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ABSTRACT 

We present a maximum likelihood method for inferring 

kinetics of stochastic systems of chemical reactions, 

given discrete time-course observations of the 

abundance of either some or all of the molecular species 

and a BlenX model of the system. BlenX is a process 

calculus providing a tool and algebraic laws for a high-

level description of interactions, communications, and 

synchronizations between processes representing the 

biomolecules. BlenX offers an efficient alternative to 

differential equations, but it poses different challenges 

to the model calibration. The main difficulty is the 

sampling of the reaction pathways between two 

observed states. We define a maximum likelihood 

function in terms of reaction propensities and we 

estimate it by sampling the intermediate pathways from 

the transition system of a BlenX. The method of 

sampling the transition system is inspired to the 

elementary mode analysis. Our method is illustrated 

with the example of a BlenX model of chaperone-

assisted protein folding. 
 

Keywords: BlenX, parameter estimation, maximum 

likelihood estimation. 

 

1. INTRODUCTION 

Modelling the time evolution of biological systems 

requires the specification of the interactions among the 

biochemical species and the kinetic parameters of these 

interactions. The choice of a language able to express 

the main features of biological systems and the methods 

for estimating the model parameters (model calibration) 

are two interdependent.  In this article, we introduce the 

BlenX language (Dematté, et al., 2008 (a) and (b)) for 

modeling biological processes and a way to calibrate a 

BlenX-specified model using discrete time-course 

observations of either some or all of the molecular 

species. 

The majority of the models of inter- and intra-

cellular dynamics are specified in ordinary differential 

equations. These equations are usually employed by 

physicist to formalize the natural laws and to describe 

the dynamics of the inert matter. However, the recent 

achievement of the systems biology paradigm 

highlights the need of a new systematic approach to 

modeling systems belonging to living matter. This need 

can be translated into the necessity to develop new 

mathematical methods and tools to model living 

systems, considering that these systems require 

mathematical and computational approaches 

substantially different from those used to model inert 

matter. Multifunctionality of biochemical complexes, 

parallelism and concurrency of their interactions and 

modular structure of the network of interactions are the 

main features characterizing a biological system. 

Process algebras (or process calculi) are currently 

proposing as suitable formalisms for the specification of 

a biological process (some examples are: stochastic -

calculus (Priami, 1995), BioAmbients  (Regev, et al., 

2004), Brane Calculi (Cardelli, 2005), CCS-R  (Danos 

& Krivine, 2004), k-calculus  (Danos & Laneve, 2004), 

PEPA  (Gilmore & Hillstone, 1994)). Usually, these 

algebras are applied to the study of concurrent 

processes. The tools of the process algebras are 

algebraic languages for the specification of processes 

and the formulation of statements about them, together 

with calculi for the verification of these statements. 

Process calculi provide a tool for the high-level 

description of interactions, communications, and 

synchronizations between a collection of independent 

agents or processes. The use of these calculi in 

modelling biological system is based on a new 

abstraction of the physical concepts of interacting 

molecules, interactions and change of state. Interacting 

molecules are represented by processes. Interactions 

between molecules are represented by synchronized 

communication.  The change of state consequent to an 

interaction is described by the modification that 

processes undergo after the realization of their 

communication. 

In this article we focus on a new member of the 

family of process algebra: the BlenX language. It has 

been developed by our lab  (CoSBi, 2011) to extend the 

expression capabilities of the stochastic -calculus. As 

in stochastic -calculus, also in BlenX models consist 

of agents (processes) which stochastically engage 

actions. However, with BlenX we can describe more 

easily spatial structures like membranes, compartments, 
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interaction domains, and the formation of biological 

complexes driven by chemical/physical affinities. 

Currently, BlenX can be used to specify continuous 

time stochastic systems. In fact, the stochastic 

simulation algorithm of the BlenX simulator is an 

efficient variant of the Gillespie algorithm  (Gillespie, 

1977). In Gillespie-like approaches every reaction is 

explicitly simulated. When simulated, a Gillespie 

realization represents a random walk that exactly 

provides the distribution of the Chemical Master 

Equation. 

The communications representing the physico-chemical 

interactions between the biological entities are 

associated to a rate constant that quantifies the specific 

speed of the communication and reflects the kinetic rate 

constant (and/or the affinity) of the reaction. This rate 

constant is the parameter of an exponential probability 

distribution of the waiting time of reactions. Thus, the 

waiting time of a reaction is a realization of a random 

variable exponentially distributed with parameter equal 

to the rate constant of the reaction. The stochastic 

simulation algorithm generates random numbers to 

determine the next reaction to occur as well as the time 

at which the reaction occurs. The time evolution of the 

system proceeds by jumps from one state to another. 

The state of the system at time t is given by the number 

of molecules (or more generally of biological - 

biochemical entities) of each species included in the 

system at that time. Therefore, first of all, the 

calibration of a BlenX model is the calibration of a 

stochastic model.   

The existent method for parameter inference in 

stochastic system belongs to one of the following two 

categories: maximum-likelihood based approach and 

Bayesian inference approach. A comprehensive review 

of these methods can be found in the introduction of 

recent work of Y. Wang et al. (Wang, Christley, 

Mjolsness, & Xie, 2010), R. J. Boys et al.  (Boys, 

Wilkinson, & Kirkwood, 2008) and in P. Lecca et al.  

(Lecca, Palmisano, Ihekwaba, & Priami, 2010). Here 

we focus on maximum likelihood (ML) appraoches, 

following our previous studies on ML inference models 

(Lecca, Palmisano, Ihekwaba, & Priami, 2010). 

Most proposed methods for parameter inference in 

stochastic biochemical models consider how to 

calculate the maximum likelihood for the rate parameter 

values given a stochastic model and discrete 

experimental data of the amount of molecules of all or 

only of some species. Since for biological systems of 

realistic size and complexity, the likelihood function is 

computationally intractable, these methods either 

perform exact inference on an approximated model 

where the likelihood computation is tractable, or they 

approximate the likelihood with a more tractable 

function, or some combination of the two. In this paper 

we refer to a method of parameter estimation presented 

in (Wang, Christley, Mjolsness, & Xie, 2010) and we 

show how it can be adapted to estimate the kinetic 

parameters of a BlenX model. In particular, we show 

how the transition system of a BlenX model can be 

sampled to calculate the maximum likelihood function 

withoud any need of simulating the model. The paper 

proceeds as follows: in Section 2 we introduce the 

reader to the BlenX language and present the model on 

which we show the eprfomance of the infrence method; 

in Section 3 we present the method and the results, and 

finally in Section 4 we give some conclusions. 

 

2. THE BLENX LANGUAGE: AN OVERVIEW 

BlenX is a process algebra-based stochastic 

programming language that shares features with  

stochastic -calculus \cite{priami95} and Beta-binders 

\cite{pqp}. BlenX, as these other members of the family 

of process algebra-based languages, has a strong focus 

on the interactions of entities. BlenX is explicitly 

designed to model the interactions of biological entities 

such as proteins and other biochemical species. It is a 

stochastic language in the sense that the probability and 

speed of the interactions and actions governing the time 

evolution of the system are specified in the body of the 

programs written in this language.  

 

In BlenX, each species is given with an abstract 

entity that we call a box. Each box has a number of 

connectivity interfaces called binders, and it is equipped 

with an internal program. The sites of interaction are 

represented as binders on the box surface. For example 

in Figure 1, each box has only one binder. Binders are 

identified by their names, e.g., x and their types, e.g., A. 

 

 
Figure 1: an enzyme E and its substrate S can be 

represented by boxes equipped with interaction sites 

on the interfaces, i. e. the binders (x, A) and (y, B), 

and an internal processes, e.g. the deadlock process 

nil and a process P, respectively. 

 

A box can stochastically interact with another box, 

and change state as a result of this interaction with 

respect to the actions specified in its internal program. 

Alternatively, a box can autonomously change state by 

stochastically performing an action that is given in its 

internal program. For instance, the complexation of an 

enzyme E and a substrate S can be described in a BlenX 

model with the boxes depicted in Figure 1, where these 

boxes interact and bind with their binders. Then the 

interaction rate, specified in the BlenX code, determines 

the rate of the association. The internal program, which 

can be nil as it is the case for E here, determines the 

actions the box can undertake after this interaction.  

The nil process does nothing (it is the dadlock 

process). Other stochastic actions that a BlenX box can 

perform are summarized as follows: a box can  

 

 communicate with another box that is bound to it (or 

with itself) by performing  
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 an input action, e.g., x?(message)that is 

complementary to the output action, e.g., 

x!(message), of the other box, or vice versa,; 

and this way send or receive a message; 

 perform a stochastic delay action; 

 change (ch) the type of one of its interfaces; 

 eliminate itself by performing a die action; 

 expose a new binder; 

 hide one of its binders; 

 unhide a binder which is hidden. 

 

In addition to these actions, there are also other 

programming constructs available such as if-then 

statements and state-checks. For example, let us 

consider the box S in Figure 1. We can program this 

box by defining program P so that it will change its 

type from B to C if it is bound: 

 
if (y,B) and (y,bound) then ch(y,C) endif 

 

In BlenX, following the process algebra tradition, 

we can compose actions by using algebraic composition 

operators to define increasingly complex behaviors. We 

can sequentially compose actions by resorting to the 

prefix-operator, which is written as an infix dot.  For 

instance,  

 
ch(y,C).hide(y).nil 

  

denotes a program that first performs change action and 

then hides the changed binder. 

Programs can be composed in parallel. Parallel 

composition (denoted by the infix operator “|”, for 

instance P|Q, allows the description of programs, 

which may run independently in parallel and also 

synchronize on complementary actions (i.e., input and  

output over the same channel).  

The rep operator replicates copies of the process 

passed as argument. Only guarded replication is used, i. 

e. the process argument of this operator must be 

prefixed by an action that forbids any other action of the 

process until the first action has been executed. 

Programs can also be composed by stochastic 

choice, denoted with the summation operator "+". The 

sum of processes P and Q, P + Q behaves either as P 

or as Q, determined by specific speed (i. e. rate 

constants) defined for P and Q. The selection of one 

discards the other forever.  

In BlenX, we use events, which are 

programming constructs for expressing actions that are 

enabled by global conditions. For example, in the model 

presented here, we use the new construct to introduce 

new molecules of a species if their amount reaches a 

minimum threshold. For instance in: 

 
when (protein : |protein| < 10000 : r) 

new(500); 

 

the amount of species protein is increased by 500 units 

when it becomes less 10,000 units. The increasing rate 

is r. 

 

2.1. The case study: chaperone-assisted protein 

folding 

In this section we briefly describe the main 

mechanisms of chaperone-assisted protein folding and 

present the code of a BlenX model of this process. A 

more detailed descriptions of the biological processes 

and of the BlenX specification can be found in (Lecca 

P., 2011). 

The ability of the cell to handle misfolded proteins 

is expressed by some complexes of macromolecules, 

called chaperones. Molecular chaperones interact with 

unfolded or partially folded protein subunits, e.g. 

nascent chains emerging from the ribosome, or 

extended chains being translocated across sub-cellular 

membranes. They prevent inappropriate association or 

aggregation of exposed hydrophobic surfaces and direct 

their substrates into productive folding, transport or 

degradation pathways. In the healthy cells, if a protein 

does not assume the correct 3D shape, or a cellular 

stress induces a right-folded protein to assume a wrong 

folding, the chaperones act to re-shape it correctly. 

 

  

 

Figure 2: interactions between protein and 

chaperone, and between faulty protein and 

ubiquitin-proteasome system.  

 

In the case in which the protein is still not correctly 

refolded, the cellular ubiquitin-proteasome targets and 

degrades it before the faulty protein can cause damages. 

The protein parkin mediates the targeting of misfolded 

proteins for degradation by moving the molecules of 

ubiquitin on these proteins. The proteasome machinery 

recognizes the ubiquitinated proteins and degrades 
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them. The set of reactions driving the dynamics of the 

model is reported in Figure 2. 

In the following, we report the BlenX code 

describing the main interaction among the component 

of the systems: the nascent protein, the chaperone, the 

ubiquitin, the parkin and the proteasome, all represented 

by boxes. The parameters of the model are specified in 

the body of the code and are bold-faced and grey 

highlighted. The rate parameters used in this model and 

the initial amounts of molecular species are expressed in 

arbitrary units, and qualitatively reproduce the real 

dynamic observed dynamics.  

 

The Figure 3 depicts the boxes representing each 

entity involved in the systems and the interactions on 

dedicated binders. 
 

1 [time=200] // absolute simulation time 

2 

3 <<BASERATE: 100>> // basal rate 

4 

5 // A nascent protein interacts with a  

6 // molecular chaperone 

7 

8 let protein : bproc =  

9  #(y:100, P), #(ubi:100, U), 10 

11 #(prot:100000,PTSP)                        

12 [ 

13   y?().ch(1000,y, DR).hide(1,ubi).nil  

13   + y?().ch(1000,y,DW).ubi?(). 

14     prot?().die(1).nil 

15  ]; 

16 

17 // Definition of chaperone 

18 

19 let chaperone : bproc = #(x:100, C)  

20 [rep x!().nil]; 

21 

22 // Definition of parkin bioprocess 

23 

24 let parkin : bproc =  

25 #(to_ubiquitin:0.5, T_UB) 

26 [to_ubiquitin!().nil]; 

27 

28 let ubiquitin : bproc =  

29 #h(u:1, UB), #(actp:1, UB2),  

30 #(from_parkin:0.5, F_PARK)  

31 [ 

32  from_parkin?().unhide(0.5,u).u!().actp!() 

33 ]; 

34 

35 let proteasome : bproc =  

36 #h(pt:50000, PTS), #(actv:500000, ACT),      

37 [ 

38  delay(0.1).(actv?().unhide(600000,pt). 

39  pt!().nil) 

40 ]; 

41 

42 // Production of ubiquitin, parkin and nascent 

43 // proteins 

44 

45 when (ubiquitin: |ubiquitin| = 0: inf) new(10000); 

46 when (parkin: |parkin| = 0 : inf) new(10000); 

47 when (protein :: protein_prod) new(1); 

48 

49 // Initial amount of components 

50 run 5000 protein || 10000 parkin ||  

51 10000 chaperone || 10000 ubiquitin ||  

52 10000 proteasome  

 

 

 

Figure 3: picture representing the boxes of protein, chaperone, parkin, ubiquitin and proteasome. A dotted ted 

line connect the interacting boxes through the communication binders. The model also consider the production of 

protein, parkin and ubiquiting molecules represented with the circle “NEW”. 
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The structured operational (interleaving) semantics of 

the language is used to generate a labelled transition 

system. A state transition system is an abstract machine 

consisting of a set of states and transitions between 

states. The state transition system of the model 

presented in this paper is shown in Figure 4. 

 

 
 

 

 

Figure 4: graph of the state transition system of the 

BlenX model of chaperone-assisted protein folding 

and protein ubiquitination. “S” stays for species. All 

the intermediate species are showed and numbered. 

The labels on the arrows indicate the rate constant 

values. Where no label is specified, it is assumed to 

be equal to the basal rate constant defined in the 

BlenX code. 

 
 

3. ML-BASED PARAMETER INFERENCE 

In this section we first review the key-points of 

method developed by Y. Wang et al. for the estimation 

of parameters of stochastic systems. Then, we show 

how these ideas can be adapted and used for the 

estimation of the rate constant of a BlenX model from 

experimental measurements of the amount of molecules 

at discrete time points. 

 

3.1. The likelihood function 

Our goal is to estimate the rate parameters of a 

stochastic Markov process algebra based on the 

observations at a set of discrete time points. In this 

section we review the methods of Y. Wang et al.  

(Wang, Christley, Mjolsness, & Xie, 2010).  

Suppose we have the vector of the observations  

         (3.1.1) 

 

of the system at  discrete time points  

for a subset of species . Denoting the 

likelihood of the observations for a given set of rate 

parameters by  

 

 

we estimate the rate parameters by maximizing the 

likelihood function with respect to the parameters. 

Suppose that the reaction system involves  reactions, 

. Denote with  the state 

vector of the system. Each reaction has an associated 

propensity, also called hazard function,  is 

the set of rate parameters associated with the reactions. 

The hazard function determines the rate of the transition 

probability out of state  due to the reaction of type . 

For convenience, as in (Wang, Christley, Mjolsness, & 

Xie, 2010), we adopt the following compact 

representation of a reaction system: 

 
 

 

where  are stoichiometry matrices. It 

is useful to introduce also the \net effect reaction matrix 

 

                          (3.1.2) 

 

which reports the net change of species numbers 

associated with a reaction. 

 

Denote  the probability of the system in state 

at time . For a time increment ,  can 

be written as the sum of probabilities of the number of 

ways in which the system can reach or leave the current 

state: 

      (3.1.3) 

where  is the i-th row of the matrix . In the limit of 

, Eq. (3.1.3) becomes 
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                       (3.1.4) 

where  is the Kronecker delta function. For our 

convenience we introduce  as follows: 

 (3.1.5) 

For simplicity, consider a single time interval  

between two measurements of the abundance of the 

species j ( ),  and . We 

discretize this time interval in subintervals and denote 

the system state by . Therefore 

 and  are the full 

observations available at the start and at the end of this 

time interval. All  are the intermediate states not 

directly observable. Using the Markov property of the 

stochastic process, the likelihood of observing 

 under a model with parameters  is 

 

  

(3.1.6) 

If , then 

 

 (3.1.7) 

 

If we choose  equal to the number of reactions 

occurring in the time interval ,  can 

be expressed as follows 

 

 (3.1.8) 

where  is the reaction transforming  into  

( ). For a biological system of realistic 

size, the number of reactions occurring between two 

measured state is usually much greater than 1, so that 

the condition  is usually satisfied. 

3.2. Sampling the BlenX state transition system 

Since the system is stochastic  is not constant, but it 

can change simulation by simulation.  with 

 can be considered a latent reaction 

pathway. To calculate the likelihood we have to find an 

efficient way to sample this latent reaction pathway 

conditioned to the observations. Namely, we have to 

sample the latent reaction processes that match the 

initial and the end state in the time interval. The 

parameter estimation is then formulated as 

maximization of the likelihood function. The parameter 

estimate  is calculated as 

           (3.2.1) 

 

and the likelihood function over the entire duration of 

the observation is the product of the likelihood of each 

subinterval. 

 

  (3.2.2) 

 

To sample latent path that are consistent with the 

observations means to generate a Markov chain that 

match the initial and the end state of the system in the 

considered time interval. One commonly used sampling 

method is the stochastic simulation algorithm (SSA). 

However, SSA is computationally inefficient when the 

total number of possible state is high. Y. Wang et al  

(Wang, Christley, Mjolsness, & Xie, 2010) suggested a 

Markov chain sampler working as follows: 

1. generate an initial path 

2. generate a set of reaction, by adding or removing 

reactions front he initial set   

3. estimating the acceptance probability of a new set 

4. accept or reject a pathway 

 

 

Note that both the initial path and the processed path 

have to match the observations at the start and the end 

of the interval, implying that only a subset of the 

reactions can be used for either initialization or 

addition/deletion. In this work, the first path is 

randomly generated. 

After an initial path is generated we can use the 

elementary mode analysis to generate a new sample. In 

this study we select randomly the first path. An 

elementary mode of a biochemical network is a set of 

reactions that does not change the observed number of 

molecular species. Therefore, an elementary mode is a 

column vector  of non-negative integers that satisfy 

the following condition 

 

                                                (3.2.3) 

 

where  is the net effect matrix of the system .  

The set of all independent elementary mode 

 is called null set of the biochemical 

reaction system. Provided with a reaction path and a 

null set, after randomly choosing an elementary mode 

 from the null set, we can proceed as follows: 
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 with probability  = 0.25  (Wang, Christley, 

Mjolsness, & Xie, 2010) , add the set of reactions 

in  with random waiting time of reaction from a 

uniform distribution within the considered time 

interval; 

 

 with probability = 0.25  (Wang, Christley, 

Mjolsness, & Xie, 2010), remove one set of 

randomly selected reactions in  from the current 

path within the considered time interval; 

 

A new sample have to undergo two additional 

constraints: 

 

 the number of any reaction type must be positive 

after the move 

 the population numbers for all species have to 

remain positive throughout the whole process. 

 

If either of the two conditions is violated we set the 

probability of the new sample path to be zero and reject 

the new path. 

 

Each time a new pathway is sampled, we determine the 

acceptance probability of the proposed pathway 

according to the formula 

 
 

 

where  is the probability of the previous 

pathway, and  is the probability of the current 

proposed pathway.  The probability of a pathway is 

calculated as in the following formula. 

 

 

where  is the total number of components in the 

reaction system,  is the time length of the subinterval, 

 is the rate constant of the reaction of type ,  

if the reaction is monomolecular, and  if the 

reaction is bimolecular.  is a uniform deviate, 

as in Colvin et al.  (Colvin, Monine, Faeder, Hlavacek, 

Von Hoff, & Posner, 2009). A pathways is accepted if 

. 

 

4. RESULTS 

 We generated the time series of the components of 

the system in Figure 3 synthetically by running the 

BlenX code with the values of parameters reported in 

the code in previous pages, and then we applied the 

procedure of parameter inference described in the 

previous section. In Figure 5, we show the time series 

taken as an input for the model calibration procedure. In 

Table 2 we report the results of the inference for the 

main reactions (i. e. the rate-limiting step reactions) 

listed in Figure 2. 

Good agreement between inferred and expected 

values has been obtained within the parameter variance 

estimated around 1. 

 

 

Figure 5: time-series synthetically generated from the model with given parameters are used as an input to the 

parameter inference procedure. 
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Table 1: comparison between inferred and expected 

values of the rate –limiting step reaction in the 

system of chaperon-assisted protein folding. 

 
Parameter Inferred Expected 

 0.03203 0.01 

 0.03249 0.01 

 0.42681 0.5 

 0.03793 0.5 

 0.00032 0.0002 

 

 

5. CONCLUSIONS 

We presented a maximum-likelihood method for 

inferring rate parameters of reactions of a stochastic 

biochemical systems from discrete time observations. 

The core of the method has been proposed in 2010 by 

Wang et al.  (Wang, Christley, Mjolsness, & Xie, 2010). 

In this work we illustrated how it can be adapted to 

calibrate a process-lagebra model of a biochemical 

system. We showed that the mathematical approach of 

the method is suitable to the identification of parameters 

in language- reaction-based model. In this paper we 

reported a simple example to give to the reader the 

flavor both of the BlenX process albegra language and   

of thr capabilities of the infernce method. From the 

resslts obtained from synthetic and real case data (not 

described in this paper) we conclude that this procedure 

is trustable. 
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