
EFFECTS OF MUTATION BEFORE AND AFTER OFFSPRING SELECTION IN

GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

Gabriel K. Kronberger
(a)

, Stephan M. Winkler
(b)

, Michael Affenzeller
(c)

, Michael Kommenda
(d)

, Stefan Wagner
(e)

(a – e)

 Upper Austria University of Applied Sciences

School for Informatics, Communications, and Media

Heuristic and Evolutionary Algorithms Laboratory

Josef Ressel Centre for Heuristic Optimization - Heureka!

Softwarepark 11, 4232 Hagenberg, Austria

(a)

gabriel.kronberger@fh-hagenberg.at,
(b)

stephan.winkler@fh-hagenberg.at ,
(c)

michael.affenzeller@fh-hagenberg.at ,
(d)

michael.kommenda@fh-hagenberg.at ,
(e)

 stefan.wagner@fh-hagenberg.at

ABSTRACT

In evolutionary algorithms mutation operators increase

the genetic diversity in the population. Mutations are

undirected and have only a low probability to improve

the quality of the manipulated solution. Offspring

selection determines if a newly created solution is added

to the next generation of the population. By definition,

offspring selection is applied after mutation and the

effects of mutation are directed and quality-driven.

In this paper we propose an alternative variant of

genetic programming with offspring selection where

mutation is applied to increase genetic diversity after

offspring selection. We compare the solution quality

achieved by the original algorithm and the new

algorithm when applied to a symbolic regression

problem. We observe that solutions produced by the

new variant have a smaller generalization error and

conclude that the proposed variant is better for symbolic

regression with linear scaling.

Keywords: Genetic Programming, Symbolic

Regression, Mutation Operators

1. INTRODUCTION

In evolutionary algorithms mutation operators are used

to manipulate existing solutions. Usually mutations are

non-deterministic, local and undirected and have only a

minor effect on the quality of the solution candidate

(e.g., the single point mutation operator for genetic

algorithms with binary encoding changes a single bit in

the binary string representing the solution). The

probability that a random mutation improves the quality

of a solution is rather small. In genetic algorithms the

purpose of mutation operators is to increase the genetic

diversity of the population which often has a beneficial

effect on the overall dynamics of the algorithm and the

final solution quality.

For some problem formulations mutation operators

or recombination operators are more natural or more

efficient, but most evolutionary algorithms described

recently use a combination of both, recombination and

mutation, to generate new solution candidates from

existing ones.

1.1. Offspring Selection

Offspring selection (Affenzeller and Wagner 2005) is

an additional selection step in evolutionary algorithms

which is applied after parental selection, recombination

and mutation. Offspring selection adds a newly created

solution to the next generation only if it fulfills a

success criterion. Most often the success criterion is that

the newly created child solution must have a better

quality than its parents. It has been shown that offspring

selection can improve the final solution quality found

by genetic algorithms on different benchmark problems

(Affenzeller, Winkler, Wagner and Beham 2009).

If offspring selection is applied after mutation,

mutations become directed and quality-driven. In this

configuration the mutation operator can be compared to

a local first-improvement optimization step after

recombination that is applied to a small percentage of

the generated individuals determined by the mutation

rate parameter.

The two algorithm variants studied in this paper

can be directly related to the two possible perspectives

of mutation in the theory of evolutionary algorithms. In

the perspective of population genetics as also pursued

by (Beyer and Schwefel 2002) mutation affects the

genotype before selection. This is also concordant to the

original formulation of offspring selection. In the

perspective of genetic algorithms the role of mutation is

to increase the genetic diversity of the population

through random undirected changes of the genotype that

are not driven by solution quality (Holland 1975).

1.2. Genetic Programming

Genetic programming (Koza 1992) is a heuristic

problem solving method that uses the principles of

evolution to evolve programs that solve the original

Page 37

mailto:gabriel.kronberger@fh-hagenberg.at
mailto:stephan.winkler@fh-hagenberg.at
mailto:michael.affenzeller@fh-hagenberg.at
mailto:stefan.wagner@heuristiclab.com
mailto:stefan.wagner@fh-hagenberg.at

problem when executed. The core of genetic

programming is an evolutionary algorithm that evolves

computer programs in generational steps using

selection, recombination and manipulation operations,

starting from a randomly initialized population.

Solution candidates represent computer programs that

are most often encoded as symbolic expression trees

where the root node is the program entry point. The set

of symbols that can be used in the tree and the

interpretation of the symbolic expression tree is

problem specific.

One possible problem that can be solved by genetic

programming is symbolic regression. In the case of

symbolic regression the goal of genetic programming is

to find a functional expression to predict the value of a

target variable from values of input variables, given a

set of observed or measured values for each input

variable and the target variable. The functional

expression is encoded as a symbolic expression tree that

contains basic arithmetic operations (+, -, /, *) in

internal tree nodes. In terminal nodes only two types of

symbols are allowed: either a terminal node represents

an input variable or a constant value.

The task of symbolic regression is a very

constrained and simple form of genetic programming

that makes this task ideal as a test-bed for more

theoretical research. The scope of problems that can be

solved be genetic programming is much larger. If it is

possible to formulate a language for problem solutions

and a fitness function for such solutions can be defined

it is possible to use genetic programming to evolve

solutions for the problem using the constructs defined in

the language. Genetic programming has been used to

find novel and human competitive solutions (Koza

2010).

1.3. Mutation in Genetic Programming

The role of mutation in genetic programming is

uncertain (Poli, Langdon and McPhee 2008, Langdon

and Poli 2002). Koza showed that mutation is not

necessary for GP (Koza 1992, 1994) and crossover is

sufficient to search the solution space. However, for

certain problems it has been shown that GP with

mutation performs better than GP with only crossover

(Harries and Smith 1997, Luke and Spector 1997). The

effect of mutation often depends on the problem and on

the GP system (Luke and Spector 1997). This work is

the first in which the effects of mutation in combination

with offspring selection are studied.

2. EXPERIMENTAL SETUP

The main aim of this paper is to compare two genetic

programming variants using offspring selection. The

first algorithm applies mutation before offspring

selection (BeforeOS), the second algorithm applies

mutation after offspring selection (AfterOS).

We ran a number of experiments to answer the

following two questions: How many mutated solution

candidates are successful and accepted into the next

generation if offspring selection is applied after

mutation? Is the solution quality better or worse if the

algorithm is changed so that mutation is applied after

offspring selection?

Many different mutation operators for genetic

programming with symbolic expression encoding have

been described in the literature. We picked four

different mutation operators and applied both algorithm

variants each time with a different manipulation

operator on a symbolic regression problem. For each

configuration 20 independent runs were executed. The

results shown in the next section are based on 160

independent genetic programming runs.

2.1. Symbolic Regression Problem

In the experiments we use a dataset from a real world

chemical process at Dow Chemical that contains 57

cheap process measurements, such as temperatures,

pressures, and flows (inputs) and noisy lab data of a

chemical composition which is expensive to measure

(http://dces.essex.ac.uk/research/evostar/competitions.html).

This data set has been made public by Arthur Kordon,

Dow Chemical for the symbolic regression competition

which was a side event of the EvoStar 2010 conference.

Unfortunately, no details have been published about the

chemical plant and the process from which this dataset

was created.

The dataset contains a total of 747 measurements

of the 58 variables and was split into three partitions:

training set (0-400), validation set (400-600) and test set

(600-747). The validation set is used by the algorithm

for model selection. The best solution determined by the

algorithm in each run is evaluated on the test set in

order to get an expected value for the unknown

generalization error of the model on unseen data.

Each solution candidate considered by the

algorithm was linearly scaled before evaluation (Keijzer

2004). Linear scaling transforms the output values

generated by the symbolic regression models to the

same offset and scale as the original target values; linear

scaling has been shown to improve the final solution

quality produced by genetic programming (Keijzer

2004).

2.2. Mutation Operators

The following mutation operators are used in the

experiments:

ChangeNodeType: This operator selects a single

node of the solution that has been selected for

manipulation, and replaces the symbol in the selected

node with a random symbol from the function library.

Symbols are selected with uniform probability. The

original symbol is included in the list of available

symbols. When a terminal node is manipulated the

replacement symbol must be a terminal symbol (either

variable or constant).

OnePointShaker: This operator selects a single

terminal node of the solution that has been selected for

manipulation, and applies a shaking operation to the

parameter values of the terminal node. If the selected

node is a constant a normally distributed with (N(0,1))

Page 38

http://dces.essex.ac.uk/research/evostar/competitions.html

value is added to the current constant value. If the

selected node is a variable node a normally distributed

(N(0,1)) value is added to the weighting factor of the

variable and the referenced input variable is selected

randomly from the set of all allowed input variables.

FullTreeShaker: This operator applies the shaking

operation executed by the OnePointShaker on all

terminal nodes of the solution that has been selected for

manipulation.

SubsituteSubTree: This operator randomly selects

a branch in the solution that has been selected for

manipulation and replaces the whole branch starting at

the selected node with a new random tree of the same

size. Random trees are generated with the PTC2

operator (Luke 2000), the same operator that is used for

generation of the initial population.

2.3. Parameter Settings

We used the same parameter settings for all

experiments, only the manipulation operator was

exchanged. These settings are well-proven settings that

have been used to generate high quality solutions in a

number of real world applications of GP. The upper

limit of 500.000 evaluated solutions was used as

stopping criterion.

Table 1: GP algorithm parameter values for all

experiments.

Parameter Value

Population size 1000

Max tree size 100

Max tree height 10

Mutation rate 15%

Comparison factor 1

Success ratio 1

Crossover
Sub-tree swapping

(Koza 1992)

Initialization PTC2 (Luke 2000)

Selection
50%: Random

50%: Proportional

Evaluation wrapper Linear scaling (Keijzer 2004)

3. IMPLEMENTATION

The following tables show the pseudo-code of a genetic

programming algorithm with offspring selection. Inside

the offspring selection loop solution candidates are

evaluated only on the training set. The output of the

solution candidate is scaled linearly to match the offset

and scale of the original target variables (Keijzer 2004).

Table 2 shows the first algorithm (BeforeOS)

where mutation is applied inside the offspring selection

loop. Thus only mutations which do not have a negative

effect on the solution quality are accepted.

Table 3 shows the proposed algorithm variant

(AfterOS). The difference to the first algorithm is that

the mutation operator is applied after the next

generation has been populated via repeated application

of selection and crossover in the offspring selection

step. The solution candidates which are manipulated

have to be evaluated a second time on the training set.

Table 2: Algorithm I: BeforeOS

Initialization:

 i ← 0

 Best-Solutioni ← Ø

 Popi ← Create-Random-IndividualsPTC2 (PopSize)

 Evaluatetraining (Popi)

Repeat (Main Loop):

 Popi + 1 ← Ø

 Repeat (Offspring Selection):

 Parentmale ← Selectionmale (Popi)

 Parentfemale ← Selectionfemale (Popi)

 Child = Crossover (Parentmale Parentfemale)

 Conditional on Mutation Rate

 Mutate (Child)

 Qualitychild ← Evaluatetraining (Child)

 if Qualitychild ≤ Min(Qualitymale, Qualityfemale)

 Popi + 1 ← Popi + 1 ∪ {Child }

 Else

 Discard Child

 Until |Pop i + 1| = PopSize

 Best-Solutioni+1 ←

 argminsolution (Evaluatevalidation (solution)),

 where solution ∈ Popi + 1 ∪ { Best-Solutioni }

 i ← i + 1

Until Stopping-Criterion = true

Output (Solutionbest)

Table 3: Algorithm II: AfterOS

Initialization:

 i ← 0

 Best-Solutioni ← Ø

 Popi ← Create-Random-IndividualsPTC2 (PopSize)

 Evaluatetraining (Popi)

Repeat (Main Loop):

 Popi + 1 ← Ø

 Repeat (Offspring Selection):

 Parentmale ← Selectionmale (Popi)

 Parentfemale ← Selectionfemale (Popi)

 Child = Crossover (Parentmale Parentfemale)

 Qualitychild ← Evaluatetraining (Child)

 if Qualitychild ≤ Min(Qualitymale, Qualityfemale)

 Popi + 1 ← Popi + 1 ∪ {Child }

 Else

 Discard Child

 Until |Pop i + 1| = PopSize

 For each solution ∈ Popi + 1

 Conditional on Mutation-Rate

 Mutate (solution)

 Qualitysolution ← Evaluatetraining (solution)

 Best-Solutioni+1 ←

 argminsolution (Evaluatevalidation (solution)),

 where solution ∈ Popi + 1 ∪ { Best-Solutioni }

 i ← i + 1

Until Stopping-Criterion = true

Output (Solutionbest)

Page 39

Both algorithms have been implemented using an

internal pre-release version of HeuristicLab

(http://dev.heuristiclab.com) (Wagner 2009), a generic

and paradigm independent framework for heuristic

optimization.

4. RESULTS

The results of the experiments show that when offspring

selection is applied after mutation the number of

mutated individuals that are accepted into the next

generation is high in the beginning stages of the

algorithm, but drops later. There is no significant

difference in the solution quality on the training data,

however, the solutions generated by the algorithm with

mutation after offspring selection are better on the

validation data-set.

4.1. Effective Mutation Rates

Figure 1 shows the effective mutation rate for all

mutation operators. In the first generations of the run

almost all mutations improve the solution quality; in the

later stages the probability sinks, but is still rather high.

All mutation operators except for the FullTreeShaker

have a probability greater than 30% to produce

successful solutions even at end of the run.

Figure 1: Number of mutated individuals in the

population of manipulation operators when applied

before offspring selection (averages over 20 runs for

each mutation operator; error bars indicate the 95%

confidence interval.)

4.2. Training Error

In Figure 2 the best training and validation quality of

solutions generated by genetic programming with

mutation before offspring selection are shown. Each

data point is the best training/validation quality (y-axis)

found after the number of evaluated solutions (x-axis)

averaged over 20 independent runs (error bars indicate

the 95% confidence interval). After the first few

generations the algorithm generations solutions that are

increasingly worse on the validation set, while the

quality on the training set steadily increases. In Figure 3

the same effect can be observed, however the effect is

not so strong when mutation is applied after offspring

selection. The overfitting effect can be attributed to the

linear scaling operation applied to all solutions. Only

the training data-set is considered for the scaling

operation, this leads to bad performance on the

validation set and also on the test set. Based on this

observation linear scaling of solution candidates should

always be used in combination with an internal

validation data-set for model selection. Figures 2 and 3

also show that there is no significant difference in the

final solution quality of the two algorithm variants if

only the training quality is considered.

Figure 2: Best training and validation quality averaged

over 20 independent runs for each mutation operator

when applied before offspring selection (error bars

indicate the 95% confidence interval.)

Figure 3: Best training and validation quality averaged

over 20 independent runs for each mutation operator

when applied after offspring selection (error bars

indicate the 95% confidence interval).

4.3. Generalization Error

For the symbolic regression task the quality on unseen

data is more relevant than the solution quality achieved

while training because it is a better estimate for the

quality of the model when applied to unseen data.

Table 4 shows the generalization error of the

models selected as final result (best model on the

Page 40

validation set over the whole run) for all mutation

operators and different mutation rates (5%, 10%, 15%).

The values are averages over 20 independent GP runs.

Statistical significance was tested with the two-tailed

non-parametric Mann-Whitney-U test (null hypothesis:

the medians are equal). Significant results are given in

bold face (p-Value < 0.01). Overfitting on the validation

set occurs in both configurations for all mutation

operators. This can be seen by the fact that the

generalization error is very high in comparison to the

average training MSE of the best on validation solutions

which is 0.08 and the average validation MSE which is

0.03 over all runs.

Table 4: Generalization error (mean squared error on

test set) of models generated by the GP variants

averaged over 20 independent runs.

Operator Rate Test MSE

(beforeOS)

Test MSE

(afterOS)

ChangeNodeType 0.05 0.240 0.252

 0.15 0.253 0.235

 0.25 0.276 0.121

FullTreeShaker 0.05 0.265 0.219

 0.15 0.220 0.208

 0.25 0.205 0.216

OnePointShaker 0.05 0.263 0.208

 0.15 0.221 0.170

 0.25 0.281 0.165

SubstituteTree 0.05 0.237 0.209

 0.15 0.251 0.141

 0.25 0.204 0.165

Table 5: Best solution (on validation set) generation

(median value of 20 independent runs).

Operator Rate Generation

(beforeOS)

Generation

(afterOS)

ChangeNodeType 0.05 4 10.5

 0.15 4 31.5

 0.25 5 28

FullTreeShaker 0.05 4 6

 0.15 4 4.5

 0.25 3 11

OnePointShaker 0.05 5 26

 0.15 3.5 23.5

 0.25 4 22

SubstituteTree 0.05 4 22.5

 0.15 3 28.5

 0.25 3.5 23.5

In Table 5 the median value of the generation when the

best solution on the validation set was found is shown.

From the table it can be seen that if mutation is applied

before offspring selection the best solution is found in

the first few generations and no improved solution is

found over the rest of the GP run. If mutation is applied

after OS this effect is reduced.

These observations strongly suggest that mutation

should be applied after offspring selection in order to

reduce overfitting if linear scaling is used. The results

also raise the following questions which should be

pursued in further experiments. What causes the

observed overfitting effect with linear scaling and

which countermeasures effectively prevent it? Does

linear scaling cause a loss of genetic diversity and

premature convergence? Further experiments should

include an analysis of the genetic diversity in order to

get an insight about the effects of linear scaling on the

genetic diversity.

5. CONCLUSIONS

In this paper we have analyzed a variant of genetic

programming with offspring selection where mutation

is applied after offspring selection. In the original

formulation of offspring selection it is applied after

mutation. Both variants were used to solve a symbolic

regression problem. In the experiments we observed

that even when offspring selection is applied after the

mutation operator a large percentage of mutated

individuals are accepted into the next generation. This

means that mutation has a high probability to improve

solution quality. This is a bit surprising because

mutations are usually undirected random changes and

should intuitively have a low probability to improve

solution quality. We attribute this behavior to the linear

scaling operator which is a local optimization step

before evaluation and improves the model quality on the

training data-set. We also observed that the

FullTreeShaker manipulation operator almost never

improves the solution quality and thus has no effect

when it is applied before offspring selection.

The results show that linear scaling leads to

overfitting on the training data-set. This is clearly seen

when the solution candidates are evaluated on the test

data-set. Thus linear scaling should be used in

combination with a model selection step to make sure

that the final solution is not overfit on the training, for

instance by tracking the best solution on an internal

validation set.

Interestingly the overfitting effect of the linear

scaling operation is less problematic if mutation is

applied after offspring selection. In some configurations

the application of mutation after offspring selection

produced significantly better results regarding the

generalization error.

The results of our experiments suggest that the

overfitting effect is related to a kind of premature

convergence to highly fit but small solutions. The cause

for this is unfortunately not directly apparent from our

experiments. In further research the experiments should

also include analysis of the genetic diversity in order to

get an insight about the effects of linear scaling on the

genetic diversity.

From the results described in this work we

conclude that if linear scaling is used in OSGP then

mutation should be applied after offspring selection to

reduce the probability of overfitting.

Page 41

ACKNOWLEDGMENTS

The work described in this paper was done within the

Josef Ressel Centre for Heuristic Optimization

Heureka! (http://heureka.heuristiclab.com/) sponsored

by the Austrian Research Promotion Agency (FFG).

REFERENCES

Affenzeller, M. and Wagner, S., 2005. Offspring

selection: A new self-adaptive selection scheme for

genetic algorithms. Proceedings of ICANNGA

2005, pp. 218–221. 21
st
–23

rd
 March 2005,

Coimbra, Portugal.

Affenzeller, M., Winkler, S.M., Wagner, S. and Beham,

A., 2009. Genetic algorithms and genetic

programming – Modern concepts and practical

applications. Boca Raton: CRC Press.

Beyer, H. G., and Schwefel, H.-P., 2002. Evolution

Strategies: A Comprehensive Introduction. In

Natural Computing, 1:1, pp. 3 – 52.

Harries, K. and Smith, P., 1997. Exploring alternative

operators and search strategies in genetic

programming. In J. R. Koza, et al., editors, Genetic

Programming 1997: Proceedings of the Second

Annual Conference, pp. 147 – 155, Stanford

University, CA, USA, 1997.

Holland, J. H., 1975. Adaption in Natural and Artificial

Systems, University of Michigan Press, Ann

Harbor.

Keijzer, M., 2004. Scaled Symbolic Regression. Genetic

Programming and Evolvable Machines 5:3

(September 2004), pp. 259 – 269.

Koza, J. R., 1992. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. MIT Press.

Koza, J. R., 1994. Genetic Programming II: Automatic

Discovery of Reusable Programs. MIT Press.

Koza, J. R., 2010. Human-competitive results produced

by genetic programming. In J. Miller, et al.,

editors, Tenth Anniversary Issue: Progress in

Genetic Programming and Evolvable Machines,

Vol. 11, No. 3-4, pp. 251 – 284. Springer

Netherlands.

Langdon, W. B. and Poli, R., 2002. Foundations of

Genetic Programming. Springer-Verlag.

Luke, S. 2000. Two fast tree-creation algorithms for

genetic programming. In IEEE Transactions on

Evolutionary Computation 4:3 (September 2000),

274-283. IEEE.

Luke, S. and Spector L., 1997. A comparison of

crossover and mutation in genetic programming.

In J. R. Koza, et al., editors, Genetic Programming

1997: Proceedings of the Second Annual

Conference, pp. 147 – 155, Stanford University,

CA, USA, 1997.

Poli, R., Langdon, W. B., and McPhee N., 2008. A field

guide to genetic programming. Published via

http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, (with

contributions by J. R. Koza).

Wagner, S., 2009. Heuristic Optimization Software

Systems - Modeling of Heuristic Optimization

Algorithms in the HeuristicLab Software

Environment. Thesis (PhD), Johannes Kepler

University Linz, Austria.

AUTHORS BIOGRAPHIES

GABRIEL KRONBERGER is a research associate at

the UAS Research Center Hagenberg. His research

interests include genetic programming, machine

learning, and data mining and knowledge discovery.

Currently he works on practical applications of data-

based modeling methods for complex systems within

the Josef Ressel Centre Heureka!.

STEPHAN M. WINKLER received his PhD in

engineering sciences in 2008 from Johannes Kepler

University (JKU) Linz, Austria. His research interests

include genetic programming, nonlinear model

identification and machine learning. Since 2009, Dr.

Winkler is professor at the Department for Medical and

Bioinformatics at the Upper Austria University of

Applied Sciences (UAS), Campus Hagenberg.

MICHAEL AFFENZELLER has published several

papers, journal articles and books dealing with

theoretical and practical aspects of evolutionary

computation, genetic algorithms, and meta-heuristics in

general. In 2001 he received his PhD in engineering

sciences and in 2004 he received his habilitation in

applied systems engineering, both from the Johannes

Kepler University of Linz, Austria. Michael Affenzeller

is professor at the Upper Austria University of Applied

Sciences, Campus Hagenberg, and head of the Josef

Ressel Center Heureka! at Hagenberg.

MICHAEL KOMMENDA finished his studies in

bioinformatics at Upper Austria University of Applied

Sciences in 2007. Currently he is a research associate at

the UAS Research Center Hagenberg working on data-

based modeling algorithms for complex systems within

Heureka!.

STEFAN WAGNER his PhD in engineering sciences

in 2009 from Johannes Kepler University (JKU) Linz,

Austria; he is professor at the Upper Austrian

University of Applied Sciences (Campus Hagenberg).

Dr. Wagner’s research interests include evolutionary

computation and heuristic optimization, theory and

application of genetic algorithms, machine learning and

software development.

Page 42

http://heureka.heuristiclab.com/
http://lulu.com/
http://www.gp-field-guide.org.uk/

