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ABSTRACT
In this paper, we propose the scheduling system for the
Bioinformatics Resource Facility Hagenberg (BiRFH).
This system takes advantage of the fact that the facility
offers tailored solutions for the customers, which includes
having a limited amount of different programs available.
Additionally, the BiRFH system provides access to dif-
ferent hardware platforms (standard CPU, GPGPU on
NVIDIA Cuda, and IMB Cell on Sony Playstation ma-
chines) with multiple versions of the same algorithm opti-
mized for these platforms. The BiRFH scheduling system
takes these into account and uses knowledge about past
runs and run times to predict the expected run time of a
job. That leads to a better scheduling and resource usage.
The prediction and scheduling use heuristic and artificial
intelligence methods to achieve acceptable results.

The paper presents the proposed prediction method
as well as an overview of the scheduling algorithm.

Keywords: algorithms, bioinformatics, high performance
computing, molecular biology

1. INTRODUCTION

Scheduling and resource management are fundamental
tasks when running a high performance computing sys-
tem. Resource management and scheduling systems for
different processor technologies and architectures in a
single cluster are not very common although they offer
great possibilities to the user. Our system software “Bioin-
formatics Resource Facility Hagenberg” (BiRFH) allows
efficient control and management of the so-called “Meta-
Heterogeneous Cluster”. BiRFH allows one not only to
drive classic heterogeneous clusters (i.e., systems that
comprise nodes that vary just in CPU speed and RAM
size), it allows one to integrate and operate different pro-
cessor architectures simultaneously. Our resource facility
currently consists of standard Intel CPUs (Intel 2005),
NVIDIA GPUs (NVIDIA 2010), and IBM Cell Broad-
band Engines (IBM 2006). There are many strategies
available for scheduling jobs on a cluster. We focus on
the special case where jobs are based on a small number
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of algorithms with different input data. This allows run-
time prediction using heuristics and therefore an improved
deadline scheduling.

The “Bioinformatics Resource Facility Hagenberg”
is a resource management and scheduling system targeting
the needs of microbiology and bioinformatics related high
performance computing. The main features are: (1) inte-
gration and management of different hardware platforms,
(2) scheduling jobs so that the available hardware is used,
and (3) making the management and job creation more
accessible to non-technical users.

To fully enable the necessary features, and supported
by the fact that the BiRFH service is designed to be used
with a limited number of algorithms rather than allowing
arbitrary code to be uploaded and executed like on many
other standard compute clusters, BiRFH requires the algo-
rithms to be adapted and to support some defined methods.
The BiRFH framework seeks to mitigate the necessary
development effort. The system is based on a framework
that is to be included in each algorithm if possible, i. e., if
the source code is available for modification. Including
the framework directly into the source allows the use of
more advanced features and more control over the pro-
gram. Should the source for a program be unavailable, the
framework also supports the creation of wrapper programs
that can in turn execute the desired program. Regardless
of how the framework is applied, it allows the use of the
best available hardware for the selected algorithms with
the trade-off of higher development effort to enable the
algorithm on as many hardware platforms as possible.

As a further feature, BIRFH uses heuristic scheduling
and resource management algorithms in order to optimize
the cluster’s throughput.

There are many scheduling systems and resource
managers for high-performance cluster computing avail-
able (see Table 1). Most of them are designed for uniform
hardware. Almost no system allows the coupling of com-
pute platforms having different processor architectures in
a way that e. g. allows the migration of a running algo-
rithm from one type of platform to a different one. BIRFH
offers this possibility for algorithms with available source
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code by implementing a data exchange that can also be
used for hibernation, i. e., the freeing of used system re-
sources by writing the current state of the calculations to
the hard drive.

There are some other approaches to enable hetero-
geneity for compute-intensive applications. These include
OpenCL (Munshi 2011) and C++ Accelerated Massive
Parallelism (AMP) (Sutter 2011; Moth 2011). These focus
on enabling single applications flexible access to any avail-
able computing device rather than distributing instances
of algorithms over the available hardware. The BiRFH
approach focuses more on user guidance and supporting
the storage of data on the remote compute system. It
is notable, however, that Microsoft’s C++ AMP moves
the definition of heterogeneity more in the direction of
heterogeneous platforms than the previously common het-
erogeneous systems, i.e., including different processor
architectures.

BiRFH focuses on algorithms and computations for
biomolecular and bioinformatics applications. The rea-
sons for focusing especially on bioinformatics lie (1) in the
near-exponential growth of available data in the currently
booming field (Howe et al. 2008), (2) in the demands
for making high performance computing available to non-
technical users and (3) the availability of bioinformatics
knowledge in the project team. Moreover, the BiRFH
system supports a scheduling mechanism that is (1) based
on the temporal behavior of algorithms and (2) also based
on the size and the inner structure of input data to be
processed.
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Priority
Based
Scheduling v v v v
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Support ) v v
Resource
Based
Scheduling v v v
Advanced
Resource
Reservation v v
Topology
Awareness v

Table 1: Some features of well-established resource man-
agers and scheduling systems, in addition to the BiRFH
system, from (Hoelzlwimmer 2010).
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2. DATA MINING AND HEURISTICS

The terms makespan and flowtime (Pinedo 2008) are com-
monly used when classifying the success of the output of
a scheduler. More advanced scheduling techniques, i. e.,
most scheduling methods beyond simple load balancing,
require a knowledge of the expected time to complete
a task. Some solutions (Xhafa and Abraham 2008) re-
quire an estimation by the user, which is sometimes too
complicated a task for non-IT scientists, and on the other
hand does not account for different versions of an algo-
rithm optimized for the available heterogeneous hardware.
Therefore, the BiRFH approach does not require run time
estimations by the user.

Most algorithms exhibit some form of correlation be-
tween the input data, other given parameters and the time
the program needs to run. The BiRFH system gathers
performance data on the various algorithm implementa-
tions as they are executed. The collected data consists of
the runtime measurements, i. e., how long the execution
of the task took in real-time. Additionally, the consumed
CPU time is also measured. Should the hardware be
under-subscribed, algorithms can be executed during this
idle time to generate additional measurements, especially
for combinations of parameters that are expected to com-
plete “holes” in the available data. This performance data,
combined with data about the input and other parame-
ters, is used by machine learning algorithms to predict the
temporal behavior of subsequent runs, especially for new
parameter combinations or input data.

As the parameter values, especially the input data,
usually consist of file names or other non-numeric values,
it can not be used directly for the prediction of the ex-
pected runtime. Therefore, the BiRFH framework calls a
method that is expected to be provided for each algorithm.
This method should provide a numeric value that repre-
sents each non-numeric parameter value. If, for example,
one algorithm parameter is an input file name, the method
produces a number signifying the “weight”, or expected
impact on the runtime, of the contained data. Simple file
size is sometimes not sufficient to use when predicting the
impact on run time, e. g. when processing a file containing
sequences in FASTA format, sometimes the number of
sequences, other times the average or maximum length of
the sequences is more significant. The amount of compu-
tation time to produce this number should be kept within
a reasonable time frame, but is left to the algorithm devel-
oper to decide. If a simple file size is not sufficient, then
partial, sampling or even a total file analysis should be
done. This is only appropriate if the computational run
time is very long compared to the time needed to load
the data from the file, and not just slightly longer than the
full analysis of the input file itself would take. The next
chapter, 2.1 Heuristics, contains an example dataset and
shows how the prediction works.

2.1. Heuristics
The machine learning algorithms that provide the best re-
sults on the current training data sets are Artificial Neural



Networks (ANNs). These are very versatile and produce
accurate predictions for the available data. Other evaluated
machine learning algorithms are the regression algorithms
offered by the Weka toolkit (Hall et al. 2009).

To evaluate the available regression algorithms, a
sample data set with 2400 measurement instances was
created. This data set consists of measurements of a sim-
ple algorithm that reads a file containing several FASTA
formatted sequences. Then, some string operations are
performed and an output file is written. This algorithm
is executed with three different input files (one with 500
sequences, one with 1000 and another one with 1500)
and also with different parameters influencing the string
operations. The collected data can be presented as CSV:

wall, InSize, InCount,MaxMut,WinSize, GC-Cont
2288.74,89725,500,1,5,0
3279.26,89725,500,1,5,0.8
2540.13,181156,1000,1,5,0
4627.02,564117,1500,1,5,0.7
5089.33,564117,1500,5,16,0.6

Wall represents the wall clock time used to complete
this algorithm. InSize is the size of the input file, InCount
is the number of FASTA sequences, MaxMut, WinSize
and GC-Cont are parameters that influence how the input
is processed and may or may not have an influence on the
run time. These is the data available after the algorithm
runs have finished, and as mentioned in the chapter above,
some of these data points are available before the real
computation is started. In this case, everything except the
wall clock time and the InCount is available before the
algorithm is started for the calculation run. Getting the
file size is not as compute intensive and can substitute the
exact count of input sequences for this case.
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Figure 1: Run times of 2400 calls to the same algorithm
with different input data and parameters

Looking at the run times gathered, see Figure 1, it
is easy to spot three distinct peaks which indicate the run
time effect of the two different input file sizes. There is
also a third peak in the upper run time regions that is most
likely caused by one of the parameters. The remaining
variance due to other parameter variations. This reinforces
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the assumption that a regression method can most likely
predict the run times accurately from this data set.

Weka yielded the following results with 10-fold cross
validation:

Classifier CC MAE RMS RAE
MultilayerPerc.  0.9256  280.06 358.72 50.3%
LinearRegr. 0.8714 385.02 464.75 69.7%
IsotonicRegr. 0.7620 50295 613.38 65.8%
SimpleLinRegr. 0.6626 55143 709.47 722%
PACERegr. 0.8713 385.04 464.79 50.4%
LibSVM 0.8452 403.02 50748 52.7%

Table 2: Results in the Weka Toolkit for various predic-
tion methods: MultilayerPerceptron, LinearRegression,
IsotonicRegression, SimpleLinearRegression, PACERe-
gression, LibSVM (CC: Correlation Coefficient, MAE:
Mean absolute error, RMS: Root mean squared error,
RAE: Relative absolute error)

Taking one of the validation results to better visualize
the resulting prediction quality.
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Figure 2: Actual and predicted values of a validation run
using MultilayerPerceptron
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Figure 3: Relative errors of the validation run using Mul-
tilayerPerceptron



Using 1ibSVM, the results are similar but with a
higher margin of error. Figures 4 and 5 show the best re-
sult achieved by tweaking the libSVM parameters “cost”,
“gamma” and “epsilon” with epsilon-SVR in a similar
fashion as above with MultilayerPerceptron.
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Figure 4: Actual and predicted values of a validation run
using libSVM
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Figure 5: Relative errors of the validation run using lib-
SVM

Standard ANN training algorithms usually require
the basic structure to be predefined, i.e., not only the
number of inputs and outputs, but also the number of in-
ternal layers, the nodes per layer and how the nodes are
connected. This would prevent maximal flexibility of the
training for the expected diversity of the dataset, as the
complexity is an important factor in the success of the
neural network training: too little complexity, and the so-
lution quality suffers, but too much complexity would lead
to over-fitting during the training. To work around this
limitation and make the ANN approach viable for a multi-
tude of different algorithms, training algorithms that start
with an empty network and add complexity as needed to
reach a neural network for the given training set are used
in the BiRFH system. The FANN library (Nissen 2003),
which was chosen as ANN implementation, provides such
a training algorithm called Cascade2 (Nissen 2007).
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3. SCHEDULING

The task of scheduling and resource management working
together is to ensure that computation tasks are completed
in a timely manner and that the available hardware is used
as efficient as possible. There are many strategies avail-
able to fulfill these requirements.

As mentioned before in chapter 2, makespan and
flowtime are used as indicators for the quality of a schedul-
ing attempt. Having a reliable prediction for the expected
run time enables more advanced scheduling features. Ear-
liest Deadline First (EDF) is one of the most popular and
widely used scheduling strategies, and has some parts in
common to the BiRFH approach. The EDF strategy re-
quires tasks to have a deadline, usually either the latest
possible start time or the latest acceptable finishing time.
The scheduler then orders the tasks by their deadlines and
executes those with the earliest deadline first. Usually re-
source managers can also interrupt running tasks should a
new task with an earlier deadline become available (Kruk
et al. 2007).
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Figure 6: A simplified flowchart of the scheduling system

The basic program flow in the scheduling logic is
displayed in figure 6. After an initial check for pending
jobs, and calculating the run time estimation for these,
the scheduler distributes these jobs among the available
resources according to the scheduling policy. Then, the
scheduler waits for one of the following events to occur:



(N) new jobs are submitted to be scheduled and executed,
(G) an additional machine comes online and is available
to execute jobs, (L) a currently available machine goes
offline, (E) a currently running job ends or a running job
terminates unexpected (T). The scheduler then handles
these events accordingly and returns to the waiting state.
Some paths lead to a rescheduling, others do not require a
reordering. Depending on the circumstances, the reorder-
ing can affect the currently running processes as well.
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Figure 7: Scheduling for newly submitted jobs

In the path (N) new jobs are submitted, these are
again run through the prediction. After the predictions
are available for all new tasks, these are scheduled ac-
cording to their priority. If their priority is default normal,
then no special additional steps have to be performed and
the tasks are scheduled without interfering with currently
running tasks. Should the new tasks have high priority,
the currently running tasks are included in the reschedul-
ing, which could lead to low priority tasks to be paused,
migrated or even aborted and restarted at a later point.

(o ™
\i) (i/

reschedule all reschedule, stop, or
pending jobs migrate running jobs

U

Figure 8: Scheduling for the case of the gain of a resource
(left) or an erroneous job termination (right)

Path (G) (Figure 8, left) is caused by new hardware
resources coming available for the system. The special
case where these resource has been known to the system
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already is handled in the third path. This path assumes that
the resource is new or has been offline long enough that it
can be regarded as new. All pending jobs are rescheduled,
as are all currently running jobs if there is a significant
reduction in overall time to completion.

The next path, (L), deals with the sudden, unplanned
loss of a resource: all currently running and pending jobs
of this resource are rescheduled over the remaining re-
sources. Should the resource come back online in time,
i.e., before the “replacement job” is completed, and the
job on that resource is healthy (i. e., was not broken by
the loss of connectivity), the now duplicate backup job is
canceled and the pending jobs are rescheduled.
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Figure 9: The scheduler handles the unexpected loss of a
resource
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Figure 10: Scheduling when a job ends without error

The remaining two paths are triggered every time
a job ends. If the job ends cleanly (E), the run time is
compared to the estimate, if the difference is below the



threshold, no further scheduling is needed. If the differ-
ence exceeds the threshold, a scheduling run is performed
to ensure optimal resource usage. If the job did not ter-
minate cleanly (T) (see Figure 8), subsequent dependent
runs are removed from the queue and an error notification
is sent to the originating user. The remaining jobs, includ-
ing the running ones, are then rescheduled again. Under
one special condition, in the case where two algorithms
are running simultaneously and one algorithm produces
output that is immediately used by the second algorithm—
called streaming read/write—the consuming job has to be
terminated if the producing job experiences an error and
terminates.

The scheduling algorithm itself is designed to be fully
modular. It reads the information about the pending jobs
as well as the current system status from a database, and
after reordering the jobs according to the scheduling rules
and policies, writes the new orders back to the database,
where the resource manager reads them and relays the or-
ders to the compute nodes. That way, different scheduling
strategies and optimizations can be evaluated without big
changes in the whole BiRFH system.
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Figure 11: A simple scenario where knowledge of run
times yield better scheduling than a basic First Come First
Serve

Knowing about the expected runtime can improve the
utilization and therefore reduce the overall time needed to
complete several tasks. Figure 11 displays a hypothetical
comparison of a simple EDF variant, where the tasks are
prioritized in the order that they become available, i.e.,
a First Come First Serve scheduling. In this scenario, 5
tasks with different runtimes are available: Tasks T1 and
T4 need 2 time units, tasks T2 and T3 take 3 time units
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to finish and task TS5 is the longest with 4 time units. The
simple FCFS scheduling on the left produces an execution
sequence that would take 7 time units. Knowledge of the
expected run times can rearrange the tasks in such a way
that the total execution time would be 5 time units.

The above example is based on the assumption of
three completely identical compute nodes. Our schedul-
ing approach aims to improve this strategy for Meta-
Heterogeneous Clusters, i. ., clusters consisting of differ-
ent hardware architectures like CPU, GPUs and others, by
considering multiple versions on the different hardware
platforms and deferring some algorithms expecting a more
powerful platform to become available. This is enabled
by the run time predictions of the heuristic analysis.
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Figure 12: Advantage of knowledge of runtimes with two
different hardware platforms

A simple scenario (see Figure 12) where this would
be of benefit: Task T2 is a task that finishes fastest on
the first system, e. g. a GPU, but the GPU is currently
occupied by task T1. Using a standard deadline first al-
gorithm, this task would now run on the second available
system, e. g.the CPU. If the R1 node is expected to be
ready before the task on the R2 system would be finished,
and the sum of the expected calculation for both tasks on
the R1 system would put the finishing time earlier, the
task would be put on hold instead of using the free CPU.

Even if not all the tasks are known from the begin-
ning, knowledge of the runtimes enables better scheduling
in many cases. Figure 13 shows an example: the com-
pute nodes R1 and R2 are again different hardware plat-
forms, which results in different runtimes for the tasks.
The FCFS version also displays a possible variant of the
basic FCFS strategy, where tasks only are scheduled to
hardware platforms where they take the least time to fin-
ish. This is shown with T3 (transparent on the lower left).
Naively, this should yield better results, but even in this
example, using all the available resources still provides
better results. The BiRFH result on the right again shows
optimized resource usage with reduced overall runtime.
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Figure 13: Prioritizing algorithm versions on heteroge-
neous platforms with minimal makespan in the FCFS
strategy does not yield better results

Some scheduling scenarios require a complete re-
arrangement of the tasks, even running tasks could be
blocking an optimal arrangement. In these cases, there
has to be an assessment if the running task should be can-
celed and moved to a different hardware or if it would
be better to wait for the task to finish. Knowledge of the
expected finishing time can be very helpful in these cases.
Figure 14 visualizes a scenario where a new task T3 is
added after the tasks T1 and T2 have already been started.
This task is only available on the hardware platform of
R2, but this system is being used by T2. Therefore, T2 is
canceled and restarted on node R1 after T1 has finished.
Even though some computational effort is lost, the overall
time is significantly shorter than waiting for T2 to finish.
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Figure 14: Canceling and rescheduling a task.

Instead of losing the computational progress so far
it would be preferable to keep it while migrating to a dif-
ferent hardware platform. This can be enabled when the
source code of the algorithm is available. If the algorithm
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can be adapted to some kind of stepwise progress, the
framework defines the methods to pause and serialize the
current memory content to the hard disk for transfer. The
counterpart implementation on the target hardware then
can read the progress and continue with the calculations.

All the above examples target the least “real world”
run time, or minimal makespan, for optimization. Other
possible targets, especially when using heterogeneous
hardware, could be the conservation of power. If a dead-
line is set and multiple hardware platforms are able to
execute the task, the job could run on a platform that
consumes less power during the calculations. The power
consumption factor, combined with the run time, can be
added to the optimization parameters.

As the overall design of the system allows for the
individual models to be easily interchangeable, the pre-
diction model and scheduling methods can gradually be
replaced by new ones that yield better results. The un-
derlying database offers a simple interface that enables
this modularity. Therefore, future development also en-
compasses the implementation and evaluation of different
prediction models and scheduling strategies.

4. CONCLUSION AND FUTURE WORK

The use of heuristics can improve the scheduling quality
given some special circumstances, like, in our case, the
limited number of different algorithms and the degree of
heterogeneity of the hardware.

Future work includes the implementation and eval-
uation of other computational intelligence strategies as
well as the inclusion of the pipeline concept, i. e., the con-
sideration of follow-up calculations or calculations using
different algorithms based on the same input data, which
are required by follow-up calculations.

The research project “Bioinformatics Resource Facility
Hagenberg” is supported by grant #821037 from the Aus-
trian Research Promotion Agency (FFG).
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