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ABSTRACT 
Solvency II establishes EU-wide capital requirements 
and risk management standards for (re)insurers. The 
capital requirements are defined by the Solvency 
Capital Requirement (SCR), which should deliver a 
level of capital that enables the (re)insurer to absorb 
significant unforeseen losses over a specified time 
horizon. It should cover insurance, market, credit and 
operational risks, corresponding to the Value-at-Risk 
(VAR) subject to a confidence level of 99.95% over one 
year. Standard models are deterministic, scenario-based 
or covariance-based, i.e. non-stochastic. They don’t 
optimise the investment portfolios. These are two major 
deficiencies. A stochastic approach is proposed, which 
combines Monte Carlo Simulation and Optimisation. 
This method determines minimal variance portfolios 
and calculates VAR/SCR using the optimal portfolios’ 
simulation distributions, which ultimately eliminates the 
standard models’ deficiencies. It offers (re)insures 
internal model options, which can help them to reduce 
their VAR/SCR providing higher underwriting 
capabilities and increasing their competitive position, 
which is their ultimate objective. 

 
Keywords: Solvency II stochastic model, VAR/SCR 
reduction, portfolio optimisation – minimal variance, 
Monte Carlo simulation 

 
1. INTRODUCTION 
The Solvency II regulations are fundamentally 
redesigning the capital adequacy regime for European 
(re)insurers and will be effective from 1st January 2013.  
 Solvency II establishes two levels of capital 
requirements: i) Minimal Capital Requirement (MCR), 
i.e. the threshold below which the authorization of the 
(re)insurer shall be withdrawn; and ii) Solvency Capital 
Requirement (SCR), i.e. the threshold below which the 
(re)insurer will be subject to a much higher supervision. 
The SCR should deliver a level of capital that enables 
the (re)insurer to absorb significant unforeseen losses 
over a specified time horizon. It should cover, at a 
minimum, insurance, market, credit and operational 
risks, corresponding to the VAR of the (re)insurer’s 
own basic funds, subject to a confidence level of 
99.95% over a one-year period.  

Solvency II offers two options for calculating 
VAR/SCR, i.e. by applying either: i) a standard model, 
which will be provided by the regulator; or ii) an 
internal model developed by the (re)insurer’s risk 
department. 

The standard models are non-stochastic risk 
models. They are rather deterministic, scenario-based or 
covariance models. They are also conservative by 
nature and generic across the EU so they cannot 
consider the company’s specific factors. Moreover, they 
do not use optimisation to determine the minimal 
variance investment portfolios in order to minimise the 
financial risk for the (re)insurers. Thus the calculated 
VAR/SCR will be higher. These are apparent most 
important limitations of the standard models.  

For example, the deterministic model applies 
analytically calculated or estimated input parameters to 
calculate the results. However, the likelihood of the 
outcome is not considered at all. Also, the scenario-
based models consider the worst, most likely and best 
case scenarios. However, they fail to answer the two 
basic questions: i) how likely are the worst and best 
case scenarios? And more importantly, ii) how likely is 
the most likely case? 

Solvency II offers capital-reduction incentives to 
insurers that invest in developing advanced internal 
models, which apply a stochastic approach for risk 
management and control. Thus, insurers will benefit 
from using internal models. A very good explanation of 
developing the Enterprise Risk Management (ERM) 
frameworks in (re)insurance companies for Solvency II 
is presented in a handbook edited by Cruz (2009).  

There are a number of published examples of 
recommended internal model, which could be used for 
Solvency II (Cruz 2009). These suggested internal 
model examples don’t consider optimisation to 
determine the minimal variance investment portfolios in 
order to minimise the financial risk, which is a 
significant deficiency.   

 The stochastic models usually apply the Monte 
Carlo Simulation method, which assigns distributions of 
random variables to the input parameters and the 
calculated results are presented in the form of a 
histogram. This allows statistical and probabilistic tools 
to be used to analyse the results. A comprehensive 
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elaboration of Monte Carlo Simulation in Finance is 
given by Glasserman (2004). 

An investment portfolio is defined by the fraction 
of the capital put in each investment. The problem of 
determining the minimum variance portfolio that yields 
a desired expected return was solved by Markowitz in 
the 1950’s. He received the 1991 Nobel Prize for his 
work in Economics (Markowitz 1987). Mostly, the 
Optimisation methodology is used to find the minimum 
variance portfolio in order to minimise the financial 
risk.  

VAR is a widely used financial risk measure. The 
approach to calculate VAR is well summarised by 
Jorion (2011). This approach includes the VAR 
Parametric method and VAR Monte Carlo Simulation 
method.   

This paper proposes a stochastic approach to risk 
modelling for Solvency II. This method applies 
combined Monte Carlo Simulation and Optimisation 
methodologies. The method uses Optimisation to 
calculate the minimal variance portfolios that yield 
desired expected returns to determine the Efficient 
Frontier of optimal portfolios. Monte Carlo Simulation 
is used to calculate VAR/SCR for every portfolio on the 
Efficient Frontier by using the respective portfolios’ 
simulation distributions. Therefore, by using the 
synergy of Monte Carlo Simulation and Optimisation, 
the method eliminates the deficiencies and limitations, 
which are identified above. 

This approach can help (re)insures to develop and 
improve their internal risk models in order to reduce 
their VAR/SCR. Consequently, this will provide 
insurers with higher underwriting capabilities and 
increase their competitive position, which is their 
ultimate objective. 

According to research by Mercer Oliver Wyman, 
the impact of the four quantifiable risks on the 
economic capital of insurance companies is: i) 64% 
Investment Asset Liability Management (ALM) Risk, 
i.e. Market Risk; ii) 27% Operational Risk; iii) 5% 
Credit Risk; and iv) 4% Insurance Risk. Considering 
that the Market (ALM) Risk is the top contributing risk 
factor, the method is demonstrated by using an example 
of Market (ALM) Risk Management. Also, in order to 
facilitate the presentation, a simple Market (ALM) Risk 
model is demonstrated.  

Only the practical aspects of the Market (ALM) 
Risk modelling are discussed. Microsoft™ Excel® and 
Palisade™ @RISK® and RISKOptimizer® were used 
in these experiments.  

 
1.1. Related Work 
The following is a summary of some published works 
related to Market (ALM) Risk modelling for Solvency 
II. 

1.1.1. Market Risk in the GDV Model  
The GDV (Gesamtverband der Deutschen 
Versicherungswirtschaft) Model is the standard model 
of the German Insurance Association for Solvency II 
(GDV 2005). This model is to some extent a Static 

Factor deterministic model, where the risk capital 
calculation is based on linear combinations of static risk 
factors. Actually, the model is mostly a Covariance (or 
VAR) Model, which is a very simplified version of 
Stochastic Risk Models. 

1.1.2. Market Risk in the Swiss Solvency Test (SST) 
Model  

This is the standard model of Swiss Federal Office of 
Private Insurance. The Market Risk in the SST model is 
handled by the ALM model. The SST ALM model is a 
Risk Factor Covariance model complemented with 
Scenario-Based models (SST 2004).  

1.1.3. Bourdeau’s Example of Internal Market Risk 
Model  

Michele Bourdeau published an example of an internal 
model for Market Risk. This model calculates VAR 
using Monte Carlo Simulation. This is an example of a 
true Stochastic Risk Model (Bourdeau 2009). 

2. ALM RISK MODELLING PROCEDURE 
The following sections demonstrate the ALM Risk 
modelling procedure for Solvency II step-by-step. 
Actual financial market data are used in the 
presentation. 
  
2.1. Problem Statement 
The following is a simplified problem statement for the 
demonstrated investment ALM risk model under 
Solvency II.  

Determine the minimum variance investment 
portfolio that yields a desired expected annual return to 
cover the liabilities of the insurance company. Calculate 
the VAR considering all the company’s specific factors 
including their risk appetite. The model should allow 
the insurer to reduce their VAR (SCR) providing for 
higher underwriting capabilities and increasing their 
competitive position. The model should help the 
company to achieve their ultimate objective. 

 
2.2. Calculating Compounded Monthly Return 
The monthly returns of four investment funds are 
available for a period of seven years, i.e. 1990-1996 
(Table 1). Note that the data for the period July/1990- 
June/1996 are not shown. 
 

Table 1: Monthly Return 
Month Fund 1 Fund 2 Fund 3 Fund 4 

Jan/1990 0.048 ‐0.01  ‐0.06 ‐0.01
Feb/1990 0.066 0.096  0.037 0.038
Mar/1990 0.022 0.022  0.12 0.015
Apr/1990 0.027 ‐0.04  ‐0.02 ‐0.04
May/1990 0.112 0.116  0.123 0.075
Jun/1990 ‐0.02 ‐0.02  ‐0.04 ‐0.01
Jul/1996 0.086 ‐0.07  ‐0.12 ‐0.02

Aug/1996 0.067 0.026  0.146 0.018
Sep/1996 0.089 ‐0.03  ‐0.04 0.092
Oct/1996 0.036 0.117  0.049 0.039
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The Compounded Monthly Return (CMR) is calculated 
for each month and each investment fund from the 
given Monthly Return (MR) fund using the following 
formula (Table 2):  

 
CMR = ln (1 + MR) 

 
Table 2: Compounded Monthly Return (CMR) 

Month CMR1 CMR2 CMR3 CMR4 
Jan/1990 0.047  ‐0.01  ‐0.06  ‐0.01
Feb/1990 0.063  0.092  0.036  0.038
Mar/1990 0.021  0.022  0.113  0.015
Apr/1990 0.027  ‐0.04  ‐0.02  ‐0.04
May/1990 0.106  0.11  0.116  0.073
Jun/1990 ‐0.02  ‐0.02  ‐0.04  ‐0.01
Jul/1996 0.082  ‐0.07  ‐0.13  ‐0.02

Aug/1996 0.065  0.026  0.136  0.018
Sep/1996 0.085  ‐0.03  ‐0.04  0.088
Oct/1996 0.036  0.111  0.048  0.038

 
2.3. Fitting Distributions to Compounded Monthly 

Return 
For the Monte Carlo method, we need the distribution 
of the compounded monthly return for each investment 
fund.  Thus, for each investment fund, we determine the 
best fit distribution based on the Chi-Square measure. 
For example, the best fit distribution for the 
compounded monthly return of Fund 4 (i.e. CMR4) is 
the normal distribution presented in Figure 1. 
 

 
Figure 1: Fund 4 Best Fit Distribution 

 
2.4. Finding Compounded Monthly Return 

Correlations 
The compounded monthly returns of the investment 
funds are correlated. We need to find the correlation to 
allow the Monte Carlo method to generate correlated 
random values for the compounded monthly returns. 
The correlation matrix is presented in Table 3. 
 

 
 
 

Table 3: Correlation Matrix 
 CMR1 CMR2 CMR3 CMR4 
CRM 1 1 0.263  0.038 0.0868
CRM2 0.263 1  0.244 0.0895
CRM3 0.038 0.244  1 0.095
CRM4 0.087 0.089  0.095 1

 
 
2.5. Generating Compounded Monthly Return  
The Compounded Monthly Return (CAR) is randomly 
generated for each investment fund from the best fit 
distribution considering the correlations. The following 
distribution functions of the Palisade™ @RISK® are 
used:  

 
CMR1=RiskLogistic(0.0091429,0.044596)) 

 
  CMR2=RiskLognorm(1.1261,0.077433,Shift(-1.1203)) 

 
CMR3= RiskWeibull(6.9531,0.46395, Shift(-0.42581)) 

 
CMR4= RiskNormal(0.0060531,0.047225) 

 
The correlation is applied by using the 

“RiskCorrmat” function of the Palisade™ @RISK®. 
  

2.6. Calculating Compounded Annual Return by 
Fund  

The Compounded Annual Return (CAR) is calculated 
for each investment fund from the respective 
Compounded Monthly Return (CMR), using the 
following formula:  

 
CAR = 12*CMR 

 
2.7. Calculating Expected Annual Mean Return on 

the Portfolio 
The expected annual mean return on the portfolio 
(EAPR-Mean) is calculated from the asset allocation 
weights vector (Weights-V) and the vector of 
compounded annual returns of funds (CAR-V) by using 
the following Excel® formula:  

 
EAR-Mean = SumProduct(Weights-V, CAR-V)  

 
2.8. Calculating Variance, Standard Deviation and 

VAR of the Portfolio  
The variance, standard deviation and VAR of the 
portfolio are calculated from the distribution of the 
expected annual mean return on the portfolio (EAR- 
Mean) by using the following Palisade™ @RISK® 
functions:  

 
Variance = RiskVariance(EAR-Mean) 

 
Standard-Deviation = RiskStdDev(EAR-Mean) 
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VAR = RiskPercentile(EAR-Mean,0.005)   

 
2.8.1. Portfolio Simulation and Optimisation #1  
Palisade™ RISKOptimizer® is used to solve the 
portfolio simulation and optimisation problem. That is 
to find the minimal variance portfolio of investments, 
which yields sufficient return to cover the liabilities. 
Thus, the aim of the simulation and optimisation model 
is to minimise the variance of the portfolio subject to 
the following specific constraints: 

• The expected portfolio return is at least 8.2%, 
which is sufficient to cover the liabilities; 

• All the money is invested, i.e. 100% of the 
available funds is invested; and  

• No short selling is allowed so all the fractions 
of the capital placed in each investment fund 
should be non-negative. 

 
 The model should also calculate the Standard 
Deviation and VAR of the portfolio.  
 
2.8.2. Finding the Efficient Frontier of Portfolios  
Palisade™ RISKOptimizer® is used repetitively to 
solve the portfolio simulation and optimisation problem 
in order to find the Efficient Frontier of investment 
portfolios. That is to find the minimal variance 
portfolios of investments, which yield expected 
portfolio returns of at least 8.4%, 8.6%, …, 10% and 
10.2%. Thus, the aim of the simulation and optimisation 
models is to find in ten iterations, the ten minimal 
variance portfolios subject to the following specific 
constrains: 

• The expected portfolio return is at least 8.4%, 
8.6%, …, 10% and 10.2% respectively; 

• All the money is invested, i.e. 100% of the 
available funds is invested; and  

• No short selling is allowed so all the fractions 
of the capital placed in each investment fund 
should be non-negative. 

 
 The model should also calculate the Standard 
Deviation and VAR of these ten portfolios.    

 
3. RESULTS AND DISCUSSION 

 
3.1. Simulation and Optimisation #1  
The optimal portfolio found by this model has the 
following investment fractions: 14.6% in Fund 1; 11.6% 
in Fund 2; 18.6% in Fund 3; and 55.2% in Fund 4. The 
Portfolio Return is 8.2% with Variance of 19.9%, 
Standard Deviation of 44.6% and VAR of -7%. 
 The probability distribution of this optimal 
portfolio is given in Figure 2. From the graph, we can 
read the confidence levels as follows.  
 

 
Figure 2: Probability Distribution #1 

  
 The probability that the portfolio return is below 
7.5% is 49.2%. There is a 33.5% probability that the 
return is in the range of 7.5%-50%. From the simulation 
statistics we also find that there is a 43.2% probability 
that the portfolio return is negative, and 51.4% 
probability that the return is below 10%. 

From the correlation graph (Figure 3), we can 
conclude that the portfolio return is most dependent on 
the return of Fund 4 with a correlation coefficient of 
77%. The other three funds, i.e. Fund 3, Fund 2 and 
Fund 1, are less influential with correlation coefficients 
of 48%, 46% and 44% respectively. 

 

 
Figure 3: Correlation Sensitivity 

 
The regression sensitivity graph is given in Figure 

5. This graph shows how the portfolio mean return is 
changed in terms of Standard Deviation, if the return of 
a particular fund is changed by one Standard Deviation. 
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Figure 4: Regression Mapped Values Sensitivity 

 
Therefore, we can read from the graph for example, that 
if Fund 4 return is changed by one Standard Deviation, 
the portfolio return will be changed by 0.3142 Standard 
Deviations (as shown by the regression coefficient of 
0.3142). Again, the other three funds, i.e. Fund 3, Fund 
2 and Fund 1, are less influential as their regression 
coefficients are 0.1639, 0.1408 and 0.1080 respectively. 

 
3.2. Overall Simulation & Optimisation Results 
The overall results of all the eleven simulation and 
optimisations are presented in Table 4 showing the 
Mean Return, Variance, Standard Deviation and VAR 
of the optimal portfolios.   

Table 4: The overall results  
Portfolio 
No. 

Mean 
Return 

Variance Standard 
Deviation 

VAR 

1 0.082  0.199  0.446  ‐0.067
2 0.084  0.202  0.45  ‐0.088
3 0.086  0.204  0.452  ‐0.11
4 0.088  0.215  0.464  ‐0.147
5 0.09  0.222  0.471  ‐0.223
6 0.092  0.246  0.496  ‐0.257
7 0.094  0.266  0.516  ‐0.308
8 0.096  0.295  0.543  ‐0.403
9 0.098  0.33  0.574  ‐0.498

10 0.1  0.37  0.608  ‐0.608
11 0.102  0.42  0.648  ‐0.753

 
 

3.3. Efficient Frontier of Portfolios 
Efficient Frontier of the optimal portfolios is presented 
in Figure 5. 

 

 
Figure 5: Efficient Frontier of Optimal Portfolios 

 
The Efficient Frontier shows that an increase in 

expected return of the portfolio causes an increase in 
portfolio Standard Deviation. Also, the Efficient 
Frontier gets flatter as expected. This tells us that each 
additional unit of Standard Deviation allowed, increases 
the portfolio mean return by less and less. 

 
3.4. Portfolio Expected Mean Return versus VAR  
Figure 6 shows the dependency of the expected 
portfolio returns against VAR. From the graph we can 
see that an increase in expected return of the portfolio 
causes an increase in portfolio VAR in terms of money. 
(It should be noted that mathematically, VAR is a 
negative number, which actually decreases when the 
return increases.) Also, the curve on the graph gets 
flatter, again as expected. This tells us that each 
additional unit of VAR allowed, increases the portfolio 
mean return by less and less. 

 

 
Figure 6: Portfolios Return versus VAR 

 
3.5. Portfolio Standard Deviations versus VAR  
Figure 7 shows the dependency of the portfolio 
Standard Deviation against VAR.  
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Figure 7: Standard Deviation versus VAR 

 
From the graph we can see that the portfolio VAR 

is almost linearly proportional to the Standard 
Deviation. This is also as expected because a higher 
Standard Deviation translates to a higher risk, thus the 
VAR also increases in money terms (decreases 
mathematically). 

 
3.6. Decision Support 
The results presented above provide for comprehensive 
and reliable decision support for the decision makers, 
i.e. the financial risk executives of the insurance 
company. In particular, considering the Efficient 
Frontier of portfolios and the dependencies between 
portfolio expected return, Standard Deviation and VAR 
(shown in Figure 5, Figure 6 and Figure 7), the decision 
maker can decide in which assets to invest according to 
the desired expected return, risk appetite (i.e. standard 
deviation) and VAR. These results can help to reduce 
the SCR as required.  

 
3.7. The Simulation & Optimisation Approach 

Comparison with the Related Work Examples 
A comparison of the Simulation and Optimisation 
method proposed in this paper with the related work 
examples summarized in Sec. 1.1 is given below. 

3.7.1. The Simulation & Optimisation Method 
versus the GDV Model  

The GDV Model inherits its limitations from the Static 
Factor deterministic model. Also, this model is a very 
simplified Stochastic Model, which is an additional 
limitation. Moreover, the model doesn’t use 
Optimisation to minimise the variance of the investment 
portfolios of the insurer, which is another major 
limitation.  
 In contrast, the proposed method does not have 
these two major limitations because they are resolved 
by using the Monte Carlo Simulation and Optimisation 
methodologies. Thus, the proposed approach is superior 
to the GDV Model.  

3.7.2. The Simulation & Optimisation Method 
versus the Swiss Solvency Test (SST) Model  

The SST ALM model is a Risk Factor Covariance 
model complemented with Scenario-Based models. 
Therefore, The SST ALM Model has the same 
deficiencies as the Scenario-Based models and the 
Covariance Models, which are not true Stochastic 
Models. In addition, the SST ALM Model does not 
apply optimisation to minimise the variance of the 
investment portfolios, which is another major 
deficiency.  

The proposed method has eliminated these 
deficiencies by using the synergy of the Mote Carlo 
Simulation and Optimisation methodologies. Therefore, 
the proposed approach is also superior to the SST ALM 
Model. 

 
3.7.3. The Simulation & Optimisation Model versus 

Bourdeau’s Internal Market Risk Model 
Example  

The Market Risk internal model proposed by Michele 
Bourdeau is a true Stochastic Risk Model. However, it 
does not use optimisation to minimise the variance of 
the investment portfolio, which is a main limitation. In 
this sense, the proposed method has a significant 
advantage versus this example because it minimises the 
variance of the investment portfolio, which ultimately 
minimises the risk and VAR. 

4. CONCLUSION 
This paper proposed a stochastic method for risk 
modelling under Solvency II. The method combines 
Monte Carlo Simulation and Optimisation 
methodologies in order to manage financial risk.  The 
Optimisation methodology is used to calculate the 
minimal variance portfolios that yield desired expected 
returns in order to determine the Efficient Frontier of 
portfolios. The Monte Carlo methodology is used in 
order to calculate VAR/SCR for every portfolio on the 
Efficient Frontier by using the respective portfolios’ 
simulation distributions. Consequently, the synergy of 
the Monte Carlo Simulation and Optimisation 
methodologies, which are used by the method, 
eliminates the identified significant limitations of the 
standard models. Also, the method has a significant 
advantage against the internal models, which do not use 
simulation and optimisation methodologies. 

This stochastic approach can help the insurance 
and reinsurance companies to develop or improve their 
Solvency II internal risk models in order to reduce their 
VAR/SCR. Reducing the VAR and SCR will ultimately 
provide the insurance and reinsurance firms with higher 
underwriting capabilities, which will increase their 
competitive position on the market. Moreover, the 
proposed method can significantly assist the insurance 
and reinsurance companies to achieve their business 
objectives. 
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