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ABSTRACT 
In this paper the authors describe the effects of mutation 

in genetic algorithms when used together with offspring 

selection to solve combinatorial optimization problems. 

In the initial definition of offspring selection stated by 

Affenzeller et al., offspring selection is applied to each 

solution after its creation using crossover and optional 

mutation. Thereby a solution is immediately accepted 

for the next generation only if it is able to outperform its 

parental solutions in terms of quality. 

It has been shown in several publications by 

Affenzeller et al. that this additional selection step leads 

to a better maintenance of high quality alleles and 

therefore to a better convergence behavior and a 

superior final solution quality. 

Due to the application of offspring selection after 

crossover and mutation, both operations become 

directed by the quality of the created solutions. This is 

in fact a different interpretation of mutation compared 

to classical genetic algorithms where mutation is used 

in an undirected way to introduce new genetic 

information into the search process. 

In this contribution the authors propose a new 

version of offspring selection by applying it after 

crossover, but before mutation. In a series of 

experiments the similarities and differences of these two 

approaches are shown and the interplay between 

mutation and offspring selection is analyzed. 

 

Keywords: Genetic Algorithms, Combinatorial 

Optimization, Selection 

 

1. INTRODUCTION 
Selection for reproduction represents the main driving 

force in genetic algorithms that guides the search 

process through the solution space. By selecting 

solutions of above average fitness and applying 

crossover and optionally mutation, genetic algorithms 

try to combine alleles of high quality in order to obtain 

better and better solutions. During the search process 

genetic diversity is usually decreased step by step so 

that the algorithm is able to converge to solutions of 

high quality in the end. 

However, due to the effects of genetic drift high 

quality (i.e., relevant) alleles which are required to 

reach global optimal solutions might be lost in the 

whole population. This leads to so-called premature 

convergence which describes a state in which the 

algorithm is no longer able to create better solutions 

although it has not reached a global optimum so far 

(Fogel 1994; Affenzeller 2005). This situation can be 

compared to the effect of getting stuck in a local 

optimum in neighborhood-based meta-heuristics. 

In general the following three aspects can be 

identified as the main reasons for the loss of relevant 

alleles (Affenzeller 2005; Affenzeller, Wagner, and 

Winkler 2010): 

 

• Some relevant alleles might not be included in 

the initial population. This especially might be 

the case if the population size is rather small. 

• Relevant alleles might be lost due to the 

stochastic nature of selection and genetic drift. 

This is frequently the case in an early phase of 

the algorithm, when relevant alleles are 

included in solutions of rather bad quality. 

• For many applications of genetic algorithms 

the applied crossover operators cannot 

guarantee that the created children are exact 

combinations of the genetic information of the 

parents as new alleles might have to be 

introduced in order to create feasible solutions. 

 

In classical genetic algorithms the only approach to 

counteract the loss of relevant alleles and therefore to 

avoid premature convergence is mutation. However, as 

mutation is used as an undirected operator, the 

probability to get back relevant alleles by lucky 

mutations decreases rapidly when trying to solve 

problems of larger size. 
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Additionally to mutation, some other ideas are also 

discussed in literature to reduce the negative effects of 

premature convergence. Among them the most common 

representative are preselection (Cavicchio 1970), 

crowding (De Jong 1975), and fitness-sharing 

(Goldberg 1989). The main idea of these approaches is 

to maintain genetic diversity by replacing solutions 

more frequently which occupy similar regions of the 

search space (preselection, crowding) or the reduce the 

fitness value of solutions which are located in densely 

populated regions of the search space (fitness-sharing). 

All these three approaches require the definition of a 

distance measure in order to be able to calculate the 

similarity of solutions in the search space, and fitness-

sharing is additionally quite restricted to fitness 

proportional selection. As a consequence, these 

approaches are not applicable in each case. 

Furthermore, they do not really address the problem of 

loosing relevant alleles but try to reduce the loss of 

genetic diversity in general. 

In order to develop a more general technique to 

counteract the loss of relevant alleles and therefore to 

prolongate premature convergence the authors 

introduced offspring selection (Affenzeller and Wagner 

2005; Affenzeller, Wagner, and Winkler 2010; 

Affenzeller, Winkler, Wagner, and Beham 2009). The 

basic idea of this selection model is to consider not only 

the fitness of the parents when creating new solutions. 

Additionally, the fitness value of each new child 

solution created by crossover and optionally mutation is 

compared with the fitness values of its parents. The 

child is immediately accepted for the next generation if 

and only if it outperforms its parents’ fitness. This 

strategy guarantees that the search process is continued 

mainly with crossover results that were able to mix the 

properties of their parents in an advantageous way 

and/or with mutation results that contain relevant 

alleles. In other words, offspring selection supports 

survival of the fittest alleles rather than survival of the 
fittest chromosomes. This is a very essential concept 

concerning the preservation of relevant genetic 

information stored in the individuals of a population. 

 

2. OFFSPRING SELECTION 
In general, offspring selection consists of the following 

steps (Affenzeller and Wagner 2005): 

At first parents are selected for reproduction either 

randomly or in any other well-known way of genetic 

algorithms (e.g., fitness proportional selection, linear 

rank selection, tournament selection). After crossover 

and optionally mutation have been applied to create a 

new child solution, another selection step is introduced 

which considers the success of the applied reproduction 

procedure. The goal of this second selection step (i.e. 

the offspring selection step) is to continue the search 

process mainly with successful offspring which surpass 

their parents’ quality. Therefore, a new parameter called 

success ratio (SuccRatio) is introduced. The success 

ratio defines the relative amount of members in the next 

population that have to be generated by successful 

mating (crossover, mutation). 

Additionally, it has to be defined when a solution 

is considered to be successful: Is a child solution better 

than its parents, if it surpasses the fitness of the weaker, 

the better, or some kind of mean value of both? For this 

purpose a parameter called comparison factor 

(CompFactor) is used to define the success criterion for 

each created solution as a weighted average of the 

quality of the worse and better parent (i.e., if the 

comparison factor is 0, successful solutions at least have 

to be better than the worse parent, and if it is 1 they 

have to outperform the better parent). 

Based on the comparison factor, the authors 

decided to introduce a cooling strategy which is similar 

to simulated annealing. Following the basic principle of 

simulated annealing, an offspring only has to surpass 

the fitness value of the worse parent in order to be 

successful at the beginning of the search process 

(CompFactor is initialized with 0 or a rather small 

value). While evolution proceeds solutions have to be 

better than a fitness value continuously increasing 

between the fitness of the weaker and the better parent 

(CompFactor is increased in each generation until it 

reaches 1 or a rather high value). As in the case of 

simulated annealing, this strategy leads to a broader 

search at the beginning, whereas at the end the search 

process becomes more and more directed. 

After the amount of successful solutions in the next 

generation has reached the success ratio, the remaining 

solutions for the next generation (i.e., 

(1-SuccRatio)·|POP|) are taken from the pool of 

solutions which were also created by crossover and 

mutation but did not necessarily reach the success 

criterion. The actual selection pressure ActSelPress at 

the end of a single generation is defined by the quotient 

of individuals that had to be created until the success 

ratio was reached and the number of individuals in the 

population: 

 

POP
POOLSuccRatioPOP

sActSelPres
+⋅

=  (1) 

 

 
Figure 1: Flowchart of a Classical Genetic Algorithm 

Extended by Offspring Selection 
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Figure 1 shows these basic steps of offspring 

selection and how they are embedded into a classical 

genetic algorithm. 

Furthermore, an upper limit for the selection 

pressure (MaxSelPress) can be defined as another 

parameter which states the maximum number of 

children (as a multiple of the population size) that might 

be created in order to fulfill the success ratio. With this 

additional parameter offspring selection also provides a 

precise detector for premature convergence: If the 

algorithm cannot create a sufficient number of 

successful solutions (SuccRatio·|POP|) even after 

MaxSelPress·|POP| solutions have been created, 

premature convergence has occurred and the algorithm 

can be stopped. 

As a basic principle of offspring selection, higher 

success ratio and comparison factor cause higher 

selection pressure. Nevertheless, a higher selection 

pressure does not necessarily cause premature 

convergence when using offspring selection, as 

offspring selection also supports the preservation of 

relevant alleles and not only the preservation of fitter 

solutions as a whole. 

 

3. OFFSPRING SELECTION AND MUTATION 
In its original definition offspring selection is applied to 

each solution after it has been created by crossover and 

optionally manipulated by mutation. Thereby offspring 

selection assures that the search process is continued 

mainly with solutions which contain a promising 

combination of the genetic information of their parents 

(assembled by the crossover operator) and/or which 

contain high quality alleles that have been added by 

mutation. This approach leads to a strong direction of 

the search process. Several experiments have shown 

that a genetic algorithm with offspring selection is also 

able to achieve results of high quality, even if selection 

for reproduction is done randomly and only offspring 

selection is used to guide the search (Affenzeller 2005; 

Affenzeller, Wagner, and Winkler 2010). 

This is in fact a slightly different interpretation of 

crossover and mutation compared to classical genetic 

algorithms. In a classical genetic algorithm the 

crossover operator is responsible for combining alleles 

to longer and longer building blocks and mutation is 

used as an undirected manipulation operator whose 

purpose is to add new alleles to the population in order 

to keep the search process alive (Holland 1975). When 

applying offspring selection both operators, crossover 

and mutation, are always considered in combination and 

are directed by the success criterion which has to be 

fulfilled by the created solutions. Consequently, the 

mutation operator does not longer serve as an 

undirected manipulation operator, as it is followed by 

an additional selection step. This interpretation of 

mutation is concordant with the way mutation is 

considered in population genetics and also in evolution 

strategies (Beyer and Schwefel 2002) where it affects 

the genotype before and not after selection. 

As an alternative, a new version of offspring 

selection can be easily defined by applying the success 

criterion after crossover has created a new solution but 

before the mutation operator is optionally used to 

manipulate it. In this new version of offspring selection 

a stronger focus is put on the crossover operator by 

checking if it was able to combine the genetic 

information of the parents in a successful way and the 

mutation operator turns into an undirected operator 

again. This interpretation of the roles of crossover and 

mutation is more similar to the classical view on genetic 

algorithms in which their search process is considered 

as hyperplane sampling (Whitley 1994). 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
In order to evaluate and compare the two versions of 

offspring selection described in the previous sections 

and to gain a deeper insight into the interplay of 

offspring selection and mutation, the authors carried out 

a series of test runs with the ch130 instance of the 

Traveling Salesman Problem (TSP) taken from the 

TSPLIB (Reinelt 1991). For all tests HeuristicLab 3.3 

(Wagner 2009) was used which provides both versions 

of offspring selection and can be downloaded from the 

HeuristicLab homepage at http://dev.heuristiclab.com. 

 

Table 1: Parameter Settings 

Parameter Value 

Population Size 500 

Parent Selection Random 

Crossover Operators OX 

ERX 

MPX 

OX, ERX and MPX 

Mutation Operators 2-opt 

3-opt 

2-opt and 3-opt 

Mutation Probabilities 1% 

5% 

10% 

20% 

Elites 1 

Offspring Selection Before Mutation 

After Mutation 

Success Ratio (SuccRatio) 1.0 

Comparison Factor 

(CompFactor) 

1.0 

Maximum Generations 1000 

Maximum Selection 

Pressure (MaxSelPress) 

250 

 

In Table 1 the algorithm's parameter settings are 

shown which have been used for the tests. In order to 

highlight the effects of offspring selection before and 

after mutation, random parent selection and a success 

ratio and a comparison factor of 1.0 have been applied. 

Furthermore, several typical crossover and mutation 

operators for solving the TSP (Larranaga 1999) have 

been used in combination with different mutation 
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probabilities. The crossover and mutation operators 

have also been applied in combination which means that 

each time a crossover or mutation operator had to be 

applied, it was chosen randomly. 

 

Table 2: Relative Difference to the Optimal Solution 

(Offspring Selection after Mutation) 

Mut. 

Op. 

Mut. 

Prob. 

Mean Standard 

Deviation 

2-opt 1% 0,1359 0,1160 

5% 0,0840 0,0726 

10% 0,1052 0,1005 

20% 0,1038 0,1020 

3-opt 1% 0,1288 0,1150 

5% 0,1388 0,1201 

10% 0,1410 0,1262 

20% 0,1455 0,1140 

2-opt 

and 

3-opt 

1% 0,1400 0,1263 

5% 0,0829 0,0851 

10% 0,1226 0,1152 

20% 0,0671 0,0744 

 

 
Figure 2: Relative Difference to the Optimal Solution 

for 1%, 5%, 10% and 20% Mutation Probability 

(Offspring Selection after Mutation) 

 

Table 3: Relative Difference to the Optimal Solution 

(Offspring Selection before Mutation) 

Mut. 

Op. 

Mut. 

Prob. 

Mean Standard 

Deviation 

2-opt 1% 0,1307 0,1212 

5% 0,0933 0,0701 

10% 0,0409 0,0325 

20% 0,0222 0,0103 

3-opt 1% 0,1525 0,1258 

5% 0,1054 0,1002 

10% 0,0540 0,0684 

20% 0,0240 0,0139 

2-opt 

and 

3-opt 

1% 0,1156 0,1017 

5% 0,0928 0,0836 

10% 0,0683 0,0799 

20% 0,0190 0,0099 

 

 
Figure 3: Relative Difference to the Optimal Solution 

for 1%, 5%, 10% and 20% Mutation Probability 

(Offspring Selection before Mutation) 

 

For each parameter configuration, 5 independent 

runs have been executed which gives a total sum of 480 

runs. In Table 2 and Figure 2 the relative difference of 

the best found solution to the global optimal solution is 

analyzed for the case when offspring selection is done 

after mutation (classical offspring selection); Table 3 

and Figure 3 show the same results for applying 

offspring selection before mutation (new version). 

Furthermore, also the number of evaluated 

solutions is analyzed for both cases in Table 4, Figure 4, 

Table 5 and Figure 5. 

 

Table 4: Evaluated Solutions 

(Offspring Selection after Mutation) 

Mut. 

Op. 

Mut. 

Prob. 

Mean Standard 

Deviation 

2-opt 1% 1.567.880,00 429.171,66 

5% 1.722.365,00 380.228,61 

10% 1.705.435,00 387.580,38 

20% 1.809.925,00 415.801,80 

3-opt 1% 1.648.370,00 476.494,38 

5% 1.643.395,00 442.052,44 

10% 1.693.385,00 462.979,53 

20% 1.686.315,00 426.681,99 

2-opt 

and 

3-opt 

1% 1.633.605,00 515.648,60 

5% 1.773.865,00 436.819,40 

10% 1.621.055,00 393.168,40 

20% 1.929.205,00 480.513,97 

 

 
Figure 4: Evaluated Solutions for 1%, 5%, 10% and 

20% Mutation Probability 

(Offspring Selection after Mutation) 
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Table 5: Evaluated Solutions 

(Offspring Selection before Mutation) 

Mut. 

Op. 

Mut. 

Prob. 

Mean Standard 

Deviation 

2-opt 1% 1.637.656,75 405.592,54

5% 1.857.213,60 382.548,56

10% 4.957.905,00 4.498.932,66

20% 31.470.516,65 6.134.381,08

3-opt 1% 1.624.311,45 464.574,57

5% 1.997.821,55 524.652,97

10% 18.435.419,90 17.615.456,28

20% 24.561.314,80 4.869.505,18

2-opt 

and 

3-opt 

1% 1.697.508,60 416.604,78

5% 1.883.439,00 444.074,17

10% 6.812.471,10 10.224.809,35

20% 27.093.109,30 3.656.663,69

 

 
Figure 5: Evaluated Solutions for 1%, 5%, 10% and 

20% Mutation Probability 

(Offspring Selection before Mutation) 

 

Obviously the algorithm's behavior changes if 

offspring selection is applied before mutation, 

especially when working with high mutation 

probabilities. In the classical version of offspring 

selection (offspring selection after mutation) changing 

the mutation rate does not make much difference. The 

relative difference to the optimal solution as well as the 

number of evaluated solutions do not change notably 

(see Table 2, Figure 2, Table 4, Figure 4). However, 

when applying offspring selection before mutation, the 

mean value and the standard deviation of the relative 

difference to the optimal solution decrease significantly 

and the mean value and the standard deviation of the 

number of evaluated solutions increase significantly 

when increasing the mutation probability (see Table 3, 

Figure 3, Table 5, Figure 5). 

These results show that applying offspring 

selection before mutation and using rather high 

mutation probabilities leads to a longer execution time, 

more solution evaluations and more robust algorithms. 

In fact, this is quite reasonable and consistent with the 

theory of genetic algorithms. In the classical version of 

offspring selection the effects of mutation are 

dominated by the offspring selection step. Therefore, 

mutation is not undirected anymore and its 

characteristics as diversification method are lost. 

In the new version of offspring selection (offspring 

selection before mutation) mutation is more used in a 

way similar to standard genetic algorithms as the result 

of a mutation is not going through an additional 

selection process anymore. By this means, mutation 

becomes a diversification method again which leads to a 

longer run time, a broader search in the solution space, 

significantly more solution evaluations, but also more 

robust results. 

 

5. CONCLUSIONS 
In this contribution the authors focused on offspring 

selection which has been proposed by Affenzeller et al. 

to counteract the loss of relevant alleles and to 

prolongate premature convergence. A new version of 

offspring selection was presented in which the offspring 

selection step is not applied after mutation but before 

mutation. 

In a series of tests the authors analyzed the 

similarities and differences of these two versions of 

offspring selection when solving the Traveling 

Salesman Problem. 

It was shown for the original version of offspring 

selection (offspring selection after mutation) that the 

effects of mutation are dominated by the offspring 

selection step and that mutation therefore does not act 

as a diversification method anymore. However, when 

applying offspring selection before mutation the 

algorithm's behavior is significantly different, especially 

when using high mutation probabilities. As in this case 

the result of a mutation is not going through an 

additional selection process anymore, mutation is 

applied in an undirected way again and therefore leads 

to a diversification of the search process. By this means, 

the algorithm evaluates more solutions and becomes 

more robust when applying offspring selection before 

and not after mutation. 

In the future the authors are going to focus on a 

comparison of the robustness of both offspring selection 

versions when evaluating approximately the same 

number of solutions. Furthermore, additional test series 

with other TSP instances and also other combinatorial 

optimization problems should be done to enable an even 

more reliable analysis and interpretation. 
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