
A SIMULATION-BASED FRAMEWORK FOR INDUSTRIAL AUTOMATED WET-ETCH
STATION SCHEDULING PROBLEMS IN THE SEMICONDUCTOR INDUSTRY

a)Adrián M. Aguirre, a)Vanina G. Cafaro, a)Carlos A. Méndez*, b)Pedro M. Castro

a) INTEC (Universidad Nacional del Litoral - CONICET), Güemes 3450, 3000 Santa Fe, Argentina.

b) UMOSE, Laboratório Nacional de Energia e Geologia, 1649-038 Lisboa, Portugal

* cmendez@intec.unl.edu.ar

ABSTRACT
This work presents the development and application of
an advanced modelling, simulation and optimization-
based framework to the efficient operation of the
Automated Wet-etch Station (AWS), a critical stage in
Semiconductor Manufacturing Systems (SMS).

Lying on the main concepts of the process-
interaction approach, principal components and tools
available in the Arena® simulation software were used
to achieve the best representation of this complex and
highly-constrained manufacturing system. Furthermore,
advanced Arena templates were utilized for modelling
very specific operation features arising in the process
under study.

The major aim of this work is to provide a novel
computer-aided tool to systematically improve the
dynamic operation of this critical manufacturing station
by quickly generating efficient schedules for the shared
processing and transportation devices.

Keywords: Discrete-event simulation, Semiconductor
Manufacturing System (SMS), Automated Wet-Etch
Station (AWS), Arena Software.

1. INTRODUCTION
Semiconductor wafer fabrication is perhaps one of the
most complex manufacturing systems in the modern
high-tech electronics industry. Wafer facilities typically
involve many production stages with several machines,
which daily perform hundreds of operations on wafer
lots. Moreover, different product mixes, low volume of
wafer lots and hot jobs are some of the typical issues
arising in this type of system.

Wet-Etching represents an important and complex
operation carried out in wafer fabrication processes. In
this stage, wafer’s lots are automatically transferred
across a predefined sequence of chemical and water
baths, where deterministic exposure times and stringent
storage policies must be guaranteed. Hence, automated
material-handling devices, like robots, are used as
shared resources for transferring lots between
consecutive baths.

An important process restriction is that each robot
can only transport a single wafer lot at a time and it
cannot hold a wafer lot more than the exact transfer
time. Due to the lack of intermediate storage between
consecutive baths, this condition can be considered as a
non-intermediate storage (NIS) policy in every bath,

which must be respected by robots for all transfer
movements.

Another constraint adding more complexity to the
system operation is that baths must process wafer lots
one by one, during a predefined period of time, avoiding
the overexposure in the chemical ones, which can
seriously damage or contaminate the wafer lot. In spite
of this, wafers can stay longer than its processing time
only in water baths. So, a zero wait (ZW) and local
storage (LS) policy must be strictly satisfied in every
chemical and water bath, respectively.

As a direct consequence, an effective schedule of
material movement devices and baths along the entire
processing sequence will provide a better utilization of
critical shared-resources and, at the same time, an
important reduction in the total processing time.

In the last years, different methods have been
developed to achieve convenient solutions to this
challenging problem. Main approaches to large-sized
problems lie mainly on heuristic and meta-heuristic
methodologies, such as the ones presented by Geiger et
al. (1997) and Bhushan and Karimi (2004). In these
works, tabu search (TS) and simulated annealing (SA)
procedures, together with other different algorithms,
were developed to provide a quick and good-quality
solution to the job sequence problem and also, a feasible
activity program for the robot.

A more recent approach under the concepts of
Constraint Programming (CP) was developed by
Zeballos, Castro and Méndez, (2011) to handle the
sequencing problem of jobs and transfers in the AWS.
This method could obtain better results than the ones
reported by Bhushan and Karimi (2004) for industrial
problem instances in a reasonable CPU time.

To the best of our knowledge, efficient systematic
solution methods need to be developed to represent and
evaluate the complex dynamic behaviour of the AWS.
Thus, a discrete event simulation environment becomes
a very attractive tool to analyze the impact of different
solution schemes in the system.

In this work, a modelling, simulation and
optimization-based tool is developed to validate, test
and improve the daily operation of the AWS, allowing
an easy evaluation of different operative schemes and
possible alternative scenarios. To do this, a discrete
event simulation model was developed by using most of
the tools and capabilities that are available in the Arena
simulation environment. The principal aim is to provide
a highly dynamic and systematic methodology to reach
the best feasible schedule of limited resources by testing

384

different measures of effectiveness and performance
rates for the system.

Thus, the paper is organized as follows: Section 2
introduces the major features of the problem addressed.
Then, Section 3 describes the proposed solution
method, highlighting its advantages in comparison with
other existing methods and tools as well as the main
objectives of this work. Later, the simulation structure
is explained in detail in Section 4. A brief description
concerning the simulation tool is presented. Software
integration and principal interfaces between different
tools are discussed. A detailed analysis regarding
external and internal logic of the model and the
implementation of this solution in a discrete-event
simulation environment is also presented.

In Section 5, an alternative solution strategy is
tested using several examples, with the main idea of
validating the model and, at the same time, comparing
results of different solution methods.

Finally, the solutions generated and the
comparative study results are reported in Section 6.
Conclusions and future work are stated at the end.

2. PROBLEM STATEMENT
The AWS scheduling problem provides a complex
interplay between material-handling limitations,
processing constraints and stringent mixed intermediate
storage (MIS) policies (Figure 1). We can summarize
major features of the system in the following way:

-Material-handling devices (robot) can only move
one wafer lot at a time. No intermediate storage is
allowed between successive baths. So, NIS policy is
applied between consecutive baths.

-Waiting times are not allowed during the
transportation of a wafer lot.

-Robots and baths are failure-free.
-Setup times are not considered for robots.
-Every bath can only process one wafer lot at a

time.
-A ZW storage policy must be ensured in chemical

baths whereas LS policy is allowed in water baths.

Figure 1: Automated Wet-etch Station (AWS) process
scheme.

For this problem, it is assumed that each wafer lot,
also called job, i (i=1,2…N) has to be processed in
every bath j (j=1,2…M), by following a predefined
processing sequence. In addition, it considers that a
single robot (r=1) is available, which has to perform all
the transportation activities in the system.

Consequently, the problem to be faced corresponds
to the scheduling of N jobs in M baths, in a serial
multiproduct flowshop, with ZW/LS/NIS policies. The
use of a single shared robot with finite load capacity for
the wafer movement between consecutive baths is
explicitly considered in this work.

3. PROPOSED SOLUTION METHODOLOGY
This work introduces an efficient discrete-event
simulation framework, which faithfully represents the
actual operation of the automated Wet-etch Station
(AWS) in the wafer fabrication process.

The main advantage of this computer-aided
methodology is that it permits to systematically
reproduce a highly complex manufacturing process in
an abstract and integrated form, visualizing the dynamic
behaviour of its constitutive elements over time (Banks
et al. 2004).

The proposed simulation model represents the
sequence of successive chemical and water baths,
considering the automated transfer of jobs.

Based on a predefined job sequence, which is
provided by an optimization-based formulation, the
model structure allows the evaluation of many different
criteria to generate alternative efficient schedules.

The major aim here is to efficiently synchronize
the use of limited processing and transportation
resources. This methodology allows also evaluating and
improving the operation and reliability of baths and
robot schedules. What is more, simulation runs permit
addressing industrial-sized problems with low
computational effort.

As a result, a basic model is generated to achieve
an effective solution to the whole AWS scheduling
problem. It becomes also very useful for making and
testing alternative decisions to enhance the current
process performance.

4. THE SIMULATION-BASED FRAMEWORK
In order to formulate a computer-aided representation to
the real-world Automated Wet-Etch Station (AWS)
described above, it was decided to make use of the
simulation, visualization and analysis tool set provided
by the Arena discrete-event simulation environment
(Law et al., 2007, Kelton et al., 2007).

The simulation model developed in Arena
Software provides an easy way to represent the AWS by
dividing the entire process in specific sub-models
(Initializing, Transfer, Process and Output). For each
sub-model, the detailed operative rules and strategic
decisions involved are modelled using the principal
blocks of Arena Simulation Tool and, at the same time,
a set of visual monitoring objects is used to measure the

385

utilization performance of all baths and resources in the
system.

Additionally, the model allows working with a
user-friendly interface with Microsoft Excel for
simultaneously reading and writing different data. In
next sections, we will describe these features in detail.

4.1. Software integration
The simulator allows an easy communication with
Excel spreadsheets. Thus, this tool permits reading,
writing and processing important data for the simulation
model. Figure 2 illustrates the data flow between Excel
and Arena. Both tools support Visual Basic for
Applications (VBA) that can be used to move data
between them. As shown in the figure, a hybrid solution
framework is proposed on these tools. The Mixed
integer linear programming (MILP) model provides an
initial solution that is written in Excel as input data of
the Arena’s model. Using that input data, Arena
simulation software runs the process model to generate
many important statistics that are collected by Excel
files as output data. The procedure of reading and
writing data is used to dynamically generate a solution
schedule by updating the start and finish times of every
job in each bath and, simultaneously, determine the
status of each job in every stage of the system.

Figure 2: Information exchange between Excel – Arena
– MILP Software

4.2. Proposed simulation model
As shown in Figure 3, the entire logic of the simulation
model is divided into four main modules (input,
transfer, process and output). The first module is the
Initializing sub-model. The initializing process receives
as input data the processing time of each job at each

chemical and water bath and a job sequence provided
by a MILP model, which is considered as an initial
alternative solution. Then, the discrete-event simulation
model generates as many entities as wafer lots are to be
scheduled. Here, the logic behind the automated transfer
of jobs is performed in order to generate a feasible
schedule for the robot activities.

The subsequent simulation module is the Transfer
sub-model, which defines the needed delay time to
transfer a wafer lot to the next bath. This module is
used to explicitly simulate the time spent to transfer the
jobs between the input buffer to the first bath, between
successive baths, according to the predefined sequence,
and also between the last bath to the output buffer. Only
after the transfer is finished, the bath from where the
wafer comes is released. It should be noted that a
transfer can be only executed if the robot and the
destination bath are both available.

In order to simulate the process itself, one Process
sub-model for each bath is defined. There is a different
logic depending on the type of bath (chemical or water).
The wafer residence times in chemical baths must be
controlled strictly (as soon as chemical bath finishes,
the wafer must transferred to the succeeding water
bath). While holding time in water baths is allowed.
Thus, for every baths, the logic performs the following
tasks: (i) reports the time at which the process begins
and ends; (ii) seizes the following bath after the delay
time finishes; (iii) performs the transfer to the following
bath, only if the robot and the destination bath are
empty.

It is important to notice that the logic driving in the
Process sub-model permits to easily identify why and
when a given wafer's lot is discarded. Basically, it may
occur because the robot and/or next bath are not
available. This allows making a detailed analysis about
the behaviour of the system, executing, if necessary, the
corresponding adjustments when unexpected events
occur or when different strategies are tested in the way
to improve the process performance. So, Process sub-
models permit to evaluate and also validate the
feasibility of the internal logic algorithm proposed in
the Initializing Process of the system, identifying the
possible causes of infeasibility to be corrected.

Figure 3: Partial size view of the in-progress simulation model generated in the Arena environment.

386

The last module is the Output buffer. The logic of
this sub-model represents the final stage of each job. At
this module the final processing time (Makespan) of
each job is reported. It is the ending point for entities
created at the input module. Here, the model reports if
the current job has been successfully finished or has
been discarded.

4.2.1. Advanced internal logic for the robot
The principal aim of modelling the internal robot logic
is to explicitly represent the finite capacity of
transportation resources for transferring jobs between
consecutive baths. The sequence and timing of transfers
will depend on the stringent storage restrictions to be
satisfied in the baths (ZW / NIS / LS) as well as on the
availability of a transportation resource to carry out the
transfer.

Since there is only a single robot to do all the job
movements, the sequence in which the transfers will be
performed needs to be clearly defined. Transfers related
to a particular job can never overlap because they are
carried out after the corresponding processing stages
finish. Consequently, no pair of transfers of the same
job may be performed simultaneously.

Therefore, the sequencing problem of transfers
must only be focused on the comparison of transfer
activities of different jobs in order to determine a
feasible robot schedule.

For that reason, a complex internal logic for the
robot was embedded in the simulation model to
compare and update the start (ts(i,j)) and end times (te(i,j))
of transfers (i,j). The aim is to define the earliest time at
which each transfer can be executed. This logic permits
to sequence the different transfers in a correct way,
generating a feasible schedule for the robot and a near-
optimal solution for the whole system, considering a
predefined sequence of jobs.

By using this logic, the transfers related to a given
job are sequentially inserted according to the order in
which they will be processed at every different bath
(j=1,2,3,…,M+1). Then, the transfers are compared
successively with all the transfers that were previously
inserted into the schedule (according to a predefined
processing sequence).

The application of strict storage policies such as
ZW and LS in the baths and the NIS rule in the robot
significantly complicates the solution of the problem.
Enforcing a ZW policy in the chemical baths j implies
that the start time of the transfer to the water bath j+1
must strictly satisfy equation (1).

)(),(),()1,(jjijiji tptsts π++=+
 NiMj ...1;1...5,3,1 =∀−= (1)

For that reason, the value of ts(i,j) allows directly

determining the value of ts(i,j+1). Here tp(i,j) represents
the processing time of job i in bath j while π(j) denotes
the transfer time for every job from bath j-1 to j.

On the other hand, if the LS rule is applied to a
water bath j, inequality (2) must be satisfied.

)(),(),()1,(jjijiji tptsts π++≥+

 NiMj ...1;...6,4,2 =∀= (2)

Let p = {p1, p2, p3,…,pN} define a permutation

processing sequence N different jobs. pw represents the
w-th position of a job i (i=1…N) in the processing
sequence. It means that the job processed in the w-th
position will be always before the job processed in the
w+1 position in the sequence p.

Due to the NIS policy in the transfers and
constrains on finite load capacity of the baths and the
robot, the equation (3) is to be defined.

)1()1,1(),(++− +≥ jjwjw tsts π

 NwMj ...1;1...3,2,1 =∀+= (3)

So, any transfer of a job processed in the pw

position, at bath j, has to wait the ending of the transfer
of the job located in the pw-1 position at the succeeding
bath j+1 to be processed.

In the next section, we will explain the transfer
comparison algorithm developed to solve the described
problem. Only one robot is considered to be available
for the execution of the transfers in the system.

4.2.2. Generation and evaluation algorithm for

transfers
This algorithm is mainly based on the major ideas of the
JAT (Job-at-a-time) algorithm, developed by Bhushan
and Karimi (2004). The JAT algorithm always
prioritizes the transfers related to jobs that were
previously inserted in the system, following a
predefined processing sequence. For transfers related to
the same job, they are executed according to the fixed
sequence of baths to be visited (j=1…M+1). So, based
on processing constrains (1)-(3) and assuming that all
the jobs follow the same processing stages, no job in the
pw position may leave the system before the one located
in the pw-1 position. This means that all jobs will be
processed in the different baths following the same p
sequence, what is known as "flowshop permutation
schedule".

Our algorithm, as the JAT algorithm, selects a job
to be processed and then generates (Generation Process)
and evaluates (Evaluation Process) all the transfers for
this job, one at a time, before going to the next job of
the sequence. The principal difference between the
proposed algorithm and the JAT algorithm is the
evaluation procedure used for the system transfers.
 In the proposed evaluation process, every selected
transfer is compared with all the transfers previously
inserted into the system. Thus, a detailed schedule of
the robot operations is defined.

The aim of this process is to avoid that any transfer
previously inserted (w´,j´) can be performed (for pw´≤ pw

387

and for all j´) between the starting time (ts(w,j)) and the
ending time (te(w,j)) of the inserted transfer (w,j)

During this iterative evaluation process the transfer
times are initialized (Initialized Process), then they are
compared with all the other transfers times (Comparison
Process) and finally, they are updated (Updating
Process). This loop is repeated successively for a given
transfer, until all the comparisons, with the previously
inserted transfers, do not introduce new updates at the
compared transfer times. So, the comparison and
updating processes end. Then, the transfer is evaluated
and loaded onto the system with its respectively times
[ts(w,j), te(w,j)], the counter number of iteration without

change (iter) and the number of transfers loaded onto
the system (transf) are updated and the next transfer
from the list (w,j) with j=j+1 if j < M+1; or w=w+1
and j=1 if w < N, is taken for the comparison. The
algorithm ends when there are no more transfers to be
compared in the system (j=M+1 and w=N).

The simplified logic proposed is summarized in
Figure 4.

Next, the Generation Process is explained more in
detail as well as the procedures of Initialization,
Comparison and Update of the Evaluation Process, all
of them generated by our algorithm.

Figure 4: Pseudocode of the Generation and Evaluation Algorithm for transfers

388

Generation process
To apply the logic in the simulation model it was
necessary to define each transfer as a particular new
entity in the system, together with the entities associated
to the jobs in the system. Consequently, a given job “i”
will have associated a certain number of transfers and/or
entities (i,j) corresponding to the quantity of baths into
the system j=1…M+1.

Therefore, to start the processing of a given job i,
all its j transfers must be pre-loaded into the system.
Going back to equations (1) and (2), we can notice that
the treatment of the transfers must be done in successive
pairs. In order to define the start and end time of the
transfer, it is necessary to correctly arrange the
successive transfers in the robot, without overlap with
any other transfer in the system. So, infeasible
schedules are avoided. For that, it is necessary to define
a set of attributes [ts(i,j),te(i,j)] [ts(i,j+1),te(i,j+1)], for each
transfer (i,j) in order to define a correct sequence of
transfer over time, avoiding infeasible solutions for the
future transfer at the same job i (i, j+1).

Evaluation process
After defining all the attributes of the inserted transfer,
we proceed to determine an initial value.

Initialized Procedure: the initialization procedure
consists on determining the lower value at which the
transfer can be initialized, assuming that there are not
limitations of resources. So, we can determine the initial
value ts(w,j) for each transfer using the following
equations (4)-(5).
For chemical baths (baths with odd number), equation
(4) is applied:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−−=

−−

+−

+−

)1,()1,(

),()()2,1(

)1,1(

),(

jwjw

jwjjw

jw

jw

tpte
tpte

te

Maxts π

 NwMj ...2;1...5,3,1 =∀+= (4)

While for water baths (baths with even number),
equation (5) is applied:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++
=

+−

−−−

)1,1(

)1,()1()1,(
),(

jw

jwjjw
jw te

tpts
Maxts

π

 NwMj ...2;...6,4,2 =∀= (5)

There, te(w,j) is calculated for all baths j with the
equation (6).

)(),(),(jjwjw tste π+=
 NwMj ...1;1...3,2,1 =∀+= (6)

So, for any job w > 1 the initial state of the
attributes in the system is determined: [ts(w,j),te(w,j)];
[ts(w,j+1),te(w,j+1)].

Instead, for w = 1, the initial values of the

attributes are defined following equation (6) and (7).

∑∑
−=

=

−=

=

+=
1´

1´
´)(

1´

1´
´),(),(

jj

j
j

jj

j
jwjw tpts π

 1;1...3,2 =∀+= wMj (7)

For the first transfer in the system (w=1 and j=1),

the initial value is equal to zero (ts(1,1) = 0).

Comparison Procedure: Once transfers are initialized
to w=1, they are loaded in the system by updating the
subset of charged transfers σ. In σ there are all the
transfers (w,j) that have been previously compared and
assigned to the robot in a correct way. The value σk
represents the k-th transfer analysed and initialized into
the system according to the priorities described above.

The comparison procedure is applied to the pw
position with w > 1. During this iterative procedure, the
inserted transfer (w, j) is compared in pairs with a
transfer (w´,j´) of the subset σ, already assigned to the
robot (being the pw´ position < pw, that means w´< w).

If analyzing the attributes (w,j) ([ts(w,j),te(w,j)] and
[ts(w,j+1),te(w,j+1)]) of the transfer with the ones already
inserted (w´,j´) ([ts(w´,j´),te(w´,j´)]) there is any overlap
between the values of them, then the algorithm will
update them for avoiding overlaps (see Equation (8)).
Otherwise, the attributes will not be updated. That
means that transfer (w,j) does not overlap with (w´,j´).

If () ()´)´,(),(´)´,(),(jwjwjwjw tetstste ≥∨≤

Then][][),(),(),(),(jwjwjwjw tetetsts =∧=

Else_If () ()´)´,(),(´)´,(),(jwjwjwjw tstetets >∧<

Then][][)(),(),(´)´,(),(jjwjwjwjw tstetets π+=∧=
 ´,;´;...2´);´,(),(jjwwNwjwjw ∀≤∀=∀≠∀ (8)

As can be seen, the updating process consists in
delaying the start time of transfer (w,j) when
overlapping with (w´,j´) are observed. Initially, it is
necessary to compare the attributes [ts(w,j),te(w,j)] vs.
[ts(w´,j´),te(w´,j´)] and then [ts(w,j+1),te(w,j+1)] vs.
[ts(w´,j´),te(w´,j´)]. Thus, we try to ensure that if ts(w,j) ≥
te(w´,j´), then by equation (1) and (2) ts(w,j+1) ≥ te(w´,j´), else
if te(w,j+1) ≤ ts(w´,j´) then te(w,j) ≤ ts(w´,j´).

Update Procedure: This procedure is used to generate
the earliest time at which the analyzed transfer (w,j) can
be executed, in relation with the transfers previously
inserted (w´, j´) and taking into account the resource
constrains. As result, the efficient assignment and the
detailed program of the robot is determined.

The procedure tries to recalculate the value of the
attributes [ts(w,j),te(w,j)] and [ts(w,j+1),te(w,j+1)] from the
(w,j) transfer fulfilling the equations (1) and (2). As
result of the comparison process, the attributes
[ts(w,j),ts(w,j+1)] will be updated according to equation (9).

389

If ())1,()(),(),(+≥++ jwjjwjw tstpts π

Then)(),(),()1,(jjwjwjw tptsts π++=+

Else_if ())1,()(),(),(+<++ jwjjwjw tstpts π

Then)(),()1,(),(jjwjwjw tptsts π−−= +
 NwMj ...2;1...5,3,1 =∀+= (9)

For j=2,4,6…M or if not met any of the conditions,
only the values of [te(w,j),te(w,j+1)] are updated. Both of
the values are recalculated according to equation (6).

It may be possible that after the end of the
processes of comparison and updating, some of the
analyzed transfer's attributes overlap again with the
previously compared transfer or with some other in the
system. If this occurs, the algorithm makes a loop in the
comparison process selecting the next σk transfer, saved
in the σ subset. It also updates the iterations counter to
zero (iter = 0).

If there isn’t any change in the attributes, the
algorithm returns to the comparison process and
evaluates the analyzed transfer with the next transfer in
the σ sequence. Then, the iteration counter iter is
updated to iter + 1 (iter = iter + 1).

In both cases, the comparison is made with the
transfer of job σk, where k=k+1 if k < transf, or
otherwise: k=1; being transf equal to the number of
elements in the σ set (transf = card(k)).

This iterative process is performed for all the
possible comparisons. While this method may be not
efficient from the procedural standpoint, since there are
unnecessary and redundant comparisons, it tries to
avoid the generation of unwanted or erroneous results
after the updating stage.

Since to the comparison process is simple and the
additional number of events does not report high
updating times, we can demonstrate that our algorithm
is able to deal with industrial scale problems with
modest computational cost.

Finally, when the analyzed transfer (w,j) has been
compared dynamically with all the transfers (w´,j´) of

the σ sequence without updating attributes, that is that
the algorithm iteration number (iter) is greater or equal
than the σ set cardinality (iter ≥ transf), then the last
transfer is loaded into the system with its respectively
times, and the number of elements of σ set are updated
(transf = transf + 1). The iteration counter is initialized
(iter = 0) and the robot is assigned to the (w,j) transfer
during the time between the interval [ts(w,j),te(w,j)]. The
next transfer will be (j = j+1) if j<M+1.

Otherwise, if j is the last bath of the sequence
(j=M+1) and w is not the last job of the p sequence (w
< N) then, the process continues with the next (w =
w+1) job in the p sequence and j=1 is established.

The algorithm ends when there are not more
transfers to be evaluated. In this case, w=N and j=M+1,
that means that all transfers have been loaded into the
system (transf = N*M+1).

As result, our algorithm ensures that no pair of
transfers inserted into the system and assigned to the
robot may overlap over time. Thus, a feasible schedule
for both, the process and robot, is generated.

4.3. Implementation in the simulated model
Once the timing of transfers is defined, the model is
able to emulate the real system behaviour while
satisfying the job processing time, the mixed
intermediate storage policies and the assignment of
transfers to the limited shared resource.

The simulation is run by using the model resources
(baths and robot) and the waiting modules
(Queues/Hold/Match). The waiting modules hold the
entities until a given condition is met.

While jobs are being processed in the system,
according to the predefined job sequence given by p, the
transfers’ values are updated using specific writing and
reading modules (Read/Write). Thus, a fast and
simplified way of interacting with Microsoft Excel® is
permitted (see Figure 5), defining dynamically the
detailed schedule for the baths and robot, together with
the generation of dynamic charts representing the
evolution of the different works (operations and
transfers) over time.

Figure 5: Dynamic Gantt Chart Schedule Generated by a User-friendly Excel Interface

390

As a result, the dynamic operation can be
controlled and analyzed in a global perspective. Failures
and/or possible improvement actions can be easily
observed by analysing the graphical interface. For
example, it can be easily identified how a change in the
process sequence impacts over the processing time of
each bath and in the availability of the shared resource.

Also, the simulated model progressively evaluates
the utilization of the system resources (bath and robot),
using monitors or animated screens (see Figure 6),
which allow to execute a detailed control of the shared
resources performance over time. Thus, it is possible to
identify the critical points (resources and/or stages
intensively used in the system) with the aim of
evaluating alternative modifications in the process
design (change the number of resources, or use parallel
resources) and/or in the process operation (resources
assignment and priority of processing)

Figure 6: Monitoring the resource utilization

4.4. Animation module of the AWS station
Additionally, the model displays the dynamic behavior
of the AWS station through the animation of main
system components (entities, resources, performance
indicators). Thus, the system operation, involving baths
(chemicals and water) and robot activities can be easily
evaluated (see Figure 7).

Figure 7: In-progress animation of the AWS station

4.5. Performance measures and termination

criterion
The proposed algorithm looks for the best permutation
sequence p of the different jobs to be scheduled. This is
determined based on the timing of jobs at the
consecutive stages and also by the detailed feasible
schedule of the transfer robot activities.

Start and end times of activities are dynamically
reported in Excel®, according to the different events
that take place in the system, at each stage of the
process through the simulation.

The main goal is to achieve the shortest completion
time of all jobs in the system. So, the objective function

can be estimated with the final time of the last transfer
of the robot in the AWS station (te(w,j) for w=N and
j=M+1).

For our model, the estimation of this time is
determined by the MK (Makespan) variable. This
variable analyses the simulation variable TNOW every
time a job is finished.

TNOW is a global variable managed by the
simulator that indicates the actual time at which the
different events are happening throughout the
simulation. In turn, the time for completing the last job
in the system represents the stopping criterion of the
simulation run (Termination Criterion).

Other performance measures are the utilization of
baths and robot. In our particular case, they are used to
compare alternative solutions in order to determine
alternative policies and logic for the robot allocation.

5. ALTERNATIVE SOLUTION STRATEGIES
A natural way to get a good result of complex problems
is to try to break the whole problem at different stages
(Bhushan and Karimi, 2003). An iterative solution
involves decomposing the whole problem into
independent sub-problems, using the solution from one
stage as input data for the next one, in order to obtain a
global solution in a sequential manner.

In our particular case, generating a good initial p
sequence for all the jobs to be processed in the system
may notably reduce the complexity of sequencing robot
decisions.

The use of meta-heuristics (Bhushan and Karimi,
2004) and mathematical programming models (MILP)
(Bhushan and Karimi, 2003; Aguirre, Méndez and
Castro, 2011; Zeballos, Castro and Méndez, 2011), are
some of the existing tools used to obtain a good initial
sequence p for large size AWS scheduling problems.

Here, we present an alternative solution to the
robot sequencing problem, based on modern simulation
techniques and tools. We also know that in these highly
combinatorial problems there exist always a trade-off
between computational times and optimal solutions.

For this reason, we have proposed an interesting
alternative for obtaining an efficient solution. It is based
on a MILP model that provides the best solution to the
problem assuming unlimited robots, in order to obtain
the optimal p sequence of the jobs in the system. Then,
this information is taken as input data by the simulator
in order to obtain a feasible and efficient solution to the
whole problem, involving the sequencing robot
activities. For this, we use the solution provided by a
continuous-time formulation developed by Aguirre,
Méndez and Castro (2011). Thus, we will initially solve
different cases without considering the robot
constraints, to subsequently incorporate the results of
the sequence into the simulation model.

Finally, in order to validate the model developed,
we compare the results with the ones obtained by a
rigorous mathematical formulation (MILP), considering
the same p sequence in both solutions and also with the
results obtained by a full-space MILP model

391

considering all robots restrictions. Several examples of
different sizes are efficiently solved by using this
strategy. We will analyse the results obtained from the
comparison of those techniques.

5.1. Cases Studies
To prove the applicability of the internal and external
logic of the simulation model, different examples using
the proposed method are tested. Also, the results
generated are compared with optimal MILP solutions
found by Aguirre, Méndez and Castro (2011) and the
heuristic procedure RCURM from Bhushan and Karimi
(2003), by using the previous mentioned MILP model.

The problem instances have been obtained from
literature, for an specific MxN configuration for the first
M baths and N jobs of the original problem presented by
Bhushan and Karimi, 2004.

6. RESULTS AND COMPARISONS
The heuristic methodology RCURM ("Resource
Constrained Unlimited Robot Mathematical Model") is
based on a MILP model that can solve moderate size
problems with reasonable computational effort in
comparison with pure mathematical models. Two
alternative models, URM ("Unlimited Robot Model")
and ORM ("One Robot Model") were solved

sequentially in order to obtain a solution for the whole
problem.

The first one, i.e. the URM, is used to generate an
optimal job sequence that ignores the robot restrictions.
The URM just only takes explicitly into account the
predefined transfer times, assuming that a robot will be
always available to perform the transfer operations.

The ORM, in turn, considers the impact of limited
transfer resources in the objective function. This
proposed model also takes into consideration the
sequential use of the single transfer movement device,
which enforces a proper synchronization of bath
schedules and robot activities.

The idea of the RCURM is to first solve the
problem using the URM model, to then fix the
production sequence obtained by this model and solve
the detailed robot schedule through the ORM
formulation. Following this idea, the simulation model
will receive as input data the sequence obtained by the
URM to then simulate the whole process including the
robot activities. As it is shown in Table 1, for the
examples validated, the Simulation Model gives the
same MK value than the RCURM-MILP for the first
three problem instances. This is a good indicator to
conclude that the simulation logic may generate results
that are as effective as optimal MILP solution, that can
obtained with a modest computational effort.

Table 1: Model Statistics for a few MxN problem instances

MxN Statistics Unlimited Robot Model
(URM-MILP)

One Robot Model
(ORM-MILP)

Resource Constrained
Unlimited Robot Model

(RCURM-MILP)

Arena Simulation
Model using URM

Sequence

4x8

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

28
95.1

0.484

588
95.6

11.25

560
95.6
0.091

-
95.6

-
4-2-8-5-1-7-3-6 4-2-5-8-1-7-3-6 4-2-8-5-1-7-3-6

4x10

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

45
115.5
6.785

945
115.6
488.7

900
116

0.122

-
116

-
9-2-5-8-10-4-1-7-3-6 9-6-5-4-10-2-8-1-7-3 9-2-5-8-10-4-1-7-3-6

4x14

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

91
154.7
3600b

1911
158.8
3600b

1820
156.2
0.235

-
156.2

-
9-12-5-8-7-11-14-10-2-4-1-13-3-6 9-2-8-12-4-14-10-11-5-1-3-7-13-6 9-12-5-8-7-11-14-10-2-4-1-13-3-6

8x10

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

45
149.4
55.07

3285
154.4
3600b

3240
156.7
3.42

-
166.4

4.8
6-9-2-1-3-4-7-5-10-8 4-9-3-1-2-6-7-5-10-8 6-9-2-1-3-4-7-5-10-8

12x10

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

45
192.2
145.5

7065
206.3
3600b

7020
197.2

152.97

-
227.8

7.2
6-8-3-2-9-5-10-7-4-1 6-1-2-10-5-3-9-7-8-4 6-8-3-2-9-5-10-7-4-1

12x12

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

66
210.7
3600b

10362
NFSc
3600b

10296
215.8

2249.7

-
264.3

9.0
4-8-10-3-11-2-9-5-12-1-7-6 - 4-8-10-3-11-2-9-5-12-1-7-6

12x15

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

105
241.9
6.785

16485
NFSc
3600b

16380
NFSc
3600b

-
334.2
12.0

6-8-3-11-2-13-9-5-14-10-12-1-15-4-7 - 6-8-3-11-2-13-9-5-14-10-12-1-15-4-7

12x25

Binary Variables
Makespan

CPU Time (s)a
Job Sequence p

300
357

3600b

47100
NFSc
3600b

46800
NFSc
3600b

-
516.8
48.0

6-16-8-11-20-4-21-18-17-19-5-10-15-
22-14-2-12-3-25-13-24-9-23-7-1 - 6-16-8-11-20-4-21-18-17-19-5-10-15-22-14-

2-12-3-25-13-24-9-23-7-1
(a)MILP models were solved by using CPLEX 12 in a PC Core 2 Quad parallel processing in 4 threads. (b) Termination criterion (3600 CPU s). (c) No
feasible solution found after 3600 sec.

392

By analyzing the model statistics, we can notice
that the solutions generated by the Simulation Model,
by using the URM sequence, are very close to the ones
found by the ORM and RCURM models, which points
out the high performance of the alternative proposed
methodology for many small size cases. But, when the
model size increases the solution obtained by this
approach becomes poor in comparison with ones
reported by RCURM and ORM models.

 The most important difference between
ORM/RCURM-MILP approaches and our Simulation
Model lies on the computational time consumed, what
is more evident in medium size and large size cases, as
4x14, 8x10, 12x10 and 12x12, 12x15, 12x25
configurations respectively.

Moreover, for many larger problems only the
Simulation Model may find feasible solutions of the
entire problem with very low computational cost.

In consequence, the application of the proposed
solution strategy to manage the activities of the robot
will compare favourably against a MILP mathematical
formulation and a MILP-based decomposition method
for many large-size problems in the AWS station. Also,
the solution generated by this approach can be
considered as an initial solution of the whole problem,
which may be later enhanced by alternative meta-
heuristic or optimization-based methodologies.

CONCLUSIONS AND FUTURE WORK
A novel discrete event simulation model has been
developed to simultaneously address the integrated
scheduling problem of manufacturing and material-
handling devices in the AWS in the semiconductor
industry. The proposed model can be easily used to
dynamically validate, generate and improve different
schedules. We have demonstrated that the proposed
solution algorithm for the robot is able to generate very
effective results with modest computational effort. For
large-sized cases, only our simulation approach found
feasible solutions to the problem in a reasonable
computational time.

In addition, alternative heuristic rules can be easily
embedded into the simulation framework for making
convenient timing and sequencing decisions. At the
same time, alternative system configurations involving
several robots for wafer-handling in the AWS station
can be easily considered. As a future work, a hybrid
approach lying on the concepts of optimization and
simulation tools will be developed in order to improve
the generation of the solution for the whole scheduling
problem.

ACKNOWLEDMENTS
Financial support received from Fundação para a
Ciência e Tecnologia and Ministerio de Ciencia,
Tecnología e Innovación Productiva, under the
Scientific Bilateral Cooperation Agreement between
Argentina and Portugal (2010-2011), from AECID
under Grant PCI-D/030927/10, from CONICET under

Grant PIP-2221 and from UNL under Grant PI-66-337
is fully appreciated.

REFERENCES
Aguirre, A. M., Méndez, C. A., Castro, P. M., 2011. A

Novel Optimization Method to Automated Wet-
Etch Station Scheduling in Semiconductor
Manufacturing Systems. Comput. Chem. Eng.,
doi:10.1016/j.compchemeng.2011.02.14.

Banks, J., J. S. Carson, B. L., Nelson, D. M. Nicol.
2004. Discrete-Event System Simulation. 4th ed.
Upper Saddle River, New Jersey: Prentice-Hall,
Inc.

Bhushan, S., and Karimi, I. A., 2003. An MILP
approach to automated wet-etch scheduling.
Industrial and Engineering Chemistry Research,
42(7), 1391-1399.

Bhushan, S., and Karimi, I. A., 2004. Heuristic
algorithms for scheduling an automated wet-etch
station. Computers and Chemical Engineering, 28,
363-379.

Geiger, C., Kempf K. G., and Uzsoy, R., 1997. A tabu
search approach to scheduling an automated wet
etch station. Journal of Manufacturing System, 16,
102-116.

Kelton, W. D., R. P. Sadowski, D. T. Sturrock., 2007.
Simulation with Arena. 4th ed. New York:
McGraw-Hill Inc.

Law, A. M., 2007. Simulation Modeling and Analysis.
4th ed. New York: McGraw-Hill, Inc.

Zeballos, L. J., Castro, P. M., Méndez, C. A., 2011.
Integrated Constraint Programming Scheduling
Approach for Automated Wet-Etch Stations in
Semiconductor Manufacturing. Ind. Eng. Chem.,
50, 1705.

Dr. CARLOS A. MENDEZ is a Titular Professor of
Industrial Engineering at Universidad Nacional del
Litoral (UNL) in Argentina as well as an Adjoint
Researcher of the National Scientific and Technical
Research Council (CONICET) in the area of Process
Systems Engineering. He has published over 100
refereed journal articles, book chapters, and conference
papers. His research and teaching interests include
modeling, simulation and optimization tools for
production planning and scheduling, vehicle routing and
logistics.

Dr. PEDRO M. CASTRO is an Assistant Researcher
at Laboratório Nacional de Energia e Geologia in
Portugal in the area of Process Systems Engineering.
His research interests include scheduling of batch and
continuous processes, mixed integer and nonlinear
optimization, and process integration. He has published
over 30 papers in international journals with refereeing
and has been invited to give seminars in a few
Universities and Research Centers worldwide.

393

