
SECURITY IN SENDING AND STORAGE OF PETRI NETS BY SIGNING AND
ENCRIPTION

Íñigo León Samaniego(a), Mercedes Pérez de la Parte(b), Eduardo Martínez Cámara(b),
Juan Carlos Sáenz-Díez Muro(a)

 (a) University of La Rioja. Industrial Engineering Technical School. Department of Electrical Engineering. Logroño,
Spain

 (b) University of La Rioja. Industrial Engineering Technical School. Department of Mechanical Engineering. Logroño,
Spain

inigo.leon@gmail.com, mercedes.perez@unirioja.es, eduardo.martinezc@unirioja.es, juan-carlos.saenz-diez@unirioja.es

ABSTRACT
The aim of this paper is double. On the one hand, to
provide a standard way to hide all or part of a Petri net
that could contain sensitive information, such as a
company that represents a secret production process
through Petri nets (privacy). On the other hand also as
standard ensure that Petri net has not been altered
(integrity) and that who sends or firm that Petri net is
who he say he is (non-repudiation).

To ensure the privacy of an entire Petri net (or a
part of it) the best solution is not to prevent access to
such information, such as hiding in a safe or behind a
firewall, but encrypt that information, even being to
view. Today it is easier to open a safe or circumvent a
firewall than to break an encryption standard algorithm
(which, incidentally, is impossible nowadays).

As for the integrity and non-repudiation, the
solution again is not to deliver the Petri net 'in hand' to
avoid disruptions and to know who delivers it (since we
are in the Internet age). The solution is to digitally sign
all or part of a Petri net so that reliably to know who has
performed the firm, and be able to detect any
unauthorized modification of any of the signed data.

The aim of this paper is to show how to encrypt the
selected part of the graph and to sign the Petri net, so
that the obtained file compliances with the desired
signature and encryption. So, in this final file, all the
information (and only that) referred to the shaded part is
encrypted and will not be interpretable. In particular,
anything will be know about the nodes p1 and p2 or
transitions t1 and t3: their constitute a secret process. In
addition, this file will contain additional information
that will verify the integrity of the file to prevent anyone
to modify and information about who has signed this
Petri net. The solution we propose is to use PNML
representation of Petri nets and XMLEncryption
standards for encryption and for signing XMLSignature.

Keywords: Petri nets, Encryption, Digital signature,
Privacy, Integrity, Authentication, non-repudiatability

1. INTRODUCTION
This paper consits on the application on Petri Nets

of some of the latest standard technologies used in
computer security. The idea is to provide security and
protection of information in data storage and sharing. In
particular, we will achieve privacy, authentication,
integrity and non-repudiatability data. To achieve this,
we introduce some concepts such as XML, digital
signature, encryption and PNML (Petri Net Marked
Language).

Throughout the whole paper standard
Technologies are used, but, in order to implement them,
in some cases it is necessary to introduce a
transformation to the data (without loss of information).

1.1. Privacy

This term is related with the prevention of
unauthorized access to information. The solution is not
to prevent physically access to such information, eg in a
safe hiding or behind a firewall, but to encrypt the
information. Nowadays it is easier to open a safe or to
circumvent a firewall than to break an encryption
standard algorithm (which today is impossible).

1.2. Integrity

The integrity of the data will be obtained if we can
avoid or at least detect unauthorized modification of
information.

1.3. Authentication

Authentication ensures that people assuring that
they say or sign the data, are actually who they say they
are. This avoids receiving data from a person posing as
another.

1.4. Non-repudiatability

It will be obtaided if we can prevent anyone saying
that has not sent or modify something done. It should be
possible to assure that a preson have done something.

The solution for authentication, integrity and non

repudiatability fails to deliver the information 'in hand'

605

to avoid disruptions and to know who gives it, as we are
in the era of Internet and technology. The solution is
then to digitally sign all or part of the data so that we
know who has made the signing of a reliable and be
able to detect unauthorized modification of any of the
signed data.

1.5. XML
XML is a metalanguage for defining other

languages. XML is not really a particular language, but
a way of defining languages for different needs. XML is
also a standard way to exchange structured information.
It is based on distributed hierarchical labels containing
data. The XML files are text files. The work is based on
this format for implementing information security.

1.6. PNML

Marked Petri Net Language (PNML) is an XML
language designed to represent Petri nets. With this
language a Petri net can be stored in a text file (XML),
without loss of information.

1.7. Digital certificate

A digital certificate is a digital file non-transferable
and non-modifiable generated by a trusted third party
called Certificate Authority (CA), that associates a
public key to a person or entity. For a certificate to
perform its tasks need to use a private key that only the
owner possesses.

1.8. Digital signature

It is equivalent to the conventional signature. It is
an addition to the document you signed and indicates
that it agrees with what is said in it. The digital
signature provides authentication features, integrity, and
non repudiation. Computationally speaking, it is a
process thst transforms the original message using the
private key, and anyone with the signer's public key can
verify this.

1.9. Encrypt and Decrypt

Encryption is the process to convertí in unreadable
some information considered as important. Decoding is
the reverse: from the encrypted content becomes legible
original content. Keys are used to encrypt and decrypt.
In the case that the key to encrypt and decrypt is the
same, it is called symmetric encryption. If encryption is
made with a key but decryption is made with a different
key, it is called asymmetric encryption.

2. APPROACH

The goal of this work is to hide all or part of a Petri

net that may contain sensitive information, such as a
company that represents a secret production process
through Petri nets (privacy). On the other hand, another
goal is to ensure with standard resources that a Petri net
has not been altered (integrity), and that the sender or
firmer of the Petri net is who sais to be (authentication)

and furdermore it may not have been another (non-
repudiation).

Let us suppose we have the following Petri net.

Figure 1: Petri net with a part that want to be hidden

It will be proposed how to encrypt the selected part of
the graph, and to sign the Petri net, so that the obtained
file meets the desired signature and encryption. So in
this final file, all the shaded information (and only that)
is encrypted and will not be interpretable. In particular,
we will not know anything about the node p2 or
transitions t1 and t3: it is a secret process. In addition,
this file will contain additional data that will verify the
integrity of the file to prevent that anyone modify it, as
well as data about who has signed this Petri net.

3. TECHNOLOGIES

3.1. XMLEncryption

Encryption is a standard of XML files. It can be
used symmetric or asymmetric encryption, but in this
case, it is preferable to use symmetric encryption,
because it is computationally less demanding.

The idea behind this encryption is to replace the
XML elements that want to be encrypted by another
piece of XML that contains encrypted information and
data about the algorithms used for encryption.

When a file non-XML is encrypted, the only
option is to encrypt it completely. When we apply this
technology to XML, it permits to define specific
fragments of the document that want to be encrypted or
even to transform the document before applying
encryption.

Whatever the origin of data, the result is always an
XML element. Typically, this document has all the
information needed to be deciphered. The information
that can be found is:

• Encryption algorithm: is the name of a method
for encrypting information. It may not be included,
being necessary to be know by both the part that
encriptes the file and the part that decryptes it.

• Encrypted information: this part must always be
present.

• Name of the password used: it is optional. It is
used when there is a set of keys, and have to be also

606

known by both the part that encriptes the file and the
part that decryptes it..

• Encrypted password: it is optional. The part that
encrypts the document must have a public or a private
key. With this key it can encrypt the password used to
encrypt the content. The part that decrypts the document
must have the other key.

Below is an example of XMLEncryption. This is
the original document:

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277
5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

Figure 2: Original document with XMLEncryption

This is the document after encrypt the credit card

(Figure 3). In this example we have only the encrypted
information and we have no information about the key
or the encryption algorithm.

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>

<Number>
<EncryptedData
xmlns='http://www.w3.org/2
001/04/xmlenc#'
Type='http://www.w3.org/20
01/04/xmlenc#Content'>
<CipherData>
<CipherValue>A23B45C56</Ci
pherValue>
</CipherData>
</EncryptedData>

</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>

</PaymentInfo>
Figure 3: Encrypted document with XMLEncryption

3.2. XMLSignature

It is a standard of digital signature of files, not
necessarily XML files. However, the final file is always
an XML document. It requires digital certificates and
public and private keys for its operation. There are three
alternatives:

• Envelope: The result is the original XML file to
which a signature element is added in the XML file
itself.

• Enveloping: The result is an XML file with the
signature, and within it, there are the original elements
of the original XML file.

• Detached: The result is the original file and,
separately, an XML file with the signature of that file.

It really does not matter which one to use. They are

simply different ways of organizing the generated
signature.

Figure 4: XML obtained after applying XMLSignature

A signature as must contain, accordingly with XML
Signature:

• Canonicalization method: Two XML documents
are equivalent if they represent the same information. A
method of canonicalization transforms an XML
document into another equivalent one. All XML
documents equivalent, since they are canonicalized
using the same method, result in the same XML. It is
applyed before signing. If a method is not specified, one
of them is assigned by default.

• Reference: There may be several references
within a single firm. In each reference the part of the
document that is signed and the hash algorithm used are
indicated. A summary algorithm generates a sequence
of bytes of fixed length from contents of arbitrary
length. This sequence of bytes is different for each
content.

• Information on the key signature can optionally
include the data necessary for validation. This part can
indicate the public key directly, through a sequence of
characters that identifies it or through a URL.
Additionally it can also have more information about
who has signed it: name, organization, country...

607

• Transformations: It is possible that what want to
be signed is not the complete document, but some
information of it. With the changes you can do almost
anything, from selecting only certain parts, to change
the structure of XML, or to include other XML
fragments. If it is not necessary to apply any
transformation before signing you can skip this part.

The end result of applying XML Signature is an
XML element of the form shown in Figure 4.

4. PROPOSAL

4.1. Encription

Here are presented 4 equivalent representations of
a PN: as graph, code, matrix, and PNML.

Graph:
(see figure 1)

PNML:

Figure 7: Example of a Petri net defined by PNML.

Matrix:
 p1 p2 p3

t1 - 1 1 1

t2 1 0 -1

t3 0 -1 1

Figure 6: Example of a Petri net defined by its incidence
matrix.

Code:
if (p1>0) then
 p1 <- p1 – 1
 p2 <- p2 + 1
 p3 <- p3 + 1
if (p2>0) then
 p2 <- p2 - 1
 p3 <- p3 + 1
if (p3>0) then
 p3 <- p3 – 1
 p1 <- p1 + 1

Figure 5: Example of a Petri net defined by code.

The proposed solution is to use the PNML

representation of Petri nets, and from it to use
XMLEncryption standards for encryption and
XMLSignature for the signature.

A little example will be developed to show that it
reduces to perform the signature and / or encrypted
operations on a Petri subnet of the original network, and
that also the matrix associated to the network more
appropriated can be selected.

A Petri subnet is a submatrix of the matrix
associated to the network. In the matrix, the rows are
associated to transitions, and the columns to nodes. This
way we can easily show that there exists a single matrix
associated to a PN, but if we exchange two rows or two
columns of the matrix, the result also defines the same
Petri net (or more precisely, it defines an equivalent
Petri net).

Figure 8: Example of equivalent Petri nets

All these would be equivalent representations. It
can be shown that indeed an equivalence relation is
between matrices M and M'. The equivalence relation is
M r M 'if we can get from M to M' by swaping rows
and/or columns. To test compliance reflexive relations
(reflexive), symmetric (symmetric) and transitive
(transitive).

Let T be the set of transformations of a matrix of
order nxm (n rows and m columns). Let be Tfij, with i
<= n, and j <= n, the transformation that exchanges the
row i with row j. Obviously Tfij = Tfji. Similarly, we
define Tckl with k<=m and l<=m, as the transformation
that exchanges the column k to column l. Similarly,
Tckl = Tclk. Let T = {Tabs, s> = 1 | = Tfij Tabs, a = i, b
= j, i <= n, j <= n or = Tckl Tabs, a = k, b = l, k <= m, l
<= m} where s is a sequence of consecutive natural
numbers beginning with 1. Thus Tab1 is the first
transformation, Tab2 the second, ..., and Tabn is the
nth. Thus we have an ordered set of transformations
applied to one mxn matrix in a particular order. It can
be shown that the order in which transformations are

608

applied does not influence the final result, but it is not
necessary for our purpose.

Let r be the following relationship we want to
study: A matrix M is related to an N, M r N, if you can
get from M to N with a finite number of
transformations. A transformation will be an exchange
of two rows or two columns. Let show that this relation
is of equivalence:

• Reflexive: M r M. Obviously, since you do not
need any exchange of rows or columns. In this case T =
Ø.

• Symmetric: if M r M 'then M' r M. If from M p
exchange operations are made from in rows and / or
columns to arrive at M', from M' the same operations
are performed in reverse order in order to arrive at M.
Thus if T = {Tabs, s = 1 .. p} and the number of
transformations is p> 0, then T = {Tab (n-s +1), s = 1 ..
p} is the set of transformations leading from M 'to M.

• Transitive: if M r M' and M' r M r M * then M r
M *. Let T1 = { Tabs, s = 1 .. p} of size p the set of
transformations that lead from M to M' and let T2 =
{Tabr, s = 1 .. q} q-sized, the set of transformations that
lead from M' to M*. Then T = { Tabt with t = s if t <= p
and t = p + r if t> p} is a sequence of transformations
that lead from M to M*.

Therefore it is shown that r is an equivalence
relation. Thus, we can say that a Petri net corresponds to
an equivalence class of the relation r. Thus, we can
choose on what representative of the class to make the
transformations.

With this in mind, given a matrix representing a
Petri net, if we eliminate some row and / or a column, a
valid subset results. This subnet is what we want to
process. As a row is associated to a place and a
transition to a column, any subset of places and
transitions can be selected as a valid subnet.

Following the selection of places and transitions
that are to be processed, a matrix having first nodes and
transitions th eones that we want to encrypt can be
chosen as representative of the Petri net. In our case:

Figure 9: Petri net representing the equivalence class

Interpreting the Figure 9, differnt parts can be

seen:
• The gray part corresponds to the parts that are

completely into the process. In this case p2, t1, t3, the
arc from t1 to p2, and the arc from p2 to t3. It is denoted
as hidden subnet.

• The blue arcs indicate arcs (> 0) that part from a
hidden transition but become to a visible place or from a
visible place to a hidden transition (<0). It is denoted as
hidden transitions subnet.

• The red part corresponds to the arcs starting from
a hidden node to a visible transition (<0) or from a
visible transition to a hidden node (> 0). It is denoted as
hidden nodes subnet.

• The uncoloured part are nodes, transitions, and
arcs that are not hidden. It is denoted as visible subnet.

Thus, a Petri net that wants to be encrypted can be

represented by a matrix as follows:

Figure 10: Parts in an ordered encrypted Petri net

Being H the hidden subnet, HT the hidden

transitions subnet, HN the hidden nodes subnet, and V
the visible subnet.

What will be encrypted, in order to not to give
information about the structure, corresponds to the
matrices H, HT and HN, which are those affected by
any hidden element.

Let us now see how would be the PNML
representation associated with this subnet. Within the
document PNML three main elements appears:

• place: defines a place with an id and a name (a

column of the matrix).
<place id="p1">
 <name>
 <text>nodo 1</text>
 </name>
</place>

• transition: defines a transition, also with an id and

a name (a row of the matrix).
<transition id="t2">
 <name>
 <text>transicion 2</text>
 </name>
</transition>

• arc: defines an arrow with an ID, from one node

to a transition or from a transition to a node, defined by
its id (one matrix element different from 0).

<arc id="a2" source="t1" target="p2">
 <inscription>
 <text>1</text>
 </inscription>
</arc>

Note that no matter the order in which these

elements are in the PNLM file. Just as there are several
matrices that represent the same net, the same goes for
files PNML. The order in the file provides no
information. It is similar that appear first all places, then
all the transitions and finally all the arcs, that all of them

609

interspersed with each other. Thus, once we have
defined what is the subset of nodes and transitions that
we want to encrypt, what will be done in the PNML file
is to join all these nodes, transitions and arcs that
contain as the origin or the end any of these nodes and
transitions, and include a new XML element called
'subnet' within the PNLM document, with a concrete
and unique id. Later it would be indicated what does
this id is used for.

Therefore, in the example, the subset would be

{p2, t1 and t3}; the new file applying these changes to
the original PNML would result this way, grouping
these three elements together with the arcs that have one
of them as a source or destination; that is, everything
associated with the matrices H, HT and HN. The visible
subnet, V, remains out of this item.

Figure 11: PNML of the example, grouping the
elements of H, HT y HN.

Notice that this PNML file does not meet the

official PNML grammar, but these changes can always
be undone to leave the original PNML file (that is, the
transformation is reversible). The goal is not thatthe
encrypted and/or signed document meets the grammar,
but that, alter decrypt and/or check the signature, the
original file can be obtained. To obtain the original file
it is Orly neccssary to take the elements from the
'subnet' labels.

Note that multiple subnets can be encrypted just
considering all of them as a single subnet with the union
of the nodes and transitions of them.

Once we got the PNML file in this format, we can
apply the encryption via XMLEncryption. The final file
is shown in Figure 12.

Notice that the content of element 'subnet' no
longer exists and has been replaced by an element
'EncryptedData'. The subnet has already been

encrypted. A possible graph representation would be
Figure 13, where the subnet is the visible subnet V and
the subnets H, HT, and HN are hidden in the black box.

Figure 12: PNML after applying XMLEncription.

Figure 13: Grafic representation of the Petri net after
applying XMLEncription.

Once encrypted information, even the number of

nodes, transitions, and arcs that are contained in that
black box is unknown. The final matrix associated is
represented in figure 14. Black areas are those for which
we have no information, and even the size of the matrix
is unknown.

Figure 14: Matrix representation of the Petri net after
applying XMLEncription.

Note that in the hidden network no arc comes in or

comes out. This is a security decision. However, we
could define the arcs that go from inside out or from
outsider in, hiding the place or the transition of
destination in the hidden subnet, replacing the node /
transition id of origin or destination inside the hidden
net by the own id of the net. Thus, the final file would
be as follows:

610

Figure 15: Alternative encryption allowing arc
knowledge in the hidden Petri net.

Thus, the final graph representation would be

similar to Figure 16. Note that although arcs to / from
the hidden subnet exist, they do not indicate which is
the transition or node of origin or destination within the
hidden subnet.

Figure 16: Graphic representation of the alternative
encryption of Figure 15..

4.2. Signature
In this case what is followed is that the Petri net,

once completed, can not be modified without being
detected, and that is is possible to know exactly who
firms it.

I could do A development similar to the one
carried out with encryption could be made, by signing
only part of the network, but in this case it will be
simplifyed and the entire network will be signed. For
this, XMLSignature is used, and together with a
certificate and a public key, the file generated above is
signed. Thus, the final file is as shown in Figure 17.

REFERENCES
Fan YS, Zhou M, et al., 2010, Data-Driven Service

Composition in Enterprise SOA Solutions: A Petri
Net Approach. Tan W, IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND
ENGINEERING Volume: 7 Issue: 3 Pages:
686-694

Figure 17: Example of the Petri net after applying
XMLSignature.

Fahmy Hma, ANALYSIS OF PETRI NETS BY

PARTITIONING - SPLITTING PLACES OR
TRANSITIONS. 1993. INTERNATIONAL
JOURNAL OF COMPUTER MATHEMATICS
Volume: 48 Issue: 3-4 Pages: 127-148

Nordbotten NA. XML and Web Services Security
Standards. 2009, IEEE COMMUNICATIONS
SURVEYS AND TUTORIALS Volume: 11
Issue: 3 Pages: 4-21 Published: 2009

611

Ekelhart A, Fenz S, Goluch G, et al. XML security - A
comparative literature review. 2008. JOURNAL
OF SYSTEMS AND SOFTWARE Volume: 81
Issue: 10 Pages: 1715-1724

Meadors K. Secure electronic data interchange over the
Internet. 2005 IEEE INTERNET COMPUTING
Volume: 9 Issue: 3 Pages: 82-89

Selkirk A. XML and security. 2001 BT
TECHNOLOGY JOURNAL Volume: 19 Issue:
3 Pages: 23-34

Selkirk A. Using XML security mechanisms. 2001 BT
TECHNOLOGY JOURNAL Volume: 19 Issue:
3 Pages: 35-43

Nordbotten NA. XML and Web Services Security
Standards. 2009 IEEE COMMUNICATIONS
SURVEYS AND TUTORIALS Volume: 11
Issue: 3 Pages: 4-21 Published: 2009

Brooke PJ, Paige RF, Power C. Document-centric XML
workflows with fragment digital signatures. 2010
SOFTWARE-PRACTICE & EXPERIENCE
Volume: 40 Issue: 8 Pages: 655-672

612

