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ABSTRACT 
In this paper a system for the prediction of tumor 

marker values based on standard blood is presented. 

Several neural networks are used to learn from blood 

examination measurements and predict tumor markers 

in case these values are missing. In a post processing 

step the predicted values are evaluated in a fuzzy logic 

like style against different hypotheses and the best 

hypothesis is used to optimize the predicted values and 

its plausibility. These predicted values can then be used 

as input for a second system to support decision making 

in cancer diagnosis. A variety of experiments with 

tumor marker C153 show that we can get a prediction 

accuracy of more than 90%. Our experiments are based 

on hundreds of samples of up to 27 different features 

(blood parameters) per vector. We try to predict distinct 

values, classes of values and a combination of classes 

and values for specific marker types.   

 

Keywords: neural network, tumor marker prediction, 

decision support system 

 

1. INTRODUCTION 
Tumor markers are substances produced by cells of the 

body in response to cancerous but also to noncancerous 

conditions.  They can be found in body liquids like 

blood or in tissues and can be used for detection, 

diagnosis and treatment of some types of cancer. For 

different types of cancer different tumor markers can 

show abnormal values and the levels of the same tumor 

marker can be altered in more than one type of cancer.  

Examples of tumor markers include CA 125 (in ovarian 

cancer), CA 153 (in breast cancer), CEA (in ovarian, 

lung, breast, pancreas, and gastrointestinal tract 

cancers), and PSA (in prostate cancer).  Although an 

abnormal tumor marker level may suggest cancer, 

tumor markers are not sensitive or specific enough for a 

reliable cancer diagnosis. But abnormally altered tumor 

marker values indicate a need for further medical 

examination.  

During blood examination only a few tumor 

marker values are tested and for this reason the usage of 

such incomplete data for cancer diagnosis support needs 

estimation of missing marker values. Neural networks 

are proven tools for prediction tasks on medical data 

(Penny and Frost 1996). For example neural networks 

were applied to differentiate benign from malignant 

breast conditions base on blood parameters (Astion et 

Wilding 1992), for diagnosis of different types of liver 

disease (Reibnegger et al. 1991), for early detection of 

prostate cancer (Djavan et al. 2002; Matsui et al. 2004), 

for studies on blood plasma (Liparini et al. 2005) or for 

prediction of acute coronary syndromes (Harrison et al. 

2005). 

In this work we present a novel heterogeneous 

neural network based system that can be used for tumor 

marker value prediction. We use an n-dimensional 

vector of blood parameter values of a several hundred 

patients as input and train three neural networks in 

parallel to predict distinct values, classes of values and a 

combination of classes and values for specific marker 

types. In a post-processing step the outputs of all 

networks are adjusted by a fuzzy logic like decision 

system to obtain the most possible prediction.  

Unfortunately neural networks are unable to work 

properly with incomplete data; missing values however 

are a common problem in medical datasets. It may be 

that a specific medical procedure was not considered 

necessary in a particular case or that the procedure was 

taken in a different laboratory with the values not 

available in the patient record, or that the measurement 

was taken but not recorded due to time constraints.   

In our system we use two different approaches for 

dealing with missing values.  We reduce the input blood 

parameters to obtain reasonable complete sample sets. 

In order to train the networks with complete input blood 

parameters with impute on missing data values a 

penalty value during normalizing process.  

 

2. GENERAL CANCER DIAGNOSIS SUPPORT 
SYSTEM 

We focus our considerations on the design of a complex 

decision support system for early recognition of 

possibility of cancerous diseases. The system consists 
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of two components; a Tumor Marker Prediction System 

and a Diagnosis Support System (see Fig.1). Both 

systems use several heterogeneous artificial neural 

networks in parallel. The Tumor Marker Prediction 

System is in support of the Diagnosis Support System, 

which uses input data coming from the vector of tumor 

marker values C = (C1, …, Cm) and calculates the 

possibility of presence of a cancerous disease in general 

and the possibility of a specific tumor type in particular 

(tumor types are coded according to ICD 10 system).  

The output values are evaluated against different 

hypotheses and the best hypothesis is used to optimize 

the predicted diagnosis and its plausibility.   

An important issue for the Diagnosis Support 

System is data incompleteness. We need thousands of 

vectors of tumor markers for training and evaluation of 

the neural networks. Those vectors do not only contain 

distinct values of various marker types but also ranges 

of marker values, so called classes (e.g. one class for 

normal values, one for extreme normal values, one for 

beyond normal but plausible values and one for extreme 

values). Many of the available marker vectors consist of 

just a few measurements and cannot be used as training 

data for neural networks without further processing.  

One approach to overcome this problem is to 

restrict the analysis only to vectors with complete data 

but this leads to very small sample sets. Another option 

is to extend the number of input values to all parameters 

of the blood examination, thus including also non- 

marker values, using a whole blood parameter vector p 
= (p1,…, pn ) as input. Frequently also this vector is 

incomplete too. For this reason the Tumor Marker 

Prediction System is connected ahead the Diagnosis 

Support System, which uses complete or partial 

complete blood parameter vectors p of patients to train a 

couple of neural networks for estimating values or 

classes of values for tumor markers. The output values 

are evaluated against different hypotheses and the best 

hypothesis is used to optimize the predicted value. 

Additionally a possibility value for estimated marker 

value is calculated. This Marker Value Prediction 

System could be also be used as a stand-alone system 

for a rapid estimation of marker values.  
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Figure 1: Architecture of Data Driven Cancer Diagnosis 

Support System 

 

2.1. System for prediction of tumor marker values 
Typically, the blood examination results in maximal 27 

values of blood parameters such as HB, WBC, HKT, 

MCV, RBC, PLT, KREA, BUN, GT37, ALT, AST, 

TBIL, CRP, LD37, HS, CNEA, CMOA, CLYA, 

CEOA, CBAA, CHOL, HDL, CH37, FER, FE, BSG1, 

TF and about 35 tumor markers such AFP, C125, C153, 

C199, C724, CEA, CYFRA, NSE, PSA, S100, SCC, 

TPS etc. Many patient records have missing data values 

as many measurements did not happen being not of  

interest in a specific case. Different labs also may 

consider slightly different marker levels to be normal or 

abnormal. This can depend on a number of factors, 

including a person's age and gender, which test kit the 

lab uses, and how the test is done. For each parameter 

and marker we use the following reference ranges. (See 

an example in Table 1) 

Table 1: Example of blood parameter ranges 

CODE Sex 

Normal 

Lower 

Bound 

Normal 

Upper 

Bound

Extrem

Norm. 

Upper 

Bound 

Over 

Norm.  

Plausible 

Upper 

Bound 

Type Unit 
Age 

LB 

Age 

UP 

AFP M 0 5,8 28 99 

AFP 

(CL) IU/ml 0 199

AFP W 0 5,8 28 99 

AFP 

(CL) IU/ml 0 199

ALT M 5 45 135 247,5 

ALT 

(GPT) U/l 0 199

ALT W 5 34 102 187 

ALT 

(GPT) U/l 0 199

AST M 5 35 105 192,5 

AST 

(GOT) U/l 0 199

AST W 5 31 93 170,5 

AST 

(GOT) U/l 0 199

BSG1 M 3 8 15 55 

Sinking 

1h Mm 1 199

BSG1 W 6 11 20 55 

Sinking 

1h Mm 1 199

BUN M 5 18 50 165 BUN Mg/dl 2 16 

BUN W 5 18 50 165 BUN Mg/dl 2 16 

BUN M 6 20 50 165 BUN Mg/dl 19 199

BUN W 6 20 50 165 BUN Mg/dl 19 199

 

We divide the value range of marker C and blood 

parameter p into k non-overlapping intervals, called 

classes. In our case study we define four classes (k = 4): 

Class 1 includes all values less than the Normal Value 

of marker or blood parameter, Class 2 includes all 

values between Normal Value and Extreme Normal 

Value of marker or blood parameter, Class 3 includes 

values between Extreme Normal Value and Plausible 

Value of marker or blood parameter and Class 4 include 

all values greater than the Plausible Value.  

For each class i of marker values we calculate the 

average value μi and the standard deviation σi. For 

example the respective values of marker C 153 

calculated from patient data are presented in Table 2. 

 

Table 2: C153 tumor marker parameters 

Code Class μ σ Min Max dmax
C153 1 15,54 5,02 2 25 100 

C153 2 33,59 6,73 26 50 100 

C153 3 68,48 13,78 56 100 100 

C153 4 162,20 321,22 101 10000 100 
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These classes and their limits are used for the 

normalizing process of parameter and marker values. 

 

2.1.1. Architecture of marker value prediction 
system 

The system consists of three heterogeneous parallel 

coupled artificial neural networks and a decision-

making system based on aggregation rules.  

Normalizing: The input and output values for 

training and testing of each network are normalized 

using the respective upper bound of Plausible Value. 

Each value of parameter or marker, which is greater 

than its upper bound, obtains the normalized value 1. 

Such a normalizing process guarantees that all values 

are mapped to interval [0, 1]. 

 

 

Figure 2: Neural networks based tumor marker value 

prediction system 

 

Prediction System Structure: The general marker 

value estimation system contains of three neural 

networks (see Figure 2).  

 

• Feed forward neural network (FF) with p 
inputs (normalized values of blood parameter 

vectors p) and one output, normalized values 

of marker C 

 
• Pattern recognition neural network (PR) with p 

inputs (normalized values of blood parameter 

vectors p) and k outputs, k-dimensional binary 

vector coding classes of marker C 

 

• Combined feed forward neural network (FC) 

with p inputs (normalized values of blood 

parameter vectors p) and two outputs: 

normalized values of marker C (as in network 

FF), and normalized classes of marker C  as: 

 

NormClass j(C)= j/k,    for=1,...,k               (1) 

 
All neural networks have one hidden layer and tan-

sigmoid or log-sigmoid transfer function. The output 

values of neural networks belong usually to the interval 

[0, 1]. 

For a given parameter vector p the three networks 

calculate different output data. 

 

• The pattern recognition neural network PR 

produces the k-value vector (P(i) | i = 1,.,k), 
where P(i) describes the possibility (in sense of 

fuzzy logic) of class i of C marker connected to 

input parameter vector p. The supposed class 

of marker C is  
 
x1 = arg(max{P(i)|i=1,...,k}).  (2) 

 

• The two output feed forward neural network 

FC, combined value and class training, 

generates two values, the value r interpreted as 

possibility of class marker C and value u, 

which is predicted normalized value of marker 

C.  
For value output u (similarly to the output of 

FF network) and limits of marker values we 

can calculate the class x2 = Class(u) to which 

belongs the output u.  

Separately we calculate the possibility vector 

(G(i) | i = 1,...,k ) as indirect distance to 

average value of each C marker class  

 

G(i) = 1-(|u-μi|/dmax ) for i = 1,...,k.   (3) 

 

where dmax denotes maximal distance between 

values of marker C.  

For r value we calculate the possibility vector 

(R(i) | i = 1,...,k ) as 

 

R(i) = 1-|r-i/k| for i =1,...,k.  (4) 

 

The class of marker C that will be suggested is  

 

x3= arg(max{R(i)|i=1,...,k}).  (5) 

 

• The feed forward neural network generates a 

normalized value w of marker C. Based on 

value w and the limits of each class we can 

calculate the class x4 = Class(w) to which the 

output of FF network belongs.  

Separately we calculate the possibility vector 

(F(i) | i = 1,...,k) as indirect distance to average 

value of each C marker class  

 

F(i) = 1-(|w-μi|/dmax), for i = 1,...,k. (6) 

 

We use of the Neural Network Toolbox™ of MATLAB® 

for designing, implementing, visualizing, and 

simulating the neural networks PR, FC and FF. 

 

2.2. Evaluation and post processing method 
Based on the calculated estimation of marker values we 

can establish four hypotheses x1, x2, x3, x4 for 

determination of classes. For each hypothesis x1, x2, x3, 

x4 the possibility value P, G, R, F is calculated too. 

These hypotheses should be verified to find the 

maximal possible prediction. This is done by testing a 

couple of aggregation functions V on each hypothesis 

possibility values. Those aggregation functions are 
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similar to aggregation rule in fuzzy logic decision-

making system. In this experiment we use four kinds of 

functions V: 

Minimum: V(xi) = min{P(xi) G(xi) R(xi) F(xi})} (7) 
Product: V(xi) = P(xi) G(xi) R(xi) F(xi)                        (8) 
Average: V(xi) = (P(xi)+ G(xi) + R(xi) + F(xi))/4 (9) 
Count:V(xi) = Count_of(xi)                                        (10) 

Count is the number of identical hypothesis. 

 

The maximal value of aggregation function determines 

the new predicted class. i.e.  

 
xnew = arg (max{V(xi) | i=1,..,4})                               (11) 

 

where V(xi)= V(P(xi), G(xi), R(xi), F(xi)) is the 

evaluation function of arguments P(xi), G(xi), R(xi) and 
F(xi). This kind of evaluation method leads to four 

decision composition rules, namely MaxMin, MaxProd, 
MaxAvg and MaxCount known in fuzzy decision 

systems.  

 

Estimation of predicted marker value: Based on 

such determined new class the estimation of marker 

value is performed. If the evaluation function V used in 

decision composition rule has a value greater than τ 

then the new estimated value of marker is equal to the 

average value of w and u. i.e.  

 
wnew = (w + u)/2                   if V(x) > τ                    (12) 

wnew = (w+ u +μxnew)/3        other 
  

3. CASE STUDY: C 153 TUMOR MARKER 
3.1. Training and Test Setup 
We have taken the complete data set with 20 blood 

parameters from patient data: The input vector p 

contains complete data of following blood parameters p 

= (HB, WBC, HKT, MCV, RBC, PLT, KREA, BUN, 

GT37, ALT, AST, TBIL, CRP, LD37, HS, CNEA, 

CMOA, CLYA, CEOA, CBAA). We use 4427 samples 

as Learning Pattern Set for the neural networks system 

and 491 independent samples as Test Set. The datasets 

based on the whole data set the Pearson correlation 

coefficient between tumor markers and blood parameter 

is calculated. This correlation matrix in % is shown in 

Table 3: 

Table 3: Correlation between tumor markers and blood 

parameters 
Marker/ 

Parameter AFP C125 C153 C199 C724 CEA CYFS FPSA NSE PSA PSAQ S100 SCC TPS

ALT 16 -10 25 19 10 31 -10 49
AST 33 13 40 27 15 27 11 49 8 36
BSG1 22 13 9 50 13 34 23 15 119 25 15
BUN 17 25 18 15 19 74 10 8
CBAA -10 -11
CEOA -11 -13 -11 9
CH37 -28 -39 -23 -16 -9 -35 -11 -21 -12 -13
CHOL -20 14 -13 -39
CLYA -19 -36 -20 -12 -20 -16 -15 -14 -13 -9 -35 -14
CMOA 18 19 10 8
CNEA 25 19 11 12 17 10 11 11 21 14
CRP 18 32 27 17 23 23 20 41 21 11
FE 11 -18 -29 -24 -12 -16 -11 -27
FER 15 31 31 32 35 59 14 -11
GT37 22 15 37 39 50 30 43 30
HB -35 -38 -25 -19 -18 -15 -12 -17
HDL -11 -16 -151 24
HKT -32 -36 -25 -16 -13 -8 -14 -16
HS -15 19 -12 -15 9 9
KREA 15 8 -9 9 14 17 21 64 10
LD37 19 34 45 23 29 35 40 69 14 70
MCV 17 10 -12
PLT -15 10 16 12 16 -11 17 12 12
RBC -30 -31 -28 -16 -9 -12 -11
TBIL 18 13 19 -16 12 21 9
TF -55 -29 -26 -28 8 -32 -20 -25 -12 34
WBC 22 11 17 24 14  

Data normalization: All data are normalized (on 

values [0, 1]) based on 3 classes (Normal Value, 

Extreme Normal Value, and Over Normal but Plausible 

Value). Values over Plausible value are the normalized 

with value 1. Data taken for learning and test process 

include the all four classes. 

 

3.2. Experiments and Results 
For establishing the number of neurons in a hidden 

layer of feed-forward networks we performed small 

batch set training of networks using different numbers 

of neurons.  

The result is presented in Fig. 3. 

 
Figure 3: Test regression of neural networks with 

different number of neurons 

 

The empirical test shows that best performing are 

networks with 40-60 neurons of hidden layer. We chose 

neural networks having one hidden layer with 50 

neurons and tan-sigmoid activation functions.  These 

are the neural networks settings used:  

 

• Feed forward neural network (FF) with 20 

inputs (normalized values of parameter vectors 

p) and one output (normalized values of C153 

marker) 

• Pattern recognition neural network (PR) with 

20 inputs (normalized values of parameter 

vectors p) and four outputs (four dimensional 

binary vectors coding classes of C153 marker) 

• Feed forward neural network (FC) with 20 

inputs (normalized values of parameter vectors 

p) and two outputs (normalized values of C153 

marker and normalized classes of C153 with: 

class 1= 0,25; class 2= 0,5; class 3= 0,75; class 

4=1,0) 

 

All three neural networks were trained with Levenberg-

Marquardt algorithm and a validation failure factor 6. 

The test outputs of all network is post processed by 

aggregation rules based on the decision system and 

finally compared with original values and classes of 

C153 tumor marker from test set.  

The regression functions between the outputs of 

these three networks, post processed final estimation 
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and test C153 values are presented in Figure 4. It can be 

observed that regression of the rules based final 

estimation of C153 value is greater (R =0,73) than the 

individual estimation of separate networks (R= 0,65, R 

= 0,68, and R = 0,65 for PR, FC, and FF network 

respectively). The blue bounded area marks fatal 

mismatching i.e. originally large values of C153 marker 

and small-predicted values. 

FC

net

FF

net

Rule Based Estimation

Regression 0,73 

between final 

estimation and 

test values

 
Figure 4: Results of rule based estimation system for 

tumor marker C153 

 

Based on the predicted values of tumor marker C153 we 

calculate the matching and mismatching ratios for each 

class of marker. Matching and mismatching of classes 

between the test data of marker C153 classes and the 

predicted classes of different networks are presented as 

confusion matrixes (see Fig. 5). After post processing, 

we obtain 72 % matching of four classes, whereas the 

original networks range between 59% and 66% 

matching cases. The ratio of fatal mismatching is 2,9 %. 
           Class Net  
Class Target    1 2 3 4

1 48,5% 15,1% 0,6% 0,0%

2 7,5% 14,1% 1,8% 0,0%

3 0,2% 5,7% 3,3% 0,2%

4 0,4% 0,8% 1,6% 0,2%

Gesamt FC Value 
Net 66,0%7,1%

           Class Net  
Class Target    1 2 3 4

1 44,0% 18,5% 1,6% 0,0%

2 6,5% 13,2% 3,7% 0,0%

3 0,0% 3,1% 6,3% 0,0%

4 0,4% 0,2% 2,4% 0,0%

Gesamt FC Class 
Net 63,5%3,5%

           Class Net  
Class Target    1 2 3 4

1 59,1% 4,3% 0,4% 0,4%

2 15,1% 6,3% 1,0% 1,0%

3 4,7% 2,0% 1,6% 1,0%

4 1,4% 0,0% 0,4% 1,2%

Gesamt PR Net 68,2%8,1%

           Class Net  
Class Target    1 2 3 4

1 39,9% 23,4% 0,8% 0,0%

2 7,9% 11,6% 3,9% 0,0%

3 0,2% 1,8% 7,3% 0,0%

4 0,0% 0,4% 2,0% 0,6%

Gesamt FF Net 59,5%2,4%

           Class Net  
Class Target    1 2 3 4

1 54,8% 9,2% 0,2% 0,0%

2 11,2% 10,0% 1,6% 0,6%

3 0,6% 1,4% 5,9% 1,4%

4 0,4% 0,4% 1,2% 1,0%

Gesamt Systen 
MaxAvg 71,7%2,9%

PR

net

FC

net

FF

net

Confusion

matrix of 

final 

estimation

Rule Based Estimation

 
Figure 5: Confusion matrix of results of Rule Based 

Estimation System for tumor marker C153 

 

Additionally we have performed an experiment 

with a reduced number of training classes of marker 

C153. We merge the class 1 and class 2 of marker C153 

into a new class I and class 3 and class 4 into a new 

class II. That means that all values of tumor marker 

C153 less than Extreme Normal Value of C153 

determine class I and values greater than Extreme 

Normal Value determine class II. Normalization of 

blood parameters remains unchanged. Full training and 

test of networks was performed on input data modified 

in this way. The test results for those two classes are 

shown in separate confusion matrix tables (see Fig. 6). 
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Confusion matrix PR NN Confusion matrix final estimation

          Class Net        
Class Target    Class I Class I I

Class I 82,1% 8,9%

Class II 2,4% 6,5%

Gesamt PR Net 88,6%

           Class Net      
Class Target    Class I Class I I

Class I 84,3% 3,3%

Class II 2,0% 10,4%

Gesamt Systen 
MaxAvg 94,7%

 
Figure 6: Confusion matrices before and after 

application of rules based estimation 

 

We obtain a quite good ratio (94,7 %) of matching 

and the ratio of fatal mismatching is reduced to 2 %. 

The dependency of quality of estimation on 

different composition rules is presented in Table 4. It is 

shown that the MaxAvg rule produces the best results. 

 

Table 4: Results after application of composition rules 

Rule Confusion PR 
Net

Confusion FF 
Net

Confusion FC 
Value Net

Confusion FC 
Class Net

Confusion 
New Value

Confusion Two 
Class (Class 

based)

Confusion Two 
Class (Value 

based)

MaxCount 68,2 59,5 66,1 63,5 67,6 93,7 94,5

MaxAvg 68,2 59,5 66,1 63,5 71,7 94,7 94,7

MaxMin 68,2 59,5 66,1 63,5 68,2 89,8 94,3

MaxProd 68,2 59,5 66,1 63,5 68,0 90,2 94,5
 

 

 
3.2.1. Experiment with missing blood parameters 

values 
Additionally, we have performed an experiment using 

vectors containing numbers of measured values from 27 

to 15 (maximal 12 missing values allowed), as the 

number of vectors containing all 27 parameters is very 

small (about 160 samples). During normalization we 

replace the missing values with the value -1 thus 

resulting in input vectors containing all 27 blood 

parameters. We have obtained 6191 samples as 

Learning Pattern Set for the neural networks system and 

618 independent samples as Test Set. All three neural 

networks were trained by Levenberg-Marquardt 

algorithm using a validation failure value of 6. The test 

outputs of all networks are post processed by the 

decision system based on aggregation rules and finally 

compared with original values and classes of C153 

tumor marker from test set.  

Confusion matrixes of final class estimation (Table 

5) show that the final estimation method works well too 

with input vectors containing missing values. After post 

processing, we achieve 67 % matching of four classes, 

whereas the original networks gets between 53% and 
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61% matching cases. The ratio of fatal mismatching 

increases to 5,8 %. 

 

Table 5: Confusion matrixes of final class estimation 

using input vectors with missing values and four classes 
           Class Net  

Class Target    1 2 3 4

1 47,1% 13,3% 0,2% 0,2%

2 8,9% 15,0% 2,3% 0,0%

3 0,3% 4,5% 3,7% 1,3%

4 0,3% 0,6% 1,1% 1,1%

Gesamt System 
MaxAvg 67,0%5,8%

 
 

The test results for two classes are shown in a 

separate confusion matrix (see Table 6). We obtain in 

this case a good ratio (90,5 %) of matching and the ratio 

of fatal mismatching is reduced to 4,7 %. 

 

Table 6: Confusion matrixes of final class estimation 

using input vectors with missing values and two classes 
           Class Net  

Class Target    Class I Class II

Class I 82,0% 4,9%

Class II 4,7% 8,4%

Gesamt MaxAvg 90,5%
 

 

The regression functions between post processed final 

estimation and test C153 values are presented in Fig. 7.  

 
Figure 7: Regression functions between post processed 

final estimation and test C153 values 

 

4. FINAL REMARKS 
In this paper we focused our presentation on 

experiments predicting the marker C153. Similar results 

were obtained for marker C125, regression value 

0,7865,  for marker C199, regression value 0,7245 and 

for marker CEA, regression value 0,7225. In the next 

experiments we will continue testing further marker 

types depending on the availability of sufficient patient 

data. It can be expected that not all markers can be 

predicted with similar performance as C153.  

In a further step the system will be extended by 

predicting combinations of markers as output of neural 

networks. Short tests show that such combinations can 

increase the quality of prediction. Moreover it is seems 

to be more effective to create different classes of 

markers as used in the recent experiment based on self-

organizing maps methods. This prediction system will 

be an important component to the whole data driven 

cancer diagnosis support system. 
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