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ABSTRACT 

In this paper we describe the use of genetic program-

ming for the prediction of blood demands. As blood 

bags for Hospitals are provided by blood banks on de-

mand, predicting the needed amount of those should be 

as precise as possible. In order to achieve such an accu-

rate prediction we have used genetic programming for 

data based modeling in order to find a mathematical 

model which predicts the blood bag demand of a hos-

pital. This model should allow the hospital to minimize 

storage costs and the probability of running out of cer-

tain types of blood bags. In addition to the anonymized 

patient data provided by the General Hospital Linz, 

Austria we have also considered supplemental data such 

as weather and historical data such as the blood demand 

of the last few days which might lead to a more accurate 

model. 

 

Keywords: blood demand prediction, machine learning, 

regression, structure identification 

 

1. INTRODUCTION 

 

1.1. Blood Demand in a Hospital 

Every hospital needs a certain amount of blood bags for 

various medical activities throughout a day or a week. 

This blood consumption consists of demands from 

scheduled events (e.g. such as planned surgeries, ...) and 

from unpredicted events (e.g. some type of traffic acci-

dent followed by a treatment in the emergency room).  

The blood bags are provided by a blood bank oper-

ated by the Austrian Red Cross on a “by demand” basis. 

If the hospital needs blood bags they are delivered by 

the blood donation service. In every hospital there is a 

need to predict the optimal demand of blood bags to 

minimize storage cost and the risk to run out of certain 

types of blood bags. 

 

1.2. Research Goal 

The research goal was to create a model which is able to 

predict the amount of blood bags of a specific type. 

There are different types of blood bag demands to pre-

dict, like demand per day, demand per week or demand 

per medical activity. 

In this paper we present the research results 

achieved by analyzing the data of thousands of medical 

activities in the General Hospital Linz, Austria using 

data based modeling methods (namely genetic pro-

gramming with offspring selection) in order to identify 

mathematical models for predicting blood bag demands. 

In the following section (Section 2) we describe 

the data basis we have used for our research work. In 

Section 2.2 we describe the data preprocessing steps we 

performed to make the data more useful and complete 

for the model identification task. In Section 3 we give 

an overview over the modeling methods used in this 

project as well as the parameter settings applied, and in 

Section 4 we present and analyze the modeling results 

we have achieved. In the last section (Section 5) we 

give a conclusion of this project. 

 

2. DATA BASIS 

 

2.1. Available Patient Data 

The data is provided by the Central Blood Laboratory of 

the General Hospital Linz, Austria and has been meas-

ured in the years 2005-2009. The following data tables 

are being used for the blood demand prediction: 

 

 Laboratory Data: Contains every single blood 

value measured with a unique id for every pa-
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tient, the label and the date of the value as well 

as the value itself. There are 27 routinely 

measured blood values of thousands of patients 

available, but not all values are measured at 

one examination. 

 Medical Activities: Contains data about which

medical activities were performed in which

treatment. One treatment is identified by a case

ID. A treatment can last several days or weeks

and a number of blood measurements can be

made during a treatment. A treatment typically

ends by the discharge of the patient from the

hospital.

 Blood Consumption: Contains records about

the amount and type of the used blood bags in

one treatment. However there is no direct con-

nection between one medical activity and the

used types of blood bags. Our approach to

solve this problem is described in Section

2.2.1. 

Patients’ personal data (as for example name, date of 

birth and so on) where at no time available to the au-

thors except the head of the laboratory and medical con-

trolling. 

2.2. Data Preprocessing 

For most heuristic classification and regression tasks, 

the preprocessing of the raw input data has a big impact 

on the final model quality. The preprocessed data 

should end up containing both meaningful and complete 

information which is suitable for model identification 

using heuristic methods. Depending on the domain and 

the quality of the raw data, this can be quite a 

challenging task. 

Figure 1 shows a brief overview of all the steps 

performed in the data preprocessing stage. Selected 

steps are described in one of the following sections. 

After all the input data is converted, the actual model 

identification can be performed. The desired prediction 

model should estimate the demand of blood bags for the 

General Hospital Linz for a given day or week as 

precisely as possible. 

In the first preprocessing stage there are a number 

of input files, which contain multiple file types and 

have inconsistent column naming. For the modeling 

phase, the output of this stage should be a comma sepa-

rated file, which has a consistent column naming and is 

usable for further processing and modeling tasks.  

As a very practical problem, it appeared that the 

input data is scattered among multiple spreadsheet files 

with possibly different column names or even file for-

mats. This problem is solved by a tool, which can 

merge an arbitrary number of heterogeneous spread-

sheet files while taking into account that equivalent – 

but differently named – columns have to be merged. 

Those equivalences have to be defined manually.  

Another problem is that in the laboratory data, 

every record represents one measured blood value. For 

blood demand prediction, one record has to represent an 

entire blood examination. For this reason, the records 

are transposed in a way that one record contains all 

blood values from a single examination. 

Merge Files / Convert

Transpose 
Blood Values

Fill Empty Values

Enhance with 
additional Data

Mapping 
Med. Acivities / 

Products

Preparation for HeuristicLab

Delete Columns and 
Rows with insufficient 

Information

Converter

Data-

Importer

Data-

Importer

HeuristicLab

LabData.csv

M.A. Product 
Weight

MedData.HL

LabData.xls Med
Activities.xls

Blood Con-
sumption.xls

DB

LabData Med 
Activities

Blood Con-
sumption

DB DB DB

Figure 1: Workflow of data preprocessing phase 

2.2.1. Mapping Medical Activities to Blood Products 

For application of the blood demand prediction in the 

hospital a schedule of medical activities in the next days 

or week, for example derived from the planned surge-

ries, can be used as input data. The desired output is the 

amount of certain blood bags, grouped by different 

blood products. 

In the data provided by the General Hospital Linz, 

Austria there is currently no unique mapping between 
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medical activities and issued blood products. But by us-

ing a schedule of medical activities as input for the 

blood demand prediction such a mapping is deemed ne-

cessary. 

Therefore we distinguish the data in two sets: al-

ready unique mappings and non-unique mappings. For 

the first set we calculate a weight based on the amount 

of issued blood bags and the number of different pa-

tients who received these blood bags. For the second set 

we assign a constant weight of one and then combine 

the two sets again. With this new mapping we can 

bridge the gap between medical activities and different 

blood products to enable a blood demand prediction 

grouped by different blood products as desired. 

2.3. Strategies for Improving Data Completion 

In order to overcome the problem of empty feature val-

ues, samples from within a certain time span are used to 

fill up the missing values. This time span, e.g. one day, 

is used by a search function that determines which sam-

ples belong together and thus can provide features to 

each other. 

Two strategies namely fill and merge, can be used 

to populate missing feature values of the given samples. 

The fill strategy fills up missing feature values for a 

given sample if a value exists within the list of samples 

chosen by the time span function. This strategy does not 

delete any samples but allows more complete samples 

to be increased in weight as their values are used more 

often. In contrast to that the merge strategy merges the 

selected samples to one. This results in fewer samples 

but does not favor feature-rich samples. The two strate-

gies can be combined with one of the following aggre-

gation functions which define how to compute the new 

value if more than one values are found by the search 

function: 

 Min: fills up the missing values with the smal-

lest value found in search space

 Max: fills up the missing values with the great-

est value found in search space

 Mean: fills up the missing values with the

mean value found in search space

 First (Merge only): takes the value from the

sample with the oldest timestamp found in

search space

 Last (Merge only): takes the value from the

sample with the youngest timestamp found in

search space

 Nearest (Fill only): takes the value with the

minimum time distance to the empty value

Table 1: Input Data 

Pat ID Date Val.1 Val.2 Val.3 Val.4 

1 20/12/08 35 25 

1 21/12/08 8.6 19 

2 21/12/08 10 30 8 

2 22/12/08 5 15 13 

Table 2: Merge-Max 

Pat ID Date Val.1 Val.2 Val.3 Val.4 

1 20/12/08 8.6 35 19 25 

2 21/12/08 10 15 30 13 

Table 3: Fill-Max 

Pat ID Date Val.1 Val.2 Val.3 Val.4 

1 20/12/08 8.6 35 19 25 

1 21/12/08 8.6 35 19 25 

2 21/12/08 10 15 30 8 

2 22/12/08 5 15 30 13 

The algorithm can be parameterized with a thre-

shold which defines the size of the search space in days 

and a number of grouping columns, which also con-

strain the search space. In the case of Laboratory Data, 

the Patient ID would be such a grouping column, since 

only samples from the same patient shall be merged or 

filled. 

3. MODELING METHODS

3.1. Artificial Neural Networks 

Besides the use of genetic programming (GP) for sys-

tem identification also artificial neural networks (ANN) 

can be utilized. For a regression or classification task a 

feed-forward neural network with one output neuron 

and backpropagation can be used; theoretical back-

ground and details can for example be found in (Gurney 

1997, Priddy 2005).  

But in contrast to GP, where the actual size and 

height of the tree containing the operators and feature 

variables can grow and shrink during the run, the num-

ber of neurons and their connections however has to be 

fixed before each training of an ANN. In addition an 

activation function for each neuron or for all neurons in 

each layer has to be chosen for ANN, whereas the oper-

ators in the tree for GP are chosen randomly during in-

itialization.  

We limited our work to GP in finding a model for 

the prediction of blood demands. The various modeling 

approaches are discussed in the following section. 

3.2. Genetic Programming 

Our main approach towards the blood demand predic-

tion is genetic programming (GP). This section gives a 

theoretical background on genetic programming and 

shows how it can be applied to solve problems. 

3.2.1. Introduction to Genetic Programming 

Genetic programming is inspired by the Darwinian 

principles of selection, crossover and mutation. It can be 

seen as a specialized form of genetic algorithms (GA) to 

generate computer programs and therefore to solve 

problems automatically.  

Historically the field of genetic programming be-

gan with the evolutionary algorithms. In the 1990s, 

John R. Koza pioneered the application of genetic pro-

gramming. Over the years the idea was expanded and 

gained foothold both in the academic and industrial 
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field. As described in (Koza 1992) virtually all prob-

lems in artificial intelligence, machine learning, adap-

tive systems, and genetic programming provides a way 

to successfully conduct the search in space of computer 

programs.  

As mentioned before, GP is a specialization of ge-

netic algorithms. Each individual is a computer program 

that receives input, performs computations and gene-

rates output. In (Buchberger et al. 2009) GP is described 

as a machine learning technique used to optimize a 

population of computer programs according to a fitness 

landscape determined by a program's ability to perform 

the given task. The concept of GP is domain-

independent, so it is important to find a good problem 

representation schema that can be effectively manipu-

lated by the two main operators, namely crossover and 

mutation. This is critical to the success of genetic pro-

gramming. The most common representation type is the 

point-labeled structure tree as seen for example in (Ko-

za 1992; Koza 1994; Koza et al. 1999; Koza et al. 2003; 

Langdon and Poli 2002).  

The crossover operator is applied on individuals to 

exchange a node of the structure tree with another node 

in another population. Due to the tree representation this 

can mean that a whole branch is replaced. As an effect 

the resulting new program structure can differ strongly 

from its parents.  

The mutation operator is applied on a randomly 

chosen node. It can either alter the information of a 

node, or replace it completely, depending on the prob-

lem and tree representation. 

 

3.2.2. Data Based Modeling and Structure Identifi-

cation 

In structure identification, solution candidates represent 

mathematical models; these models are applied to the 

given training data and the so generated output values 

are compared to the original target data. The left part of 

Figure 2 visualizes how the GP cycle works: As in 

every evolutionary process, new individuals (in GP’s 

case, new programs) are created and tested, and the fit-

ter ones in the population succeed in creating children 

of their own; unfit ones die and are removed from the 

population (Langdon and Poli 2002). 

Within the last years the Josef Ressel Centre for 

Heuristic Optimization has set up an enhanced and 

problem domain independent GP based structure identi-

fication framework that has been successfully used in 

the context of various different kinds of identification 

problems for example in mechatronics, medical data 

analysis, and the analysis of steel production processes. 

One of the most important problem independent con-

cepts used in this implementation of GP-based structure 

identification is offspring selection (Affenzeller et al. 

2005), an enhanced selection model that has enabled 

genetic algorithms and genetic programming implemen-

tations to produce superior results for various kinds of 

optimization problems. As in the case of conventional 

GAs or GP, offspring are generated by parent selection, 

crossover, and mutation. In a second (strict offspring) 

selection step (as shown in the right part of Figure 2), 

only those children become members of the next gener-

ation’s population that outperform their own parents; 

the algorithm repeats the process of creating new child-

ren until the number of successful offspring is sufficient 

to create the next generation’s population (Winkler et 

al. 2009). 

“Using Genetic Programming for data-based mod-

eling has the advantage that we are able to design an 

identification process that automatically incorporates 

variables selection, structural identification and parame-

ters optimization in one process” (Buchberger et al. 

2009). 

 

3.2.3. Modeling for Blood Demand Prediction 

For our blood demand prediction we follow two ap-

proaches: 

 

1. Blood Bag demand per medical activity 

(grouped by day and blood product) 

2. Blood bag demand per day (grouped by blood 

product) 

 

Figure 2: Left: The extended genetic programming cycle including offspring selection; Right: Strict offspring selection 

as used here within the GP process 
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Since the prediction depends on the blood product, 

both approaches are based on the mapping from medical 

activities to blood products described in Section 2.2.1. 

An additional feature with historical data is added, 

which sums up the blood consumption in the last one 

and last seven days. Now it should be possible to pre-

dict for example the blood demand for the next day.  

In addition to splitting the given data into training 

and test data, the GP based training algorithm in Heuris-

ticLab (Affenzeller et al. 2009, Wagner 2009) has been 

implemented in such a way that a part of the given 

training data is not used for training the model and 

serves as validation set; in the end, the algorithm returns 

those models that perform best on validation data. This 

approach has been chosen because it is assumed to help 

to cope with overfitting; it is also applied in other GP 

based machine learning algorithms as for example de-

scribed in (Banzhaf and Lasarczyk 2004). 

 

4. RESULTS 

In this section we report the best test results we have 

achieved. Table 4 shows the most promising parameter 

settings for each scenario, which were found by running 

a number of test runs using different parameter settings. 

The parameters have been determined experimentally, 

since there is no golden rule for the optimal settings. 

The tree complexity of the models has been re-

stricted by defining an upper limit for tree height and 

tree size. This was done to keep the solutions interpret-

able and to avoid overfitting. Scenario 1 represents 

blood bags per day and Scenario 2 blood bags per medi-

cal activity. 

 

Table 4: Parameter settings for test runs 

Parameter Scenario 1 Scenario 2 

Population size 500 500 

Mutation rate 0.05 0.05 

Parents selection 
Random & 

Proportional 

Random & 

Proportional 

Offspring selection Strict Strict 

1-Elitism Yes Yes 

Selection Pressure 200 300 

Generations 1,000 1,000 

Tree Size / Height 70 / 8 100 / 10 

 

The results displayed in table 5 and 6 show the 

mean value and standard deviation of the model quali-

ties achieved in nine test runs. In scenario 1 the 60,784 

available samples were partitioned in 2,000 training, 

43,589 validation and 15,195 test samples. In scenario 2 

the 59,968 available samples were partitioned in 2,000 

training, 42,977 validation and 14,991 test samples. 

 

Table 5: Results Blood bags per day 

 µ σ 

Training % 2.1929 0.0268 

Validation % 1.5244 0.0027 

Test % 1.8746 0.0151 

 

Table 6: Results Blood bags per medical activity 

 µ σ 

Training % 1.1897 0.0444 

Validation % 1.2678 0.0388 

Test % 1.1514 0.0311 

 

5. CONCLUSION AND OUTLOOK 

In this paper we have described the use of genetic pro-

gramming to identify structure models that describe the 

blood bag demands in a hospital. The used data was 

provided by the General Hospital Linz, Austria. We 

have also described the necessary preprocessing steps in 

order to prepare the data to be useable for structure 

identification with genetic programming.  

As seen in the results the introduction of features 

representing a medical activity leads to a significant im-

provement of the model quality.  

Future goals in this research project include new 

modeling scenarios like the prediction of blood demand 

per week and for other time intervals. Additionally, fur-

ther parameter optimization will be conducted.  
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