
MUTATION EFFECTS IN GENETIC ALGORITHMS WITH OFFSPRING SELECTION
APPLIED TO COMBINATORIAL OPTIMIZATION PROBLEMS

Stefan Wagner(a), Michael Affenzeller(b), Andreas Beham(c),
Gabriel Kronberger(d), Stephan M. Winkler(e)

(a – e) Upper Austria University of Applied Sciences

School for Informatics, Communications, and Media – Hagenberg

Josef Ressel-Centre Heureka! for Heuristic Optimization

Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, A-4232 Hagenberg, Austria

(a)stefan.wagner@fh-hagenberg.at, (b)michael.affenzeller@fh-hagenberg.at, (c)andreas.beham@fh-hagenberg.at,

(d)gabriel.kronberger@fh-hagenberg.at, (e)stephan.winkler@fh-hagenberg.at

ABSTRACT
In this paper the authors describe the effects of mutation

in genetic algorithms when used together with offspring

selection to solve combinatorial optimization problems.

In the initial definition of offspring selection stated by

Affenzeller et al., offspring selection is applied to each

solution after its creation using crossover and optional

mutation. Thereby a solution is immediately accepted

for the next generation only if it is able to outperform its

parental solutions in terms of quality.

It has been shown in several publications by

Affenzeller et al. that this additional selection step leads

to a better maintenance of high quality alleles and

therefore to a better convergence behavior and a

superior final solution quality.

Due to the application of offspring selection after

crossover and mutation, both operations become

directed by the quality of the created solutions. This is

in fact a different interpretation of mutation compared

to classical genetic algorithms where mutation is used

in an undirected way to introduce new genetic

information into the search process.

In this contribution the authors propose a new

version of offspring selection by applying it after

crossover, but before mutation. In a series of

experiments the similarities and differences of these two

approaches are shown and the interplay between

mutation and offspring selection is analyzed.

Keywords: Genetic Algorithms, Combinatorial

Optimization, Selection

1. INTRODUCTION
Selection for reproduction represents the main driving

force in genetic algorithms that guides the search

process through the solution space. By selecting

solutions of above average fitness and applying

crossover and optionally mutation, genetic algorithms

try to combine alleles of high quality in order to obtain

better and better solutions. During the search process

genetic diversity is usually decreased step by step so

that the algorithm is able to converge to solutions of

high quality in the end.

However, due to the effects of genetic drift high

quality (i.e., relevant) alleles which are required to

reach global optimal solutions might be lost in the

whole population. This leads to so-called premature

convergence which describes a state in which the

algorithm is no longer able to create better solutions

although it has not reached a global optimum so far

(Fogel 1994; Affenzeller 2005). This situation can be

compared to the effect of getting stuck in a local

optimum in neighborhood-based meta-heuristics.

In general the following three aspects can be

identified as the main reasons for the loss of relevant

alleles (Affenzeller 2005; Affenzeller, Wagner, and

Winkler 2010):

• Some relevant alleles might not be included in

the initial population. This especially might be

the case if the population size is rather small.

• Relevant alleles might be lost due to the

stochastic nature of selection and genetic drift.

This is frequently the case in an early phase of

the algorithm, when relevant alleles are

included in solutions of rather bad quality.

• For many applications of genetic algorithms

the applied crossover operators cannot

guarantee that the created children are exact

combinations of the genetic information of the

parents as new alleles might have to be

introduced in order to create feasible solutions.

In classical genetic algorithms the only approach to

counteract the loss of relevant alleles and therefore to

avoid premature convergence is mutation. However, as

mutation is used as an undirected operator, the

probability to get back relevant alleles by lucky

mutations decreases rapidly when trying to solve

problems of larger size.

Page 43

Additionally to mutation, some other ideas are also

discussed in literature to reduce the negative effects of

premature convergence. Among them the most common

representative are preselection (Cavicchio 1970),

crowding (De Jong 1975), and fitness-sharing

(Goldberg 1989). The main idea of these approaches is

to maintain genetic diversity by replacing solutions

more frequently which occupy similar regions of the

search space (preselection, crowding) or the reduce the

fitness value of solutions which are located in densely

populated regions of the search space (fitness-sharing).

All these three approaches require the definition of a

distance measure in order to be able to calculate the

similarity of solutions in the search space, and fitness-

sharing is additionally quite restricted to fitness

proportional selection. As a consequence, these

approaches are not applicable in each case.

Furthermore, they do not really address the problem of

loosing relevant alleles but try to reduce the loss of

genetic diversity in general.

In order to develop a more general technique to

counteract the loss of relevant alleles and therefore to

prolongate premature convergence the authors

introduced offspring selection (Affenzeller and Wagner

2005; Affenzeller, Wagner, and Winkler 2010;

Affenzeller, Winkler, Wagner, and Beham 2009). The

basic idea of this selection model is to consider not only

the fitness of the parents when creating new solutions.

Additionally, the fitness value of each new child

solution created by crossover and optionally mutation is

compared with the fitness values of its parents. The

child is immediately accepted for the next generation if

and only if it outperforms its parents’ fitness. This

strategy guarantees that the search process is continued

mainly with crossover results that were able to mix the

properties of their parents in an advantageous way

and/or with mutation results that contain relevant

alleles. In other words, offspring selection supports

survival of the fittest alleles rather than survival of the
fittest chromosomes. This is a very essential concept

concerning the preservation of relevant genetic

information stored in the individuals of a population.

2. OFFSPRING SELECTION
In general, offspring selection consists of the following

steps (Affenzeller and Wagner 2005):

At first parents are selected for reproduction either

randomly or in any other well-known way of genetic

algorithms (e.g., fitness proportional selection, linear

rank selection, tournament selection). After crossover

and optionally mutation have been applied to create a

new child solution, another selection step is introduced

which considers the success of the applied reproduction

procedure. The goal of this second selection step (i.e.

the offspring selection step) is to continue the search

process mainly with successful offspring which surpass

their parents’ quality. Therefore, a new parameter called

success ratio (SuccRatio) is introduced. The success

ratio defines the relative amount of members in the next

population that have to be generated by successful

mating (crossover, mutation).

Additionally, it has to be defined when a solution

is considered to be successful: Is a child solution better

than its parents, if it surpasses the fitness of the weaker,

the better, or some kind of mean value of both? For this

purpose a parameter called comparison factor

(CompFactor) is used to define the success criterion for

each created solution as a weighted average of the

quality of the worse and better parent (i.e., if the

comparison factor is 0, successful solutions at least have

to be better than the worse parent, and if it is 1 they

have to outperform the better parent).

Based on the comparison factor, the authors

decided to introduce a cooling strategy which is similar

to simulated annealing. Following the basic principle of

simulated annealing, an offspring only has to surpass

the fitness value of the worse parent in order to be

successful at the beginning of the search process

(CompFactor is initialized with 0 or a rather small

value). While evolution proceeds solutions have to be

better than a fitness value continuously increasing

between the fitness of the weaker and the better parent

(CompFactor is increased in each generation until it

reaches 1 or a rather high value). As in the case of

simulated annealing, this strategy leads to a broader

search at the beginning, whereas at the end the search

process becomes more and more directed.

After the amount of successful solutions in the next

generation has reached the success ratio, the remaining

solutions for the next generation (i.e.,

(1-SuccRatio)·|POP|) are taken from the pool of

solutions which were also created by crossover and

mutation but did not necessarily reach the success

criterion. The actual selection pressure ActSelPress at

the end of a single generation is defined by the quotient

of individuals that had to be created until the success

ratio was reached and the number of individuals in the

population:

POP
POOLSuccRatioPOP

sActSelPres
+⋅

= (1)

Figure 1: Flowchart of a Classical Genetic Algorithm

Extended by Offspring Selection

Page 44

Figure 1 shows these basic steps of offspring

selection and how they are embedded into a classical

genetic algorithm.

Furthermore, an upper limit for the selection

pressure (MaxSelPress) can be defined as another

parameter which states the maximum number of

children (as a multiple of the population size) that might

be created in order to fulfill the success ratio. With this

additional parameter offspring selection also provides a

precise detector for premature convergence: If the

algorithm cannot create a sufficient number of

successful solutions (SuccRatio·|POP|) even after

MaxSelPress·|POP| solutions have been created,

premature convergence has occurred and the algorithm

can be stopped.

As a basic principle of offspring selection, higher

success ratio and comparison factor cause higher

selection pressure. Nevertheless, a higher selection

pressure does not necessarily cause premature

convergence when using offspring selection, as

offspring selection also supports the preservation of

relevant alleles and not only the preservation of fitter

solutions as a whole.

3. OFFSPRING SELECTION AND MUTATION
In its original definition offspring selection is applied to

each solution after it has been created by crossover and

optionally manipulated by mutation. Thereby offspring

selection assures that the search process is continued

mainly with solutions which contain a promising

combination of the genetic information of their parents

(assembled by the crossover operator) and/or which

contain high quality alleles that have been added by

mutation. This approach leads to a strong direction of

the search process. Several experiments have shown

that a genetic algorithm with offspring selection is also

able to achieve results of high quality, even if selection

for reproduction is done randomly and only offspring

selection is used to guide the search (Affenzeller 2005;

Affenzeller, Wagner, and Winkler 2010).

This is in fact a slightly different interpretation of

crossover and mutation compared to classical genetic

algorithms. In a classical genetic algorithm the

crossover operator is responsible for combining alleles

to longer and longer building blocks and mutation is

used as an undirected manipulation operator whose

purpose is to add new alleles to the population in order

to keep the search process alive (Holland 1975). When

applying offspring selection both operators, crossover

and mutation, are always considered in combination and

are directed by the success criterion which has to be

fulfilled by the created solutions. Consequently, the

mutation operator does not longer serve as an

undirected manipulation operator, as it is followed by

an additional selection step. This interpretation of

mutation is concordant with the way mutation is

considered in population genetics and also in evolution

strategies (Beyer and Schwefel 2002) where it affects

the genotype before and not after selection.

As an alternative, a new version of offspring

selection can be easily defined by applying the success

criterion after crossover has created a new solution but

before the mutation operator is optionally used to

manipulate it. In this new version of offspring selection

a stronger focus is put on the crossover operator by

checking if it was able to combine the genetic

information of the parents in a successful way and the

mutation operator turns into an undirected operator

again. This interpretation of the roles of crossover and

mutation is more similar to the classical view on genetic

algorithms in which their search process is considered

as hyperplane sampling (Whitley 1994).

4. EXPERIMENTAL RESULTS AND ANALYSIS
In order to evaluate and compare the two versions of

offspring selection described in the previous sections

and to gain a deeper insight into the interplay of

offspring selection and mutation, the authors carried out

a series of test runs with the ch130 instance of the

Traveling Salesman Problem (TSP) taken from the

TSPLIB (Reinelt 1991). For all tests HeuristicLab 3.3

(Wagner 2009) was used which provides both versions

of offspring selection and can be downloaded from the

HeuristicLab homepage at http://dev.heuristiclab.com.

Table 1: Parameter Settings

Parameter Value

Population Size 500

Parent Selection Random

Crossover Operators OX

ERX

MPX

OX, ERX and MPX

Mutation Operators 2-opt

3-opt

2-opt and 3-opt

Mutation Probabilities 1%

5%

10%

20%

Elites 1

Offspring Selection Before Mutation

After Mutation

Success Ratio (SuccRatio) 1.0

Comparison Factor

(CompFactor)

1.0

Maximum Generations 1000

Maximum Selection

Pressure (MaxSelPress)

250

In Table 1 the algorithm's parameter settings are

shown which have been used for the tests. In order to

highlight the effects of offspring selection before and

after mutation, random parent selection and a success

ratio and a comparison factor of 1.0 have been applied.

Furthermore, several typical crossover and mutation

operators for solving the TSP (Larranaga 1999) have

been used in combination with different mutation

Page 45

probabilities. The crossover and mutation operators

have also been applied in combination which means that

each time a crossover or mutation operator had to be

applied, it was chosen randomly.

Table 2: Relative Difference to the Optimal Solution

(Offspring Selection after Mutation)

Mut.

Op.

Mut.

Prob.

Mean Standard

Deviation

2-opt 1% 0,1359 0,1160

5% 0,0840 0,0726

10% 0,1052 0,1005

20% 0,1038 0,1020

3-opt 1% 0,1288 0,1150

5% 0,1388 0,1201

10% 0,1410 0,1262

20% 0,1455 0,1140

2-opt

and

3-opt

1% 0,1400 0,1263

5% 0,0829 0,0851

10% 0,1226 0,1152

20% 0,0671 0,0744

Figure 2: Relative Difference to the Optimal Solution

for 1%, 5%, 10% and 20% Mutation Probability

(Offspring Selection after Mutation)

Table 3: Relative Difference to the Optimal Solution

(Offspring Selection before Mutation)

Mut.

Op.

Mut.

Prob.

Mean Standard

Deviation

2-opt 1% 0,1307 0,1212

5% 0,0933 0,0701

10% 0,0409 0,0325

20% 0,0222 0,0103

3-opt 1% 0,1525 0,1258

5% 0,1054 0,1002

10% 0,0540 0,0684

20% 0,0240 0,0139

2-opt

and

3-opt

1% 0,1156 0,1017

5% 0,0928 0,0836

10% 0,0683 0,0799

20% 0,0190 0,0099

Figure 3: Relative Difference to the Optimal Solution

for 1%, 5%, 10% and 20% Mutation Probability

(Offspring Selection before Mutation)

For each parameter configuration, 5 independent

runs have been executed which gives a total sum of 480

runs. In Table 2 and Figure 2 the relative difference of

the best found solution to the global optimal solution is

analyzed for the case when offspring selection is done

after mutation (classical offspring selection); Table 3

and Figure 3 show the same results for applying

offspring selection before mutation (new version).

Furthermore, also the number of evaluated

solutions is analyzed for both cases in Table 4, Figure 4,

Table 5 and Figure 5.

Table 4: Evaluated Solutions

(Offspring Selection after Mutation)

Mut.

Op.

Mut.

Prob.

Mean Standard

Deviation

2-opt 1% 1.567.880,00 429.171,66

5% 1.722.365,00 380.228,61

10% 1.705.435,00 387.580,38

20% 1.809.925,00 415.801,80

3-opt 1% 1.648.370,00 476.494,38

5% 1.643.395,00 442.052,44

10% 1.693.385,00 462.979,53

20% 1.686.315,00 426.681,99

2-opt

and

3-opt

1% 1.633.605,00 515.648,60

5% 1.773.865,00 436.819,40

10% 1.621.055,00 393.168,40

20% 1.929.205,00 480.513,97

Figure 4: Evaluated Solutions for 1%, 5%, 10% and

20% Mutation Probability

(Offspring Selection after Mutation)

Page 46

Table 5: Evaluated Solutions

(Offspring Selection before Mutation)

Mut.

Op.

Mut.

Prob.

Mean Standard

Deviation

2-opt 1% 1.637.656,75 405.592,54

5% 1.857.213,60 382.548,56

10% 4.957.905,00 4.498.932,66

20% 31.470.516,65 6.134.381,08

3-opt 1% 1.624.311,45 464.574,57

5% 1.997.821,55 524.652,97

10% 18.435.419,90 17.615.456,28

20% 24.561.314,80 4.869.505,18

2-opt

and

3-opt

1% 1.697.508,60 416.604,78

5% 1.883.439,00 444.074,17

10% 6.812.471,10 10.224.809,35

20% 27.093.109,30 3.656.663,69

Figure 5: Evaluated Solutions for 1%, 5%, 10% and

20% Mutation Probability

(Offspring Selection before Mutation)

Obviously the algorithm's behavior changes if

offspring selection is applied before mutation,

especially when working with high mutation

probabilities. In the classical version of offspring

selection (offspring selection after mutation) changing

the mutation rate does not make much difference. The

relative difference to the optimal solution as well as the

number of evaluated solutions do not change notably

(see Table 2, Figure 2, Table 4, Figure 4). However,

when applying offspring selection before mutation, the

mean value and the standard deviation of the relative

difference to the optimal solution decrease significantly

and the mean value and the standard deviation of the

number of evaluated solutions increase significantly

when increasing the mutation probability (see Table 3,

Figure 3, Table 5, Figure 5).

These results show that applying offspring

selection before mutation and using rather high

mutation probabilities leads to a longer execution time,

more solution evaluations and more robust algorithms.

In fact, this is quite reasonable and consistent with the

theory of genetic algorithms. In the classical version of

offspring selection the effects of mutation are

dominated by the offspring selection step. Therefore,

mutation is not undirected anymore and its

characteristics as diversification method are lost.

In the new version of offspring selection (offspring

selection before mutation) mutation is more used in a

way similar to standard genetic algorithms as the result

of a mutation is not going through an additional

selection process anymore. By this means, mutation

becomes a diversification method again which leads to a

longer run time, a broader search in the solution space,

significantly more solution evaluations, but also more

robust results.

5. CONCLUSIONS
In this contribution the authors focused on offspring

selection which has been proposed by Affenzeller et al.

to counteract the loss of relevant alleles and to

prolongate premature convergence. A new version of

offspring selection was presented in which the offspring

selection step is not applied after mutation but before

mutation.

In a series of tests the authors analyzed the

similarities and differences of these two versions of

offspring selection when solving the Traveling

Salesman Problem.

It was shown for the original version of offspring

selection (offspring selection after mutation) that the

effects of mutation are dominated by the offspring

selection step and that mutation therefore does not act

as a diversification method anymore. However, when

applying offspring selection before mutation the

algorithm's behavior is significantly different, especially

when using high mutation probabilities. As in this case

the result of a mutation is not going through an

additional selection process anymore, mutation is

applied in an undirected way again and therefore leads

to a diversification of the search process. By this means,

the algorithm evaluates more solutions and becomes

more robust when applying offspring selection before

and not after mutation.

In the future the authors are going to focus on a

comparison of the robustness of both offspring selection

versions when evaluating approximately the same

number of solutions. Furthermore, additional test series

with other TSP instances and also other combinatorial

optimization problems should be done to enable an even

more reliable analysis and interpretation.

Page 47

ACKNOWLEDGMENTS
The work described in this paper was done within the

Josef Ressel-Centre Heureka! for Heuristic

Optimization (http://heureka.heuristiclab.com)

sponsored by the Austrian Research Promotion Agency

(FFG).

REFERENCES
Affenzeller, M. and Wagner, S., 2005. Offspring

selection: A new self-adaptive selection scheme

for genetic algorithms. Proceedings of ICANNGA
2005, pp. 218–221. 21st–23rd March 2005,

Coimbra, Portugal.

Affenzeller, M., 2005. Population genetics and
evolutionary computation: Theoretical and
practical aspects. Linz: Trauner Verlag.

Affenzeller, M., Wagner, S. and Winkler, S.M., 2010.

Effective allele preservation by offspring

selection: An empirical study for the TSP.

International Journal of Simulation and Process
Modelling, 6 (1), 29–39.

Affenzeller, M., Winkler, S.M., Wagner, S. and Beham,

A., 2009. Genetic algorithms and genetic
programming – Modern concepts and practical
applications. Boca Raton: CRC Press.

Beyer, H.G. and Schwefel, H.P., 2002. Evolution

strategies: A Comprehensive Introduction. Natural
Computing, 1 (1), 3–52.

Cavicchio, D.J., 1970. Adaptive search using simulated
evolution. Thesis (PhD). University of Michigan.

De Jong, K., 1975. An analysis of the behavior of a
class of genetic adaptive systems. Thesis (PhD).

University of Michigan.

Fogel, D., 1994. An introduction to simulated

evolutionary optimization. IEEE Transactions on
Neural Networks, 5 (1), 3–14.

Goldberg, D.E., 1989. Genetic algorithms in search,
optimization and machine learning. Addison-

Wesley.

Holland, J.H., 1975. Adaption in Natural and Artificial
Systems, University of Michigan Press, Ann

Harbor.

Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I.

and Dizdarevic, D., 1999. Genetic algorithms for

the traveling salesman problem: A review of

representations and operators. Artificial
Intelligence Review, 13, 129–170.

Reinelt, G., 1991. TSPLIB – A traveling salesman
problem library. ORSA Journal on Computing, 3,

376–384.

Wagner, S., 2009. Heuristic optimization software
systems – Modeling of heuristic optimization
algorithms in the HeuristicLab software
environment. Thesis (PhD). Johannes Kepler

University Linz.

Whitley, D., 1994. A Genetic Algorithm Tutorial.
Statistics and Computing, 4, 65–85.

AUTHORS BIOGRAPHIES

STEFAN WAGNER received his MSc in

computer science in 2004 and his PhD in

engineering sciences in 2009, both from

Johannes Kepler University (JKU) Linz,

Austria; he is professor at the Upper

Austria University of Applied Sciences

(Campus Hagenberg). Dr. Wagner’s research interests

include evolutionary computation and heuristic

optimization, theory and application of genetic

algorithms, model driven software development and

software engineering.

MICHAEL AFFENZELLER has

published several papers, journal articles

and books dealing with theoretical and

practical aspects of evolutionary

computation, genetic algorithms, and

meta-heuristics in general. In 2001 he

received his PhD in engineering sciences and in 2004 he

received his habilitation in applied systems engineering,

both from the Johannes Kepler University of Linz,

Austria. Michael Affenzeller is professor at the Upper

Austria University of Applied Sciences, Campus

Hagenberg, and head of the Josef Ressel Center

Heureka! at Hagenberg.

ANDREAS BEHAM received his MSc in

computer science in 2007 from Johannes

Kepler University (JKU) Linz, Austria.

His research interests include heuristic

optimization methods and simulation-

based as well as combinatorial

optimization. Currently he is a research associate at the

Research Center Hagenberg of the Upper Austria

University of Applied Sciences (Campus Hagenberg).

GABRIEL K. KRONBERGER received

his MSc. in computer science in 2005

from Johannes Kepler University Linz,

Austria. His research interests include

parallel evolutionary algorithms, genetic

programming, machine learning and data

mining. Currently he is a research associate at the

Research Center Hagenberg of the Upper Austria

University of Applied Sciences.

STEPHAN M. WINKLER received his

MSc in computer science in 2004 and his

PhD in engineering sciences in 2008, both

from Johannes Kepler University (JKU)

Linz, Austria. His research interests include

genetic programming, nonlinear model

identification and machine learning. Since 2009, Dr.

Winkler is professor at the Department for Medical and

Bioinformatics at the Upper Austria University of

Applied Sciences, Campus Hagenberg.

Page 48

