petri net modelling framework to solve complex schedul-
ing problems (Tuncel and Bayhan 2007). With such an
approach, the modelling power of Petri nets can be em-
ployed, and relatively good solutions of scheduling prob-
lems can be found with a reasonable computational effort.
Compared to reachability tree based search methods, meta-
heuristics require less memory.

5. COLOURED PETRI NET SIMULATION BASED
EXPLORATION OF THE SOLUTION SPACE

In our previous work (L̈oscher, Mǔsič and Breitenecker
2007, Mǔsič, Löscher and Breitenecker 2008) different
ways of solution space exploration were studied. Extensive
testing of the reachability tree search based approaches has
been performed. The approach is very general, as it can be
applied to any kind of scheduling problem that can be rep-
resented as a Petri net. Unfortunately, the approach does
not perform very well on the standard job shop benchmarks
(Mušič 2008). This motivated the exploration of alterna-
tive approaches, including local search based techniques.

In (Löscher, Mǔsič and Breitenecker 2007) the ap-
proach is presented, which extends the Petri net represen-
tation by sequences and priorities. Priorities are used as a
way of parametrizing the conflict resolution strategy. For
this purpose a priority ranking is assigned to transitions.If
there is a conflict between a pair of transitions the transi-
tion with higher priority will fire.

Another way of parametrization is to select disjoint
groups of transitions and map them to sequences. A fir-
ing list is defined by ordering transitions within the group.
During the model evolution a set of sequence counters is
maintained and all transitions belonging to sequences are
disabled except of transitions corresponding to the current

685

M
4 color 1

color 2

color 3

color 4M
3

M
2

M
1

0 50 100 150 200 250

Figure 4: A possible solution of the given job-shop prob-
lem

state of the sequence counters. After firing such a transi-
tion the corresponding sequence counter is incremented.

This way the transition firing sequence can be param-
eterized. If the model represents a scheduling problem,
the sequence obtained by a simulation run of the Petri net
model from the prescribed initial to the prescribed final
state is a possible solution to the problem, i.e. it represents
a feasible schedule.

E.g., the model from Figure 3 can be simulated by
applying SPT rule (Haupt 1989) as a default conflict res-
olution mechanism. The resulting sequence represents a
possible schedule, shown in Figure 4.

The same schedule can be obtained by fixing the se-
quential order of transitions in conflicts related to shared
resources in the system. E.g. in the above example the
shared resources are machines M1 to M4. Related sets of
transitions are:

SM1 = {t1,c3, t1,c4, t2,c1, t2,c2}
SM2 = {t2,c3, t3,c2, t3,c4, t4,c1}
SM3 = {t1,c1, t2,c4, t3,c3, t4,c2}
SM4 = {t1,c2, t3,c1, t4,c3, t4,c4}

(3)

whereti,cj denotescj occurrence colour ofti and colour
cj corresponds to jobJj .

If these sets are mapped to four independent se-
quences, and a set of index vectors

V = {V1, V2, V3, V4}

is adjoined, whereVi is a corresponding permutation of
integer valuesi, 1 ≤ i ≤ 4:

V1 = {1, 4, 2, 3}
V2 = {1, 2, 4, 3}
V3 = {1, 3, 4, 2}
V4 = {1, 3, 2, 4}

(4)

a supervised simulation run, which forces the prescribed
sequential order of conflicting transitions, results in the
same schedule as above.

The sequence supervised simulation is implemented
by a simple modification of the regular CTPN simulation
algorithm. After the enabled transitions are determined in
each simulation step, the compliance of the set of enabled
transitions to the state of the sequence counters is checked.
Transitions that take part in defined sequences but are not
pointed to by a counter are disabled.

The exploration of the solution space and the related
search for the optimal schedule can then be driven by mod-
ifications of sequence index vectors. Such a modification

leads to a neighbourhood solution of a given solution and
the related modification is usually defined through a neigh-
bourhood function.

In the work of (L̈oscher, Mǔsič and Breitenecker
2007) several neighbourhood functions as well as different
local search strategies were implemented in the PetriSimM
toolbox for Matlab and some results are shown in (Löscher,
Mušič and Breitenecker 2007, Mušič, Löscher and Breite-
necker 2008).

5.1. Generation of feasible neighbourhood solutions
from a CTPN model
The problem in the previously described approach is that
by perturbing sequence index vectors the resulting transi-
tion firing sequence may easily become infeasible, which
results in a deadlock during simulation. The search pro-
cedures implemented in PetriSimM were designed so that
such an infeasible solution is ignored and a new perturba-
tion is tried instead. While this works for many problems,
in some cases the number of feasible sequences is rather
low and such an algorithm can easily be trapped in an al-
most isolated point in the solution space.

The job shop scheduling approaches reported in the
OR literature started to address the issue of efficient neigh-
bourhood generation quite a while ago. With the wide
acceptance of the Tabu search algorithm as the most
promising methods for schedule optimisation the design
of efficient neighborhood generation operator become the
central issue and several such operators have been pro-
posed (Blazewicz, Domschke and Pesch 1996, Jain, Ran-
gaswamy and Meeran 2000, Watson, Whitley and Howe
2005).

The question is how to link these operators and related
effective schedule optimization algorithms with Coloured
Petri net representation of scheduling problems. As men-
tioned above the Petri net scheduling methods have advan-
tages in unified representation of different aspect of un-
derlying manufacturing process in a well defined frame-
work. Unfortunately, the related optimization methods are
not as effective as some methods developed in the OR field.
The link of two research areas could be helpful in bridg-
ing the gap between highly effective algorithms developed
for solving academic scheduling benchmarks and complex
real-life examples where even the development of a formal
model can be difficult (Gradišar and Mǔsič 2007).

A possible way of such a link is the establishment of
a correspondence of a critical path and the sequence index
vectors described previously.

In a given schedule the critical pathCP is the path
between the starting and finishing time composed of con-
sequent operations with no time gaps:

CP = {Oi : ρi = ρi−1 + τi−1, i = 2 . . . n} (5)

whereOi are operations composing the path,ρi is the re-
lease (starting) time of operationOi, andτi is the duration
of Oi.

The operationsOi on the path are critical operations.
Critical operations do not have to belong to the same ma-
chine (resource) but they are linked by starting/ending
times.

686

M
4 color 1

color 2

color 3

color 4M
3

M
2

M
1

t1,c3 t2,c3 t3,c2 t4,c2 t2,c4 t3,c4 t4,c4

Figure 5: A critical path within a schedule and critical tran-
sitions

Critical path can be decomposed in a number of
blocks. A block is the longest sequence of adjacent crit-
ical operations that occupy the same resource.

The length of the path equals the sum of durations of
critical operations and defines the makespanCmax:

Cmax =
∑

Oi∈CP

τi (6)

Figure 5 shows a redrawn gantt chart from Figure 4
with indication of the critical path and the sequence of
critical operations. The shown critical path consists of 5
blocks.

Critical operations in Figure 5 are denoted by transi-
tion labels that trigger the start of a critical operation when
fired. A transition that triggers a critical operation will be
called a critical transition.

The scheduling literature describes several neighbor-
hoods based on manipulations (moves) of critical opera-
tions (Blazewicz, Domschke and Pesch 1996). One of the
classical neighborhoods is obtained by moves that reverse
the processing order of an adjacent pair of critical opera-
tions belonging to the same block (van Laarhoven, Aarts
and Lenstra 1992). Other neighbourhoods further restrict
the number of possible moves on the critical path, e.g.
(Nowicki and Smutnicki 1996).

Clearly every critical transition participates in one of
the conflicts related to shared resources, e.g. sets (3) for
the given case. If these transitions are linked to predefined
firing sequences parameterized by index vectorsVi (4), a
move operator corresponds to a permutation of an index
vector.

For example, in the schedule shown in Figure 5 a
move can be chosen, which swaps the two operations in
the third block on the critical path. This corresponds to
the swap of transitionst4,c2 andt2,c4 in the sequenceSM3,
which is implemented by the exchange of third and fourth
element withinV3 index vector:

move(V3) : {1, 3, 4, 2} 7→ {1, 3, 2, 4}

A new schedule obtained by simulation with modifiedV3

is shown in Figure 6.
When the move is limited to swap of a pair of the adja-

cent operations in a block on the critical path this narrows
down the set of allowed permutations. The most impor-
tant feature of such a narrowed set of permutation on the
index vector is that every permutation from this set will re-
sult in a feasible firing sequence, i.e. a feasible schedule.
Therefore no deadlock solutions can be generated, which

M
4 color 1

color 2

color 3

color 4M
3

M
2

M
1

0 50 100 150 200 250

Figure 6: An optimized solution of the given job-shop
problem

are often encountered when unrestricted permutations on
the index vectors are used.

Based on this observation a set of neighbourhood
functions can be defined which limit the permutations of
the index vectors in a way that will produce feasible firing
sequences only. Several widely used move operators can
be implemented. Such a neighbourhood function permits
the optimisation of schedules represented as PN or CTPN
models by a wide variety of local search optimization tech-
niques.

It is also important to note that such a neighbourhood
function is comparable to exploring the reachability tree in
an event driven manner. It is possible that certain feasi-
ble firing sequence imposes one or more intervals of idle
time between transitions, i.e. some transitions are enabled
but can not fire due to sequence restrictions. This is dif-
ferent from the exploration in a time driven manner when
a transition has to be fired whenever at least one transi-
tion is enabled. The difference is important in cases when
the optimal solution can be missed unless some idle time
is included in the schedule as shown in (Piera and Mušič
2011).

The described neighbourhood generation procedure
was coded in Matlab and used in combination with a sim-
ple Simulated annealing (SA) search algorithm. Compar-
ison of the minimum makespan for the above job shop
problem calculated by the proposed algorithm and some
other standard algorithms is shown in Table 3. SA-SPT de-
notes the combined algorithm with the Simulated Anneal-
ing and the SPT rule (Mǔsič 2009), RT-search stands for a
reachability tree based heuristic search (Lee and DiCesare
1994, Yu, Reyes, Cang and Lloyd 2003), and SA-CPN-N1
denotes Simulated Annealing and a CPN-based neigbour-
hood function as proposed in this paper.

Clearly, the reachability tree based search and SA-
CPN-N1 outperform other algorithms with regard to the
result. It must be noted, however, that the computational
effort in the case of reachability tree based search is much
higher.

Table 3: Calculated makespan for a simple job shop prob-
lem

Algorithm Makespan
SPT 286
LPT 341

RT-search 272
SA-SPT 286

SA-CPN-N1 272

687

Table 4: Calculated makespan for a set of 15 jobs/15 ma-
chines problems

Algorithm Makespan
ta01 ta02 ta03 ta04 ta05

SPT* 1462 1429 1452 1668 1618
LPT* 1701 1674 1655 1751 1828
RT-search 1592 1465 1637 1590 1568
SA-SPT 1359 1358 1352 1362 1352
SA-CPN-N1 1299 1326 1357 1353 1344
optimum 1231 1244 1218 1175 1224
* min out of 100 runs

Results in Table 3 were obtained by implementation
of simple neighbourhood based on N1 move operator of
(van Laarhoven et al. 1992) which was also used in (Tail-
lard 1993) - the notation N1 is taken from (Blazewicz,
Domschke and Pesch 1996). Only a single critical path
was considered. Other neighbourhoods can be easily im-
plemented and these as well as some other extensions of
neighbourhood generation algorithm are currently being
tested.

The computational complexity drawback of reacha-
bility tree based search is much more obvious with com-
plex problems. Table 4 shows the preliminary results
of a set of standard benchmark problems with 15 jobs
and 15 machines (Taillard 1993). For reference also
the optimal values are listed (source:http://mistic.heig-
vd.ch/taillard/). The reachability tree based search has to
be limited to predefined maximum tree size in order to
complete in a reasonable time.

In contrast to that the SA-SPT and proposed SA-
CPN-N1 algorithms are able to improve the initial SPT
solutions with a moderate effort. A prototype implementa-
tion of tabu search algorithm (TS-CPN-N1) has also been
tested and the obtained results are comparable to the SA
based search. It is expected that the tests with other neigh-
bourhood operators would further improve the obtained re-
sults, which is one of the tasks for the future work.

6. CONCLUSIONS
The presented results indicate that the proposed combina-
tion of CPN models, sequence based conflict resolution
and local search performs relatively well with a moderate
computational effort. The approach may be interesting for
practice, in particular because of the ability to use vari-
ous existing PN or CPN models of different problems. In
general, any scheduling problem can be optimized that can
be represented by a timed Petri net in such a way that re-
lations among jobs and shared resources are fixed and a
shared resource always participates in the given job’s op-
eration sequence, regardless or the determined schedule.

The Petri net scheduling methods have advantages
in unified representation of different aspect of underlying
manufacturing process in a well defined framework. The
investigations show, however, that the related optimiza-
tion methods are not as effective as some methods devel-
oped in the Operations Research field. The link of two
research areas could be helpful in bridging the gap be-
tween highly effective algorithms developed for solving

academic scheduling benchmarks and complex real-life
examples where even the development of a formal model
can be difficult.

ACKNOWLEDGMENTS
The presented work has been partially performed within
Competence Centre for Advanced Control Technologies,
an operation co-financed by the European Union, Euro-
pean Regional Development Fund (ERDF) and Republic
of Slovenia, Ministry of Higher Education, Science and
Technology.

REFERENCES
Basile, F., Carbone, C. and Chiacchio, P., 2007. Simu-

lation and analysis of discrete-event control systems
based on Petri nets using PNetLab,Control Engineer-
ing Practice, 15, 241–259.

Blazewicz, J., Domschke, W. and Pesch, E., 1996. The job
shop scheduling problem: Conventional and new so-
lution techniques,European Journal of Operational
Research, 93, 1–33.

Bowden, F. D. J., 2000. A brief survey and synthesis of the
roles of time in petri nets,Mathematical & Computer
Modelling, 31, 55–68.

Brucker, P., 2001.Scheduling Algorithms, Springer-Verlag
Berlin Heidelberg.

Dell’Amico, M. and Trubian, M., 1993. Applying tabu
search to the job-shop scheduling problem,Ann.
Oper. Res., 41, 231–252.

Gradǐsar, D. and Mǔsič, G., 2007. Production-process
modelling based on production-management data: a
Petri-net approach,International Journal of Com-
puter Integrated Manufacturing, 20 (8), 794–810.

Haupt, R., 1989. A survey of priority rule-based schedul-
ing, OR Spectrum, 11 (1), 3–16.

Jain, A., Rangaswamy, B. and Meeran, S., 2000. New and
”stronger” job-shop neighborhoods: A focus on the
method of nowicki and smutnicki(1996),Journal of
Heuristics, 6 (4), 457–480.

Jensen, K., 1997. Coloured Petri Nets: Basic Con-
cepts,Analysis Methods and Practical Use, Vol. 1, 2
edn, Springer-Verlag, Berlin.

Lakos, C. and Petrucci, L., 2007. Modular state space ex-
ploration for timed Petri nets,International Journal
on Software Tools for Technology Transfer, 9, 393–
411.

Lee, D. Y. and DiCesare, F., 1994. Scheduling flexible
manufacturing systems using Petri nets and heuristic
search,IEEE Transactions on robotics and automa-
tion, 10 (2), 123–132.

Löscher, T., Mǔsič, G. and Breitenecker, F., 2007. Opti-
misation of scheduling problems based on timed petri
nets,Proc. EUROSIM 2007, Vol. II, Ljubljana, Slove-
nia.

Mujica, M., Piera, M. A. and Narciso, M., 2010. Revis-
iting state space exploration of timed coloured petri
net models to optimize manufacturing system’s per-
formance,Simulation Modelling Practice and The-
ory, 18, 1225–1241.

688

Mušič, G., 2008. Timed Petri net simulation and related
scheduling methods: a brief comparison,The 20th
European Modeling & Simulation Symposium, Cam-
pora S. Giovanni (Amantea, CS), Italy, pp. 380–385.

Mušič, G., 2009. Petri net base scheduling approach com-
bining dispatching rules and local search,21th Eu-
ropean Modeling & Simulation Symposium, Vol. 2,
Puerto de La Cruz, Tenerife, Spain, pp. 27–32.

Mušič, G., Löscher, T. and Breitenecker, F., 2008. Sim-
ulation based scheduling applying Petri nets with
sequences and priorities,UKSIM 10th International
Conference on Computer Modelling and Simulation,
Cambridge, UK, pp. 455–460.

Nowicki, E. and Smutnicki, C., 1996. A fast taboo search
algorithm for the job shop problem,Management Sci-
ence, 42 (6), 797–813.

Piera, M. A. and Mǔsič, G., 2011. Coloured Petri net
scheduling models: Timed state space exploration
shortages,Math.Comput.Simul., p. in press.

Pinedo, M. L., 2008.Scheduling: Theory, Algorithms, and
Systems, 3rd edn, Springer Publishing Company, In-
corporated.

Taillard, E., 1993. Benchmarks for basic scheduling prob-
lems, European Journal of Operational Research,
64, 278–285.

Taillard, E. D., 1994. Parallel taboo search techniques for
the job shop scheduling problem,Informs Journal on
Computing, 6, 108–117.

Tuncel, G. and Bayhan, G. M., 2007. Applications of
Petri nets in production scheduling: a review,Interna-

tional Journal of Advanced Manufacturing Technol-
ogy, 34, 762–773.

Vaessens, R. J. M., Aarts, E. and Lenstra, J., 1996. Job
shop scheduling by local search,INFORMS Journal
on Computing, 8, 302–317.

van Laarhoven, P., Aarts, E. and Lenstra, J., 1992. Job
shop scheduling by simulated annealing,Operations
Research, 40, 113–125.

Watson, J. P., Whitley, L. D. and Howe, A. E., 2005. Link-
ing search space structure, run-time dynamics, and
problem difficulty: A step toward demystifying tabu
search,Journal of Artificial Intelligence Research,
24, 221–261.

Yu, H., Reyes, A., Cang, S. and Lloyd, S., 2003. Com-
bined Petri net modelling and AI based heuristic hy-
brid search for flexible manufacturing systems-part
II: Heuristic hybrid search,Computers and Industrial
Engineering, 44 (4), 545–566.

AUTHOR BIOGRAPHY
GAŠPER MUŠIČ received B.Sc., M.Sc. and Ph.D. de-
grees in electrical engineering from the University of
Ljubljana, Slovenia in 1992, 1995, and 1998, respec-
tively. He is Associate Professor at the Faculty of
Electrical Engineering, University of Ljubljana. His re-
search interests are in discrete event and hybrid dynam-
ical systems, supervisory control, planning, scheduling,
and industrial informatics. His Web page can be found
at http://msc.fe.uni-lj.si/Staff.asp.

689

