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ABSTRACT 

In evolutionary algorithms mutation operators increase 

the genetic diversity in the population. Mutations are 

undirected and have only a low probability to improve 

the quality of the manipulated solution. Offspring 

selection determines if a newly created solution is added 

to the next generation of the population. By definition, 

offspring selection is applied after mutation and the 

effects of mutation are directed and quality-driven. 

In this paper we propose an alternative variant of 

genetic programming with offspring selection where 

mutation is applied to increase genetic diversity after 

offspring selection. We compare the solution quality 

achieved by the original algorithm and the new 

algorithm when applied to a symbolic regression 

problem. We observe that solutions produced by the 

new variant have a smaller generalization error and 

conclude that the proposed variant is better for symbolic 

regression with linear scaling. 

 

Keywords: Genetic Programming, Symbolic 

Regression, Mutation Operators 

 

1. INTRODUCTION 

In evolutionary algorithms mutation operators are used 

to manipulate existing solutions. Usually mutations are 

non-deterministic, local and undirected and have only a 

minor effect on the quality of the solution candidate 

(e.g., the single point mutation operator for genetic 

algorithms with binary encoding changes a single bit in 

the binary string representing the solution). The 

probability that a random mutation improves the quality 

of a solution is rather small. In genetic algorithms the 

purpose of mutation operators is to increase the genetic 

diversity of the population which often has a beneficial 

effect on the overall dynamics of the algorithm and the 

final solution quality. 

For some problem formulations mutation operators 

or recombination operators are more natural or more 

efficient, but most evolutionary algorithms described 

recently use a combination of both, recombination and 

mutation, to generate new solution candidates from 

existing ones. 

 

1.1. Offspring Selection 

Offspring selection (Affenzeller and Wagner 2005) is 

an additional selection step in evolutionary algorithms 

which is applied after parental selection, recombination 

and mutation. Offspring selection adds a newly created 

solution to the next generation only if it fulfills a 

success criterion. Most often the success criterion is that 

the newly created child solution must have a better 

quality than its parents. It has been shown that offspring 

selection can improve the final solution quality found 

by genetic algorithms on different benchmark problems 

(Affenzeller, Winkler, Wagner and Beham 2009). 

If offspring selection is applied after mutation, 

mutations become directed and quality-driven. In this 

configuration the mutation operator can be compared to 

a local first-improvement optimization step after 

recombination that is applied to a small percentage of 

the generated individuals determined by the mutation 

rate parameter. 

The two algorithm variants studied in this paper 

can be directly related to the two possible perspectives 

of mutation in the theory of evolutionary algorithms. In 

the perspective of population genetics as also pursued 

by (Beyer and Schwefel 2002) mutation affects the 

genotype before selection. This is also concordant to the 

original formulation of offspring selection. In the 

perspective of genetic algorithms the role of mutation is 

to increase the genetic diversity of the population 

through random undirected changes of the genotype that 

are not driven by solution quality (Holland 1975). 

 

1.2. Genetic Programming 

Genetic programming (Koza 1992) is a heuristic 

problem solving method that uses the principles of 

evolution to evolve programs that solve the original 
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problem when executed. The core of genetic 

programming is an evolutionary algorithm that evolves 

computer programs in generational steps using 

selection, recombination and manipulation operations, 

starting from a randomly initialized population. 

Solution candidates represent computer programs that 

are most often encoded as symbolic expression trees 

where the root node is the program entry point. The set 

of symbols that can be used in the tree and the 

interpretation of the symbolic expression tree is 

problem specific. 

One possible problem that can be solved by genetic 

programming is symbolic regression. In the case of 

symbolic regression the goal of genetic programming is 

to find a functional expression to predict the value of a 

target variable from values of input variables, given a 

set of observed or measured values for each input 

variable and the target variable. The functional 

expression is encoded as a symbolic expression tree that 

contains basic arithmetic operations (+, -, /, *) in 

internal tree nodes. In terminal nodes only two types of 

symbols are allowed: either a terminal node represents 

an input variable or a constant value. 

The task of symbolic regression is a very 

constrained and simple form of genetic programming 

that makes this task ideal as a test-bed for more 

theoretical research. The scope of problems that can be 

solved be genetic programming is much larger. If it is 

possible to formulate a language for problem solutions 

and a fitness function for such solutions can be defined 

it is possible to use genetic programming to evolve 

solutions for the problem using the constructs defined in 

the language. Genetic programming has been used to 

find novel and human competitive solutions (Koza 

2010). 

 

1.3. Mutation in Genetic Programming 

The role of mutation in genetic programming is 

uncertain (Poli, Langdon and McPhee 2008, Langdon 

and Poli 2002). Koza showed that mutation is not 

necessary for GP (Koza 1992, 1994) and crossover is 

sufficient to search the solution space. However, for 

certain problems it has been shown that GP with 

mutation performs better than GP with only crossover 

(Harries and Smith 1997, Luke and Spector 1997). The 

effect of mutation often depends on the problem and on 

the GP system (Luke and Spector 1997). This work is 

the first in which the effects of mutation in combination 

with offspring selection are studied. 

 

2. EXPERIMENTAL SETUP 

The main aim of this paper is to compare two genetic 

programming variants using offspring selection. The 

first algorithm applies mutation before offspring 

selection (BeforeOS), the second algorithm applies 

mutation after offspring selection (AfterOS). 

We ran a number of experiments to answer the 

following two questions: How many mutated solution 

candidates are successful and accepted into the next 

generation if offspring selection is applied after 

mutation? Is the solution quality better or worse if the 

algorithm is changed so that mutation is applied after 

offspring selection? 

Many different mutation operators for genetic 

programming with symbolic expression encoding have 

been described in the literature. We picked four 

different mutation operators and applied both algorithm 

variants each time with a different manipulation 

operator on a symbolic regression problem. For each 

configuration 20 independent runs were executed. The 

results shown in the next section are based on 160 

independent genetic programming runs. 

 

2.1. Symbolic Regression Problem 

In the experiments we use a dataset from a real world 

chemical process at Dow Chemical that contains 57 

cheap process measurements, such as temperatures, 

pressures, and flows (inputs) and noisy lab data of a 

chemical composition which is expensive to measure 

(http://dces.essex.ac.uk/research/evostar/competitions.html). 

This data set has been made public by Arthur Kordon, 

Dow Chemical for the symbolic regression competition 

which was a side event of the EvoStar 2010 conference. 

Unfortunately, no details have been published about the 

chemical plant and the process from which this dataset 

was created.  

The dataset contains a total of 747 measurements 

of the 58 variables and was split into three partitions: 

training set (0-400), validation set (400-600) and test set 

(600-747). The validation set is used by the algorithm 

for model selection. The best solution determined by the 

algorithm in each run is evaluated on the test set in 

order to get an expected value for the unknown 

generalization error of the model on unseen data. 

Each solution candidate considered by the 

algorithm was linearly scaled before evaluation (Keijzer 

2004). Linear scaling transforms the output values 

generated by the symbolic regression models to the 

same offset and scale as the original target values; linear 

scaling has been shown to improve the final solution 

quality produced by genetic programming (Keijzer 

2004). 

 

2.2. Mutation Operators 

The following mutation operators are used in the 

experiments: 

ChangeNodeType: This operator selects a single 

node of the solution that has been selected for 

manipulation, and replaces the symbol in the selected 

node with a random symbol from the function library. 

Symbols are selected with uniform probability. The 

original symbol is included in the list of available 

symbols. When a terminal node is manipulated the 

replacement symbol must be a terminal symbol (either 

variable or constant). 

OnePointShaker: This operator selects a single 

terminal node of the solution that has been selected for 

manipulation, and applies a shaking operation to the 

parameter values of the terminal node. If the selected 

node is a constant a normally distributed with (N(0,1)) 
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value is added to the current constant value. If the 

selected node is a variable node a normally distributed 

(N(0,1)) value is added to the weighting factor of the 

variable and the referenced input variable is selected 

randomly from the set of all allowed input variables. 

FullTreeShaker: This operator applies the shaking 

operation executed by the OnePointShaker on all 

terminal nodes of the solution that has been selected for 

manipulation. 

SubsituteSubTree: This operator randomly selects 

a branch in the solution that has been selected for 

manipulation and replaces the whole branch starting at 

the selected node with a new random tree of the same 

size. Random trees are generated with the PTC2 

operator (Luke 2000), the same operator that is used for 

generation of the initial population. 

 

2.3. Parameter Settings 

We used the same parameter settings for all 

experiments, only the manipulation operator was 

exchanged. These settings are well-proven settings that 

have been used to generate high quality solutions in a 

number of real world applications of GP. The upper 

limit of 500.000 evaluated solutions was used as 

stopping criterion. 

 

Table 1: GP algorithm parameter values for all 

experiments. 

Parameter Value 

Population size 1000 

Max tree size 100 

Max tree height 10 

Mutation rate 15% 

Comparison factor 1 

Success ratio 1 

Crossover 
Sub-tree swapping 

(Koza 1992) 

Initialization PTC2 (Luke 2000) 

Selection 
50%: Random 

50%: Proportional 

Evaluation wrapper Linear scaling (Keijzer 2004) 

 

3. IMPLEMENTATION 

The following tables show the pseudo-code of a genetic 

programming algorithm with offspring selection. Inside 

the offspring selection loop solution candidates are 

evaluated only on the training set. The output of the 

solution candidate is scaled linearly to match the offset 

and scale of the original target variables (Keijzer 2004). 

Table 2 shows the first algorithm (BeforeOS) 

where mutation is applied inside the offspring selection 

loop. Thus only mutations which do not have a negative 

effect on the solution quality are accepted. 

Table 3 shows the proposed algorithm variant 

(AfterOS). The difference to the first algorithm is that 

the mutation operator is applied after the next 

generation has been populated via repeated application 

of selection and crossover in the offspring selection 

step. The solution candidates which are manipulated 

have to be evaluated a second time on the training set. 

 

Table 2: Algorithm I: BeforeOS 

Initialization: 

 i ← 0 

 Best-Solutioni ← Ø 

 Popi ← Create-Random-IndividualsPTC2 (PopSize) 

 Evaluatetraining ( Popi ) 

Repeat (Main Loop):  

 Popi + 1 ← Ø 

 Repeat (Offspring Selection): 

  Parentmale ← Selectionmale (Popi) 

  Parentfemale ← Selectionfemale (Popi) 

  Child = Crossover (Parentmale Parentfemale) 

  Conditional on Mutation Rate 

   Mutate (Child) 

  Qualitychild  ← Evaluatetraining (Child) 

  if  Qualitychild ≤ Min(Qualitymale, Qualityfemale) 

   Popi  + 1 ← Popi + 1 ∪ {Child } 

  Else  

   Discard Child 

 Until |Pop i + 1| = PopSize 

 Best-Solutioni+1 ←  

  argminsolution  (Evaluatevalidation (solution)), 

  where solution ∈ Popi + 1 ∪ { Best-Solutioni } 

 i ← i + 1 

Until Stopping-Criterion = true 

Output ( Solutionbest ) 

 

Table 3: Algorithm II: AfterOS 

Initialization: 

 i ← 0 

 Best-Solutioni ← Ø 

 Popi ← Create-Random-IndividualsPTC2 (PopSize) 

 Evaluatetraining ( Popi ) 

Repeat (Main Loop):  

 Popi + 1 ← Ø 

 Repeat (Offspring Selection): 

  Parentmale ← Selectionmale (Popi) 

  Parentfemale ← Selectionfemale (Popi) 

  Child = Crossover (Parentmale Parentfemale)  

  Qualitychild  ← Evaluatetraining (Child) 

  if  Qualitychild ≤ Min(Qualitymale, Qualityfemale) 

   Popi  + 1 ← Popi + 1 ∪ {Child } 

  Else  

   Discard Child 

 Until |Pop i + 1| = PopSize 

 For each solution ∈ Popi + 1  

  Conditional on Mutation-Rate 

   Mutate (solution) 

   Qualitysolution ← Evaluatetraining (solution) 

 Best-Solutioni+1 ←  

  argminsolution  (Evaluatevalidation (solution)), 

  where solution ∈ Popi + 1 ∪ { Best-Solutioni } 

 i ← i + 1 

Until Stopping-Criterion = true 

Output ( Solutionbest ) 
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Both algorithms have been implemented using an 

internal pre-release version of HeuristicLab 

(http://dev.heuristiclab.com) (Wagner 2009), a generic 

and paradigm independent framework for heuristic 

optimization. 

 

4. RESULTS 

The results of the experiments show that when offspring 

selection is applied after mutation the number of 

mutated individuals that are accepted into the next 

generation is high in the beginning stages of the 

algorithm, but drops later. There is no significant 

difference in the solution quality on the training data, 

however, the solutions generated by the algorithm with 

mutation after offspring selection are better on the 

validation data-set.  

 

4.1. Effective Mutation Rates 

Figure 1 shows the effective mutation rate for all 

mutation operators. In the first generations of the run 

almost all mutations improve the solution quality; in the 

later stages the probability sinks, but is still rather high. 

All mutation operators except for the FullTreeShaker 

have a probability greater than 30% to produce 

successful solutions even at end of the run. 

 

 
Figure 1: Number of mutated individuals in the 

population of manipulation operators when applied 

before offspring selection (averages over 20 runs for 

each mutation operator; error bars indicate the 95% 

confidence interval.) 

 

4.2. Training Error 

In Figure 2 the best training and validation quality of 

solutions generated by genetic programming with 

mutation before offspring selection are shown. Each 

data point is the best training/validation quality (y-axis) 

found after the number of evaluated solutions (x-axis) 

averaged over 20 independent runs (error bars indicate 

the 95% confidence interval). After the first few 

generations the algorithm generations solutions that are 

increasingly worse on the validation set, while the 

quality on the training set steadily increases. In Figure 3 

the same effect can be observed, however the effect is 

not so strong when mutation is applied after offspring 

selection. The overfitting effect can be attributed to the 

linear scaling operation applied to all solutions. Only 

the training data-set is considered for the scaling 

operation, this leads to bad performance on the 

validation set and also on the test set. Based on this 

observation linear scaling of solution candidates should 

always be used in combination with an internal 

validation data-set for model selection. Figures 2 and 3 

also show that there is no significant difference in the 

final solution quality of the two algorithm variants if 

only the training quality is considered. 

 

 
Figure 2: Best training and validation quality averaged 

over 20 independent runs for each mutation operator 

when applied before offspring selection (error bars 

indicate the 95% confidence interval.) 

 

 

Figure 3: Best training and validation quality averaged 

over 20 independent runs for each mutation operator 

when applied after offspring selection (error bars 

indicate the 95% confidence interval). 

 

4.3. Generalization Error 

For the symbolic regression task the quality on unseen 

data is more relevant than the solution quality achieved 

while training because it is a better estimate for the 

quality of the model when applied to unseen data. 

Table 4 shows the generalization error of the 

models selected as final result (best model on the 
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validation set over the whole run) for all mutation 

operators and different mutation rates (5%, 10%, 15%). 

The values are averages over 20 independent GP runs. 

Statistical significance was tested with the two-tailed 

non-parametric Mann-Whitney-U test (null hypothesis: 

the medians are equal). Significant results are given in 

bold face (p-Value < 0.01). Overfitting on the validation 

set occurs in both configurations for all mutation 

operators. This can be seen by the fact that the 

generalization error is very high in comparison to the 

average training MSE of the best on validation solutions 

which is 0.08 and the average validation MSE which is 

0.03 over all runs. 

 

Table 4: Generalization error (mean squared error on 

test set) of models generated by the GP variants 

averaged over 20 independent runs. 

Operator Rate Test MSE 

(beforeOS) 

Test MSE 

(afterOS) 

ChangeNodeType 0.05 0.240 0.252 

 0.15 0.253 0.235 

 0.25 0.276 0.121 

FullTreeShaker 0.05 0.265 0.219 

 0.15 0.220 0.208 

 0.25 0.205 0.216 

OnePointShaker 0.05 0.263 0.208 

 0.15 0.221 0.170 

 0.25 0.281 0.165 

SubstituteTree 0.05 0.237 0.209 

 0.15 0.251 0.141 

 0.25 0.204 0.165 

 

Table 5: Best solution (on validation set) generation 

(median value of 20 independent runs). 

Operator Rate Generation 

(beforeOS) 

Generation 

(afterOS) 

ChangeNodeType 0.05 4 10.5 

 0.15 4 31.5 

 0.25 5 28 

FullTreeShaker 0.05 4 6 

 0.15 4 4.5 

 0.25 3 11 

OnePointShaker 0.05 5 26 

 0.15 3.5 23.5 

 0.25 4 22 

SubstituteTree 0.05 4 22.5 

 0.15 3 28.5 

 0.25 3.5 23.5 

 

In Table 5 the median value of the generation when the 

best solution on the validation set was found is shown. 

From the table it can be seen that if mutation is applied 

before offspring selection the best solution is found in 

the first few generations and no improved solution is 

found over the rest of the GP run. If mutation is applied 

after OS this effect is reduced. 

These observations strongly suggest that mutation 

should be applied after offspring selection in order to 

reduce overfitting if linear scaling is used. The results 

also raise the following questions which should be 

pursued in further experiments. What causes the 

observed overfitting effect with linear scaling and 

which countermeasures effectively prevent it? Does 

linear scaling cause a loss of genetic diversity and 

premature convergence? Further experiments should 

include an analysis of the genetic diversity in order to 

get an insight about the effects of linear scaling on the 

genetic diversity. 

 

5. CONCLUSIONS 

In this paper we have analyzed a variant of genetic 

programming with offspring selection where mutation 

is applied after offspring selection. In the original 

formulation of offspring selection it is applied after 

mutation. Both variants were used to solve a symbolic 

regression problem. In the experiments we observed 

that even when offspring selection is applied after the 

mutation operator a large percentage of mutated 

individuals are accepted into the next generation. This 

means that mutation has a high probability to improve 

solution quality. This is a bit surprising because 

mutations are usually undirected random changes and 

should intuitively have a low probability to improve 

solution quality. We attribute this behavior to the linear 

scaling operator which is a local optimization step 

before evaluation and improves the model quality on the 

training data-set. We also observed that the 

FullTreeShaker manipulation operator almost never 

improves the solution quality and thus has no effect 

when it is applied before offspring selection. 

The results show that linear scaling leads to 

overfitting on the training data-set. This is clearly seen 

when the solution candidates are evaluated on the test 

data-set. Thus linear scaling should be used in 

combination with a model selection step to make sure 

that the final solution is not overfit on the training, for 

instance by tracking the best solution on an internal 

validation set. 

Interestingly the overfitting effect of the linear 

scaling operation is less problematic if mutation is 

applied after offspring selection. In some configurations 

the application of mutation after offspring selection 

produced significantly better results regarding the 

generalization error.  

The results of our experiments suggest that the 

overfitting effect is related to a kind of premature 

convergence to highly fit but small solutions. The cause 

for this is unfortunately not directly apparent from our 

experiments. In further research the experiments should 

also include analysis of the genetic diversity in order to 

get an insight about the effects of linear scaling on the 

genetic diversity.  

From the results described in this work we 

conclude that if linear scaling is used in OSGP then 

mutation should be applied after offspring selection to 

reduce the probability of overfitting. 
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