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ABSTRACT 
This work presents the development and application of 
an advanced modelling, simulation and optimization-
based framework to the efficient operation of the 
Automated Wet-etch Station (AWS), a critical stage in 
Semiconductor Manufacturing Systems (SMS). 

Lying on the main concepts of the process-
interaction approach, principal components and tools 
available in the Arena® simulation software were used 
to achieve the best representation of this complex and 
highly-constrained manufacturing system. Furthermore, 
advanced Arena templates were utilized for modelling 
very specific operation features arising in the process 
under study.  

The major aim of this work is to provide a novel 
computer-aided tool to systematically improve the 
dynamic operation of this critical manufacturing station 
by quickly generating efficient schedules for the shared 
processing and transportation devices.   
 
Keywords: Discrete-event simulation, Semiconductor 
Manufacturing System (SMS), Automated Wet-Etch 
Station (AWS), Arena Software. 
 

1. INTRODUCTION 
Semiconductor wafer fabrication is perhaps one of the 
most complex manufacturing systems in the modern 
high-tech electronics industry. Wafer facilities typically 
involve many production stages with several machines, 
which daily perform hundreds of operations on wafer 
lots. Moreover, different product mixes, low volume of 
wafer lots and hot jobs are some of the typical issues 
arising in this type of system. 

Wet-Etching represents an important and complex 
operation carried out in wafer fabrication processes. In 
this stage, wafer’s lots are automatically transferred 
across a predefined sequence of chemical and water 
baths, where deterministic exposure times and stringent 
storage policies must be guaranteed. Hence, automated 
material-handling devices, like robots, are used as 
shared resources for transferring lots between 
consecutive baths. 

An important process restriction is that each robot 
can only transport a single wafer lot at a time and it 
cannot hold a wafer lot more than the exact transfer 
time. Due to the lack of intermediate storage between 
consecutive baths, this condition can be considered as a 
non-intermediate storage (NIS) policy in every bath, 

which must be respected by robots for all transfer 
movements. 

Another constraint adding more complexity to the 
system operation is that baths must process wafer lots 
one by one, during a predefined period of time, avoiding 
the overexposure in the chemical ones, which can 
seriously damage or contaminate the wafer lot. In spite 
of this, wafers can stay longer than its processing time 
only in water baths. So, a zero wait (ZW) and local 
storage (LS) policy must be strictly satisfied in every 
chemical and water bath, respectively. 

As a direct consequence, an effective schedule of 
material movement devices and baths along the entire 
processing sequence will provide a better utilization of 
critical shared-resources and, at the same time, an 
important reduction in the total processing time. 

In the last years, different methods have been 
developed to achieve convenient solutions to this 
challenging problem.  Main approaches to large-sized 
problems lie mainly on heuristic and meta-heuristic 
methodologies, such as the ones presented by Geiger et 
al. (1997) and Bhushan and Karimi (2004). In these 
works, tabu search (TS) and simulated annealing (SA) 
procedures, together with other different algorithms, 
were developed to provide a quick and good-quality 
solution to the job sequence problem and also, a feasible 
activity program for the robot. 

A more recent approach under the concepts of 
Constraint Programming (CP) was developed by 
Zeballos, Castro and Méndez, (2011) to handle the 
sequencing problem of jobs and transfers in the AWS. 
This method could obtain better results than the ones 
reported by Bhushan and Karimi (2004) for industrial 
problem instances in a reasonable CPU time. 

To the best of our knowledge, efficient systematic 
solution methods need to be developed to represent and 
evaluate the complex dynamic behaviour of the AWS. 
Thus, a discrete event simulation environment becomes 
a very attractive tool to analyze the impact of different 
solution schemes in the system. 

In this work, a modelling, simulation and 
optimization-based tool is developed to validate, test 
and improve the daily operation of the AWS, allowing 
an easy evaluation of different operative schemes and 
possible alternative scenarios. To do this, a discrete 
event simulation model was developed by using most of 
the tools and capabilities that are available in the Arena 
simulation environment. The principal aim is to provide 
a highly dynamic and systematic methodology to reach 
the best feasible schedule of limited resources by testing 

384



different measures of effectiveness and performance 
rates for the system. 

Thus, the paper is organized as follows: Section 2 
introduces the major features of the problem addressed. 
Then, Section 3 describes the proposed solution 
method, highlighting its advantages in comparison with 
other existing methods and tools as well as the main 
objectives of this work. Later, the simulation structure 
is explained in detail in Section 4. A brief description 
concerning the simulation tool is presented. Software 
integration and principal interfaces between different 
tools are discussed. A detailed analysis regarding 
external and internal logic of the model and the 
implementation of this solution in a discrete-event 
simulation environment is also presented. 

In Section 5, an alternative solution strategy is 
tested using several examples, with the main idea of 
validating the model and, at the same time, comparing 
results of different solution methods.  

Finally, the solutions generated and the 
comparative study results are reported in Section 6. 
Conclusions and future work are stated at the end. 
 
2. PROBLEM STATEMENT 
The AWS scheduling problem provides a complex 
interplay between material-handling limitations, 
processing constraints and stringent mixed intermediate 
storage (MIS) policies (Figure 1). We can summarize 
major features of the system in the following way: 

-Material-handling devices (robot) can only move 
one wafer lot at a time. No intermediate storage is 
allowed between successive baths. So, NIS policy is 
applied between consecutive baths. 

-Waiting times are not allowed during the 
transportation of a wafer lot.  

-Robots and baths are failure-free. 
-Setup times are not considered for robots. 
-Every bath can only process one wafer lot at a 

time. 
-A ZW storage policy must be ensured in chemical 

baths whereas LS policy is allowed in water baths. 
 

Figure 1: Automated Wet-etch Station (AWS) process 
scheme. 

 

For this problem, it is assumed that each wafer lot, 
also called job, i (i=1,2…N) has to be processed in 
every bath j (j=1,2…M), by following a predefined 
processing sequence. In addition, it considers that a 
single robot (r=1) is available, which has to perform all 
the transportation activities in the system. 

Consequently, the problem to be faced corresponds 
to the scheduling of N jobs in M baths, in a serial 
multiproduct flowshop, with ZW/LS/NIS policies. The 
use of a single shared robot with finite load capacity for 
the wafer movement between consecutive baths is 
explicitly considered in this work. 

 
3. PROPOSED SOLUTION METHODOLOGY 
This work introduces an efficient discrete-event 
simulation framework, which faithfully represents the 
actual operation of the automated Wet-etch Station 
(AWS) in the wafer fabrication process.  

The main advantage of this computer-aided 
methodology is that it permits to systematically 
reproduce a highly complex manufacturing process in 
an abstract and integrated form, visualizing the dynamic 
behaviour of its constitutive elements over time (Banks 
et al. 2004). 

The proposed simulation model represents the 
sequence of successive chemical and water baths, 
considering the automated transfer of jobs.  

Based on a predefined job sequence, which is 
provided by an optimization-based formulation, the 
model structure allows the evaluation of many different 
criteria to generate alternative efficient schedules.  

The major aim here is to efficiently synchronize 
the use of limited processing and transportation 
resources. This methodology allows also evaluating and 
improving the operation and reliability of baths and 
robot schedules. What is more, simulation runs permit 
addressing industrial-sized problems with low 
computational effort.  

As a result, a basic model is generated to achieve 
an effective solution to the whole AWS scheduling 
problem. It becomes also very useful for making and 
testing alternative decisions to enhance the current 
process performance. 

 
4. THE SIMULATION-BASED FRAMEWORK 
In order to formulate a computer-aided representation to 
the real-world Automated Wet-Etch Station (AWS) 
described above, it was decided to make use of the 
simulation, visualization and analysis tool set provided 
by the Arena discrete-event simulation environment 
(Law et al., 2007, Kelton et al., 2007).   

The simulation model developed in Arena 
Software provides an easy way to represent the AWS by 
dividing the entire process in specific sub-models 
(Initializing, Transfer, Process and Output). For each 
sub-model, the detailed operative rules and strategic 
decisions involved are modelled using the principal 
blocks of Arena Simulation Tool and, at the same time, 
a set of visual monitoring objects is used to measure the 
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utilization performance of all baths and resources in the 
system. 

Additionally, the model allows working with a 
user-friendly interface with Microsoft Excel for 
simultaneously reading and writing different data. In 
next sections, we will describe these features in detail. 

 
4.1. Software integration 
The simulator allows an easy communication with 
Excel spreadsheets. Thus, this tool permits reading, 
writing and processing important data for the simulation 
model. Figure 2 illustrates the data flow between Excel 
and Arena. Both tools support Visual Basic for 
Applications (VBA) that can be used to move data 
between them. As shown in the figure, a hybrid solution 
framework is proposed on these tools. The Mixed 
integer linear programming (MILP) model provides an 
initial solution that is written in Excel as input data of 
the Arena’s model. Using that input data, Arena 
simulation software runs the process model to generate 
many important statistics that are collected by Excel 
files as output data. The procedure of reading and 
writing data is used to dynamically generate a solution 
schedule by updating the start and finish times of every 
job in each bath and, simultaneously, determine the 
status of each job in every stage of the system. 
 

 
Figure 2: Information exchange between Excel – Arena 
– MILP Software 
 
4.2. Proposed simulation model 
As shown in Figure 3, the entire logic of the simulation 
model is divided into four main modules (input, 
transfer, process and output). The first module is the 
Initializing sub-model. The initializing process receives 
as input data the processing time of each job at each 

chemical and water bath and a job sequence provided 
by a MILP model, which is considered as an initial 
alternative solution. Then, the discrete-event simulation 
model generates as many entities as wafer lots are to be 
scheduled. Here, the logic behind the automated transfer 
of jobs is performed in order to generate a feasible 
schedule for the robot activities. 

The subsequent simulation module is the Transfer 
sub-model, which defines the needed delay time to 
transfer a wafer lot to the next bath.  This module is 
used to explicitly simulate the time spent to transfer the 
jobs between the input buffer to the first bath, between 
successive baths, according to the predefined sequence, 
and also between the last bath to the output buffer. Only 
after the transfer is finished, the bath from where the 
wafer comes is released. It should be noted that a 
transfer can be only executed if the robot and the 
destination bath are both available. 

In order to simulate the process itself, one Process 
sub-model for each bath is defined. There is a different 
logic depending on the type of bath (chemical or water). 
The wafer residence times in chemical baths must be 
controlled strictly (as soon as chemical bath finishes, 
the wafer must transferred to the succeeding water 
bath). While holding time in water baths is allowed. 
Thus, for every baths, the logic performs the following 
tasks: (i) reports the time at which the process begins 
and ends; (ii) seizes the following bath after the delay 
time finishes; (iii) performs the transfer to the following 
bath, only if the robot and the destination bath are 
empty. 

It is important to notice that the logic driving in the 
Process  sub-model permits to easily identify why and 
when a given wafer's lot is discarded. Basically, it may 
occur because the robot and/or next bath are not 
available. This allows making a detailed analysis about 
the behaviour of the system, executing, if necessary, the 
corresponding adjustments when unexpected events 
occur or when different strategies are tested in the way 
to improve the process performance. So, Process sub-
models permit to evaluate and also validate the 
feasibility of the internal logic algorithm proposed in 
the Initializing Process of the system, identifying the 
possible causes of infeasibility to be corrected.  

 
Figure 3: Partial size view of the in-progress simulation model generated in the Arena environment. 
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The last module is the Output buffer. The logic of 
this sub-model represents the final stage of each job. At 
this module the final processing time (Makespan) of 
each job is reported. It is the ending point for entities 
created at the input module. Here, the model reports if 
the current job has been successfully finished or has 
been discarded. 

 
4.2.1. Advanced internal logic for the robot 
The principal aim of modelling the internal robot logic 
is to explicitly represent the finite capacity of 
transportation resources for transferring jobs between 
consecutive baths. The sequence and timing of transfers 
will depend on the stringent storage restrictions to be 
satisfied in the baths (ZW / NIS / LS) as well as on the 
availability of a transportation resource to carry out the 
transfer. 

Since there is only a single robot to do all the job 
movements, the sequence in which the transfers will be 
performed needs to be clearly defined. Transfers related 
to a particular job can never overlap because they are 
carried out after the corresponding processing stages 
finish. Consequently, no pair of transfers of the same 
job may be performed simultaneously.  

Therefore, the sequencing problem of transfers 
must only be focused on the comparison of transfer 
activities of different jobs in order to determine a 
feasible robot schedule.  

For that reason, a complex internal logic for the 
robot was embedded in the simulation model to 
compare and update the start (ts(i,j)) and end times (te(i,j)) 
of transfers (i,j). The aim is to define the earliest time at 
which each transfer can be executed. This logic permits 
to sequence the different transfers in a correct way, 
generating a feasible schedule for the robot and a near-
optimal solution for the whole system, considering a 
predefined sequence of jobs.  

By using this logic, the transfers related to a given 
job are sequentially inserted according to the order in 
which they will be processed at every different bath 
(j=1,2,3,…,M+1). Then, the transfers are compared 
successively with all the transfers that were previously 
inserted into the schedule (according to a predefined 
processing sequence). 

The application of strict storage policies such as 
ZW and LS in the baths and the NIS rule in the robot 
significantly complicates the solution of the problem. 
Enforcing a ZW policy in the chemical baths j implies 
that the start time of the transfer to the water bath j+1 
must strictly satisfy equation (1). 
 

)(),(),()1,( jjijiji tptsts π++=+  
    NiMj ...1;1...5,3,1 =∀−=   (1) 

 
For that reason, the value of ts(i,j) allows directly  

determining the value of  ts(i,j+1). Here tp(i,j) represents 
the processing time of job i in bath j while π(j) denotes 
the transfer time for every job from bath j-1 to j. 

On the other hand, if the LS rule is applied to a 
water bath j, inequality (2) must be satisfied. 

 
)(),(),()1,( jjijiji tptsts π++≥+  

   NiMj ...1;...6,4,2 =∀=   (2) 
 
Let p = {p1, p2, p3,…,pN} define a permutation 

processing sequence N different jobs.  pw represents the 
w-th position of a job i (i=1…N) in the processing 
sequence. It means that the job processed in the w-th 
position will be always before the job processed in the 
w+1 position in the sequence p.  

Due to the NIS policy in the transfers and 
constrains on finite load capacity of the baths and the 
robot, the equation (3) is to be defined.  

 
)1()1,1(),( ++− +≥ jjwjw tsts π  

   NwMj ...1;1...3,2,1 =∀+=  (3) 
 
So, any transfer of a job processed in the pw 

position, at bath j, has to wait the ending of the transfer 
of the job located in the pw-1 position at the succeeding 
bath j+1 to be processed. 

In the next section, we will explain the transfer 
comparison algorithm developed to solve the described 
problem. Only one robot is considered to be available 
for the execution of the transfers in the system.  

 
4.2.2. Generation and evaluation algorithm for 

transfers 
This algorithm is mainly based on the major ideas of the 
JAT (Job-at-a-time) algorithm, developed by Bhushan 
and Karimi (2004). The JAT algorithm always 
prioritizes the transfers related to jobs that were 
previously inserted in the system, following a 
predefined processing sequence. For transfers related to 
the same job, they are executed according to the fixed 
sequence of baths to be visited (j=1…M+1). So, based 
on processing constrains (1)-(3) and assuming that all 
the jobs follow the same processing stages, no job in the 
pw position may leave the system before the one located 
in the pw-1 position. This means that all jobs will be 
processed in the different baths following the same p 
sequence, what is known as "flowshop permutation 
schedule". 

Our algorithm, as the JAT algorithm, selects a job 
to be processed and then generates (Generation Process) 
and evaluates (Evaluation Process) all the transfers for 
this job, one at a time, before going to the next job of 
the sequence. The principal difference between the 
proposed algorithm and the JAT algorithm is the 
evaluation procedure used for the system transfers. 
 In the proposed evaluation process, every selected 
transfer is compared with all the transfers previously 
inserted into the system. Thus, a detailed schedule of 
the robot operations is defined.  

The aim of this process is to avoid that any transfer 
previously inserted (w´,j´) can be performed (for pw´≤ pw 
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and for all j´) between the starting time (ts(w,j)) and the 
ending time (te(w,j)) of the inserted transfer (w,j)  

During this iterative evaluation process the transfer 
times are initialized (Initialized Process), then they are 
compared with all the other transfers times (Comparison 
Process) and finally, they are updated (Updating 
Process). This loop is repeated successively for a given 
transfer, until all the comparisons, with the previously 
inserted transfers, do not introduce new updates at the 
compared transfer times. So, the comparison and 
updating processes end. Then, the transfer is evaluated 
and loaded onto the system with its respectively times 
[ts(w,j), te(w,j)], the counter number of iteration without 

change (iter) and the number of transfers loaded onto 
the system (transf) are updated and the next transfer 
from the list (w,j) with j=j+1 if j < M+1; or w=w+1 
and j=1 if w < N, is taken for the comparison. The 
algorithm ends when there are no more transfers to be 
compared in the system (j=M+1 and w=N). 

The simplified logic proposed is summarized in 
Figure 4.  

Next, the Generation Process is explained more in 
detail as well as the procedures of Initialization, 
Comparison and Update of the Evaluation Process, all 
of them generated by our algorithm. 

 
 

Figure 4: Pseudocode of the Generation and Evaluation Algorithm for transfers 
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Generation process 
To apply the logic in the simulation model it was 
necessary to define each transfer as a particular new 
entity in the system, together with the entities associated 
to the jobs in the system. Consequently, a given job “i” 
will have associated a certain number of transfers and/or 
entities (i,j) corresponding to the quantity of baths into 
the system j=1…M+1. 

Therefore, to start the processing of a given job i, 
all its j transfers must be pre-loaded into the system. 
Going back to equations (1) and (2), we can notice that 
the treatment of the transfers must be done in successive 
pairs. In order to define the start and end time of the 
transfer, it is necessary to correctly arrange the 
successive transfers in the robot, without overlap with 
any other transfer in the system. So, infeasible 
schedules are avoided. For that, it is necessary to define 
a set of  attributes [ts(i,j),te(i,j)] [ts(i,j+1),te(i,j+1)], for each 
transfer (i,j) in order to define a correct sequence of 
transfer over time, avoiding infeasible solutions for the 
future transfer at the same job i (i, j+1). 
  
Evaluation process 
After defining all the attributes of the inserted transfer, 
we proceed to determine an initial value. 
 
Initialized Procedure: the initialization procedure 
consists on determining the lower value at which the 
transfer can be initialized, assuming that there are not 
limitations of resources. So, we can determine the initial 
value ts(w,j) for each transfer using the following 
equations (4)-(5).  
For chemical baths (baths with odd number), equation 
(4) is applied:  
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While for water baths (baths with even number), 
equation (5) is applied: 
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There, te(w,j) is calculated for all baths j with the 
equation  (6). 
 

)(),(),( jjwjw tste π+=  
    NwMj ...1;1...3,2,1 =∀+=  (6) 
 

So, for any job w > 1 the initial state of the 
attributes in the system is determined: [ts(w,j),te(w,j)]; 
[ts(w,j+1),te(w,j+1)]. 

 
Instead, for w = 1, the initial values of the 

attributes are defined following equation (6) and (7). 
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For the first transfer in the system (w=1 and j=1), 

the initial value is equal to zero (ts(1,1) = 0). 
 
Comparison Procedure: Once transfers are initialized 
to w=1, they are loaded in the system by updating the 
subset of charged transfers σ. In σ there are all the 
transfers (w,j) that have been previously compared and 
assigned to the robot in a correct way. The value σk 
represents the k-th transfer analysed and initialized into 
the system according to the priorities described above.  

The comparison procedure is applied to the pw 
position with w > 1. During this iterative procedure, the 
inserted transfer (w, j) is compared in pairs with a 
transfer (w´,j´) of the subset σ, already assigned to the 
robot (being the pw´ position < pw, that means w´< w). 

If analyzing the attributes (w,j) ([ts(w,j),te(w,j)] and 
[ts(w,j+1),te(w,j+1)]) of the transfer with the ones already 
inserted (w´,j´) ([ts(w´,j´),te(w´,j´)]) there is any overlap 
between the values of them, then the algorithm will 
update them for avoiding overlaps (see Equation (8)). 
Otherwise, the attributes will not be updated. That 
means that transfer (w,j) does not overlap with (w´,j´ ). 

 
If  ( ) ( )´)´,(),(´)´,(),( jwjwjwjw tetstste ≥∨≤  

Then ][][ ),(),(),(),( jwjwjwjw tetetsts =∧=  

Else_If ( ) ( )´)´,(),(´)´,(),( jwjwjwjw tstetets >∧<  

Then ][][ )(),(),(´)´,(),( jjwjwjwjw tstetets π+=∧=  
  ´,;´;...2´);´,(),( jjwwNwjwjw ∀≤∀=∀≠∀  (8) 
 

As can be seen, the updating process consists in 
delaying the start time of transfer (w,j) when 
overlapping with (w´,j´) are observed. Initially, it is 
necessary to compare the attributes [ts(w,j),te(w,j)] vs. 
[ts(w´,j´),te(w´,j´)] and then [ts(w,j+1),te(w,j+1)] vs. 
[ts(w´,j´),te(w´,j´)]. Thus, we try to ensure that if ts(w,j) ≥ 
te(w´,j´), then by equation (1) and (2) ts(w,j+1) ≥ te(w´,j´), else 
if te(w,j+1) ≤ ts(w´,j´) then te(w,j) ≤  ts(w´,j´). 
 
Update Procedure: This procedure is used to generate 
the earliest time at which the analyzed transfer (w,j) can 
be executed, in relation with the transfers previously 
inserted (w´, j´) and taking into account the resource 
constrains. As result, the efficient assignment and the 
detailed program of the robot is determined. 

The procedure tries to recalculate the value of the 
attributes [ts(w,j),te(w,j)] and [ts(w,j+1),te(w,j+1)] from the 
(w,j) transfer fulfilling the equations (1) and (2). As 
result of the comparison process, the attributes 
[ts(w,j),ts(w,j+1)] will be updated according to equation (9). 
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If  ( ) )1,()(),(),( +≥++ jwjjwjw tstpts π  

Then )(),(),()1,( jjwjwjw tptsts π++=+  

Else_if ( ) )1,()(),(),( +<++ jwjjwjw tstpts π  

Then )(),()1,(),( jjwjwjw tptsts π−−= +  
    NwMj ...2;1...5,3,1 =∀+=  (9) 
 

For j=2,4,6…M or if not met any of the conditions, 
only the values of  [te(w,j),te(w,j+1)] are updated. Both of 
the values are recalculated according to equation (6). 

It may be possible that after the end of the 
processes of comparison and updating, some of the 
analyzed transfer's attributes overlap again with the 
previously compared transfer or with some other in the 
system. If this occurs, the algorithm makes a loop in the 
comparison process selecting the next σk transfer, saved 
in the σ subset. It also updates the iterations counter to 
zero (iter = 0). 

If there isn’t any change in the attributes, the 
algorithm returns to the comparison process and 
evaluates the analyzed transfer with the next transfer in 
the σ sequence. Then, the iteration counter iter is 
updated to iter + 1 (iter = iter + 1). 

In both cases, the comparison is made with the 
transfer of job σk, where k=k+1 if k < transf, or 
otherwise: k=1; being transf equal to the number of 
elements in the σ set (transf = card(k)). 

This iterative process is performed for all the 
possible comparisons. While this method may be not 
efficient from the procedural standpoint, since there are 
unnecessary and redundant comparisons, it tries to 
avoid the generation of unwanted or erroneous results 
after the updating stage. 

Since to the comparison process is simple and the 
additional number of events does not report high 
updating times, we can demonstrate that our algorithm 
is able to deal with industrial scale problems with 
modest computational cost. 

Finally, when the analyzed transfer (w,j) has been 
compared dynamically with all the transfers (w´,j´) of 

the σ sequence without updating attributes, that is that 
the algorithm iteration number (iter) is greater or equal 
than the σ set cardinality (iter ≥ transf), then the last 
transfer is loaded into the system with its respectively 
times, and the number of elements of σ set are updated 
(transf = transf + 1). The iteration counter is initialized 
(iter = 0) and the robot is assigned to the (w,j) transfer 
during the time between the interval [ts(w,j),te(w,j)]. The 
next transfer will be (j = j+1) if j<M+1. 

Otherwise, if j is the last bath of the sequence 
(j=M+1) and w is not the last job of the p sequence (w 
< N) then, the process continues with the next (w = 
w+1) job in the p sequence and j=1 is established. 

The algorithm ends when there are not more 
transfers to be evaluated. In this case, w=N and j=M+1, 
that means that all transfers have been loaded into the 
system (transf = N*M+1). 

As result, our algorithm ensures that no pair of 
transfers inserted into the system and assigned to the 
robot may overlap over time. Thus, a feasible schedule 
for both, the process and robot, is generated.  

 
4.3. Implementation in the simulated model 
Once the timing of transfers is defined, the model is 
able to emulate the real system behaviour while 
satisfying the job processing time, the mixed 
intermediate storage policies and the assignment of 
transfers to the limited shared resource. 

The simulation is run by using the model resources 
(baths and robot) and the waiting modules 
(Queues/Hold/Match). The waiting modules hold the 
entities until a given condition is met. 

While jobs are being processed in the system, 
according to the predefined job sequence given by p, the 
transfers’ values are updated using specific writing and 
reading modules (Read/Write). Thus, a fast and 
simplified way of interacting with Microsoft Excel® is 
permitted (see Figure 5), defining dynamically the 
detailed schedule for the baths and robot, together with 
the generation of dynamic charts representing the 
evolution of the different works (operations and 
transfers) over time. 

 
Figure 5: Dynamic Gantt Chart Schedule Generated by a User-friendly Excel Interface 
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As a result, the dynamic operation can be 
controlled and analyzed in a global perspective. Failures 
and/or possible improvement actions can be easily 
observed by analysing the graphical interface. For 
example, it can be easily identified how a change in the 
process sequence impacts over the processing time of 
each bath and in the availability of the shared resource.  

Also, the simulated model progressively evaluates 
the utilization of the system resources (bath and robot), 
using monitors or animated screens (see Figure 6), 
which allow to execute a detailed control of the shared 
resources performance over time. Thus, it is possible to  
identify the critical points (resources and/or stages 
intensively used in the system) with the aim of 
evaluating alternative modifications in the process 
design (change the number of resources, or use parallel 
resources) and/or in the process operation (resources 
assignment and priority of processing) 

 
Figure 6: Monitoring the resource utilization  

 
4.4. Animation module of the AWS station  
Additionally, the model displays the dynamic behavior 
of the AWS station through the animation of main 
system components (entities, resources, performance 
indicators). Thus, the system operation, involving baths 
(chemicals and water) and robot activities can be easily 
evaluated (see Figure 7). 

 

 
 

Figure 7: In-progress animation of the AWS station 
 
4.5. Performance measures and termination 

criterion 
The proposed algorithm looks for the best permutation 
sequence p of the different jobs to be scheduled. This is 
determined based on the timing of jobs at the 
consecutive stages and also by the detailed feasible 
schedule of the transfer robot activities. 

Start and end times of activities are dynamically 
reported in Excel®, according to the different events 
that take place in the system, at each stage of the 
process through the simulation. 

The main goal is to achieve the shortest completion 
time of all jobs in the system. So, the objective function 

can be estimated with the final time of the last transfer 
of the robot in the AWS station (te(w,j) for w=N and 
j=M+1). 

For our model, the estimation of this time is 
determined by the MK (Makespan) variable. This 
variable analyses the simulation variable TNOW every 
time a job is finished.    

TNOW is a global variable managed by the 
simulator that indicates the actual time at which the 
different events are happening throughout the 
simulation. In turn, the time for completing the last job 
in the system represents the stopping criterion of the 
simulation run (Termination Criterion). 

Other performance measures are the utilization of 
baths and robot. In our particular case, they are used to 
compare alternative solutions in order to determine 
alternative policies and logic for the robot allocation. 
 
5. ALTERNATIVE SOLUTION STRATEGIES  
A natural way to get a good result of complex problems 
is to try to break the whole problem at different stages 
(Bhushan and Karimi, 2003). An iterative solution 
involves decomposing the whole problem into 
independent sub-problems, using the solution from one 
stage as input data for the next one, in order to obtain a 
global solution in a sequential manner. 

In our particular case, generating a good initial p 
sequence for all the jobs to be processed in the system 
may notably reduce the complexity of sequencing robot 
decisions. 

The use of meta-heuristics (Bhushan and Karimi, 
2004) and mathematical programming models (MILP) 
(Bhushan and Karimi, 2003; Aguirre, Méndez and 
Castro, 2011; Zeballos, Castro and Méndez, 2011), are 
some of the existing tools used to obtain a good initial 
sequence p for large size AWS scheduling problems. 

Here, we present an alternative solution to the 
robot sequencing problem, based on modern simulation 
techniques and tools. We also know that in these highly 
combinatorial problems there exist always a trade-off 
between computational times and optimal solutions. 

For this reason, we have proposed an interesting 
alternative for obtaining an efficient solution. It is based 
on a MILP model that provides the best solution to the 
problem assuming unlimited robots, in order to obtain 
the optimal p sequence of the jobs in the system. Then, 
this information is taken as input data by the simulator 
in order to obtain a feasible and efficient solution to the 
whole problem, involving the sequencing robot 
activities. For this, we use the solution provided by a 
continuous-time formulation developed by Aguirre, 
Méndez and Castro (2011). Thus, we will initially solve 
different cases without considering the robot 
constraints, to subsequently incorporate the results of 
the sequence into the simulation model. 

Finally, in order to validate the model developed, 
we compare the results with the ones obtained by a 
rigorous mathematical formulation (MILP), considering  
the same p sequence in both solutions and also with the 
results obtained by a full-space MILP model 
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considering all robots restrictions. Several examples of 
different sizes are efficiently solved by using this 
strategy. We will analyse the results obtained from the 
comparison of those techniques. 

 
5.1.  Cases Studies 
To prove the applicability of the internal and external 
logic of the simulation model, different examples using 
the proposed method are tested. Also, the results 
generated are compared with optimal MILP solutions 
found by Aguirre, Méndez and Castro (2011) and the 
heuristic procedure RCURM from Bhushan and Karimi 
(2003), by using the previous mentioned MILP model. 

The problem instances have been obtained from 
literature, for an specific MxN configuration for the first 
M baths and N jobs of the original problem presented by 
Bhushan and Karimi, 2004. 

 
6. RESULTS AND COMPARISONS 
The heuristic methodology RCURM ("Resource 
Constrained Unlimited Robot Mathematical Model") is 
based on a MILP model that can solve moderate size 
problems with reasonable computational effort in 
comparison with pure mathematical models. Two 
alternative models, URM ("Unlimited Robot Model") 
and ORM ("One Robot Model") were solved 

sequentially in order to obtain a solution for the whole 
problem.  

The first one, i.e. the URM, is used to generate an 
optimal job sequence that ignores the robot restrictions. 
The URM just only takes explicitly into account the 
predefined transfer times, assuming that a robot will be 
always available to perform the transfer operations. 

The ORM, in turn, considers the impact of limited 
transfer resources in the objective function. This 
proposed model also takes into consideration the 
sequential use of the single transfer movement device, 
which enforces a proper synchronization of bath 
schedules and robot activities.  

The idea of the RCURM is to first solve the 
problem using the URM model, to then fix the 
production sequence obtained by this model and solve 
the detailed robot schedule through the ORM 
formulation. Following this idea, the simulation model 
will receive as input data the sequence obtained by the 
URM to then simulate the whole process including the 
robot activities. As it is shown in Table 1, for the 
examples validated, the Simulation Model gives the 
same MK value than the RCURM-MILP for the first 
three problem instances. This is a good indicator to 
conclude that the simulation logic may generate results 
that are as effective as optimal MILP solution, that can 
obtained with a modest computational effort.  

Table 1: Model Statistics for a few MxN problem instances  

MxN Statistics Unlimited Robot Model 
(URM-MILP) 

One Robot Model 
(ORM-MILP) 

Resource Constrained 
Unlimited Robot Model 

(RCURM-MILP) 

Arena Simulation 
Model using URM 

Sequence 

4x8 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

28 
95.1 

0.484 

588 
95.6 

11.25 

560 
95.6 
0.091 

- 
95.6 

- 
4-2-8-5-1-7-3-6 4-2-5-8-1-7-3-6 4-2-8-5-1-7-3-6 

4x10 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

45 
115.5 
6.785 

945 
115.6 
488.7 

900 
116 

0.122 

- 
116 

- 
9-2-5-8-10-4-1-7-3-6 9-6-5-4-10-2-8-1-7-3 9-2-5-8-10-4-1-7-3-6 

4x14 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

91 
154.7 
3600b 

1911 
158.8 
3600b 

1820 
156.2 
0.235 

- 
156.2 

- 
9-12-5-8-7-11-14-10-2-4-1-13-3-6 9-2-8-12-4-14-10-11-5-1-3-7-13-6 9-12-5-8-7-11-14-10-2-4-1-13-3-6 

8x10 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

45 
149.4 
55.07 

3285 
154.4 
3600b 

3240 
156.7 
3.42 

- 
166.4 

4.8 
6-9-2-1-3-4-7-5-10-8 4-9-3-1-2-6-7-5-10-8 6-9-2-1-3-4-7-5-10-8 

12x10 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

45 
192.2 
145.5 

7065 
206.3 
3600b 

7020 
197.2 

152.97 

- 
227.8 

7.2 
6-8-3-2-9-5-10-7-4-1 6-1-2-10-5-3-9-7-8-4 6-8-3-2-9-5-10-7-4-1 

12x12 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

66 
210.7 
3600b 

10362 
NFSc 
3600b 

10296 
215.8 

2249.7 

- 
264.3 

9.0 
4-8-10-3-11-2-9-5-12-1-7-6 - 4-8-10-3-11-2-9-5-12-1-7-6 

12x15 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

105 
241.9 
6.785 

16485 
NFSc 
3600b 

16380 
NFSc 
3600b 

- 
334.2 
12.0 

6-8-3-11-2-13-9-5-14-10-12-1-15-4-7 - 6-8-3-11-2-13-9-5-14-10-12-1-15-4-7 

12x25 

Binary Variables 
Makespan 

CPU Time (s)a 
Job Sequence p 

 

300 
357 

3600b 

47100 
NFSc 
3600b 

46800 
NFSc 
3600b 

- 
516.8 
48.0 

6-16-8-11-20-4-21-18-17-19-5-10-15-
22-14-2-12-3-25-13-24-9-23-7-1 - 6-16-8-11-20-4-21-18-17-19-5-10-15-22-14-

2-12-3-25-13-24-9-23-7-1 
(a)MILP models were solved by using CPLEX 12 in a PC Core 2 Quad parallel processing in 4 threads. (b) Termination criterion (3600 CPU s). (c) No 
feasible solution found after 3600 sec. 
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By analyzing the model statistics, we can notice 
that the solutions generated by the Simulation Model, 
by using the URM sequence, are very close to the ones 
found by the ORM and RCURM models, which points 
out the high performance of the alternative proposed 
methodology for many small size cases. But, when the 
model size increases the solution obtained by this 
approach becomes poor in comparison with ones 
reported by RCURM and ORM models.  

 The most important difference between 
ORM/RCURM-MILP approaches and our Simulation 
Model lies on the computational time consumed, what 
is more evident in medium size and large size cases, as 
4x14, 8x10, 12x10 and 12x12, 12x15, 12x25 
configurations respectively. 

Moreover, for many larger problems only the 
Simulation Model may find feasible solutions of the 
entire problem with very low computational cost. 

In consequence, the application of the proposed 
solution strategy to manage the activities of the robot 
will compare favourably against a MILP mathematical 
formulation and a MILP-based decomposition method 
for many large-size problems in the AWS station. Also, 
the solution generated by this approach can be 
considered as an initial solution of the whole problem, 
which may be later enhanced by alternative meta-
heuristic or optimization-based methodologies. 
 
CONCLUSIONS AND FUTURE WORK 
A novel discrete event simulation model has been 
developed to simultaneously address the integrated 
scheduling problem of manufacturing and material-
handling devices in the AWS in the semiconductor 
industry. The proposed model can be easily used to 
dynamically validate, generate and improve different 
schedules. We have demonstrated that the proposed 
solution algorithm for the robot is able to generate very 
effective results with modest computational effort. For 
large-sized cases, only our simulation approach found 
feasible solutions to the problem in a reasonable 
computational time.  

In addition, alternative heuristic rules can be easily 
embedded into the simulation framework for making 
convenient timing and sequencing decisions. At the 
same time, alternative system configurations involving 
several robots for wafer-handling in the AWS station 
can be easily considered. As a future work, a hybrid 
approach lying on the concepts of optimization and 
simulation tools will be developed in order to improve 
the generation of the solution for the whole scheduling 
problem. 
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