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ABSTRACT 
In this paper, we focus on car traffic simulation and 

optimization of a portion of the Salerno urban network 

in Italy. The car densities evolution is described by a 

fluid dynamic model. A cost functional, that measures 

the kinetic energy on roads, is maximized using a 

decentralized approach. In particular, to improve 

viability conditions, we apply locally optimal 

distribution coefficients at each  junction (one 

incoming road and three outgoing roads) and optimal 

right of way parameters at each  junctions (two 

incoming roads and one outgoing road). The goodness 

of the optimization results has been confirmed by 

simulations. 

 

Keywords: conservation laws, simulation, optimization, 

decongestion. 

 

1. INTRODUCTION  
Urban infrastructures, as consequence of the  increasing 

number of vehicles on road networks, are frequently 

characterized by a high car density, with possible birth 

of congestions, that cause unwished effects. The most 

typical ones are a reduction of cars velocities, queues 

formations and backward propagations, impossibility 

for drivers to forecast the travel times, pollution 

problems due to fuel consumptions. In worst cases, hard 

congestion levels can provoke car accidents and 

additional problems connected to the emergency 

situations management. In such a context, the problem 

of traffic modelling and control of cars flows assumes a 

great importance.  

The aim of this paper is to discuss some 

optimization results obtained for a portion of Salerno 

urban network, in Italy, characterized by a heavy traffic, 

since it separates the centre of the city from outskirts. 

The topology of the network, reported in Figure 1, 

consists of eight roads. Each road is divided into 

segments, indicated by letters: Traversa Federico 

Romano (segments a, b, c), Via Parmenide (segment d), 

Via Picenza (segment e), Via Fiume (segment f), Piazza 

Monsignor Grasso (segment g), Via Trento (segments h, 

and i), Traversa Giuseppe Olivieri (segment l) and Via 

Davide Galdi (segment m).  In particular, c, g, and h are  
inner road segments, while a, b, d, e, f, i, l, m external 

ones. Road junctions are labelled by numbers: 1 and 2 

are of  type (two incoming roads and one outgoing 

road), 3 and 4 of  type (one incoming road and 

three outgoing roads).   

 

 

 
Figure 1: a portion of the real network of Salerno and its 

graph 

 

 For the description of traffic flows, we follow a 

fluid dynamic approach: the evolution of car densities is 

given on each road by a conservation law (Lighthill et 

al. 1955, Richards 1956). Dynamics at junctions is 

uniquely solved (Coclite et al. 2005, Garavello et al. 

2006) adopting rules for the traffic distribution at nodes, 

the flux maximization, and the right of ways (if the 

number of incoming roads at nodes is greater than that 

of outgoing ones). Observe that the traffic evolution on 

the case study is captured using right of way 

parameters, which discriminate among priorities of 

incoming roads flows, in the case of  junctions, and 

distribution coefficients which describe the amount of 

traffic that, from incoming roads, is directed to outgoing 

ones, in the case of  junctions. 

 In order to improve the viability conditions, we 

define a cost functional, E, that measures the kinetic 
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energy of drivers on roads of the considered network. 

Here, we want to maximize E with respect to 

distribution coefficients at junctions  and right of 

way parameters at junctions . Some control 

problems have already been considered for traffic 

parameters of fluid dynamic models, see Gugat et al. 

2005, Helbing et al. 2005 and Herty et al. 2003. In 

particular,  in Cascone et al. 2007, Cascone et al. 2008 

and Cutolo et al. 2009, different cost functionals, 

measuring average velocity, average travelling time, 

weighted and not weighted with the number of cars, 

flux, and kinetic energy, have been introduced and 

optimized for  and  junctions. Moreover, 

parameters of  junctions have been optimized for 

the fast transit of emergency vehicles in critical 

situations, such as accidents (Manzo et al. 2009).  

 The analysis of the cost functional E on complex 

networks is a very difficult problem, hence we follow a 

decentralized approach: for asymptotic E, optimal right 

of way parameters and distribution coefficients are 

found, respectively, for each  junction and each 

 one. For the first junctions type, we use the exact 

optimal solutions found in Cutolo et al. 2009; for the 

second one, never studied before, optimal distribution 

coefficients are numerically computed. The global 

(sub)optimal solutions for the examined network is then 

obtained by localization: the optimal solution is applied 

locally for each time at each junction.  

 The optimization results are tested by simulations 

(for numerics, see Bretti et al. 2006, Godlewsky et al. 

1996, Godunov 1959, Lebacque 1996). Two different 

choices of distribution coefficients and right of way 

parameters are analyzed: optimal values given by the 

optimization algorithms, and random values, i.e. at the 

beginning of the simulation process, a random value of 

traffic parameters is kept constant during all 

simulations.  

 First, we consider a simple  junction to test the 

goodness of the numerical optimization algorithm for 

distribution coefficients. Then, we examine the real case 

study, that shows some interesting features: when 

random coefficients are used, hard congestions are 

frequent, as expected; the use of optimal traffic 

parameters allows a local redistribution of traffic flows 

at  junctions and reduction of traffic densities at 

 junctions, with consequent benefits in terms of 

roads decongestions, on the global performance of the 

network. 

 The paper is organized as follows. In Section 2, we 

introduce the model. Section 3 is devoted to the 

solutions of Riemann Problems at  and  road 

junctions. The cost functional, measuring the kinetic 

energy of cars, is presented in Section 4, where we 

discuss its optimization. Simulations for a single 

junction and for the case study are presented in Section 

5. The paper ends with conclusions. 

 

2. ROAD NETWORKS MODEL 
A road network is described by a couple , where 

 is the set of roads, modelled by intervals 

 and  the set of junctions, 

which connect roads. 

 On each road, the traffic evolution is given by the 

conservation law (Lighthill et al. 1955, Richards 1956): 

  

     (1) 

 

where  is the car density,  

is the maximal density,  the flux with 

 average velocity. 

 Considering  and a decreasing velocity 

, , we get the flux:  

 

   (2) 

 

which is a strictly concave  function such that 

, with a unique maximum   . 

 At junctions, traffic dynamics is found solving  

Riemann Problems, i.e. Cauchy Problems with a 

constant initial datum for each incoming and outgoing 

road. 

 Fix a junction  of    type (n incoming roads  

,  and m outgoing roads, ,  

), and an initial datum  

. 

 

Definition. A Riemann Solver (RS) for the junction    

is a map   that 

associates to Riemann data  at    a 

vector  so that the solution on an 

incoming road  is the wave   

and on an outgoing one    is the 

wave . We require that the following 

conditions hold:  
 
(c1)     

(c2) on each incoming road  the wave  

 has negative speed, while on each outgoing 

road    the wave  has 

positive speed. 
 

 If , a possible RS at  can be defined by the 

following rules (see Coclite et al. 2005): 
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 (A)  traffic is distributed at  according to some 

coefficients, collected in a traffic distribution 

matrix   

, . The   

th column of  indicates the percentages of 

traffic that, from the incoming road , 

distribute to the outgoing roads; 

 

(B) respecting (A), drivers maximize the flux 

through  

 

Otherwise, if  we need the additional rule (C), 

beside (A) and (B): 

 

(C) Assume that not all cars can enter the outgoing 

roads, and let C be the amount that can do it. 

Then,  cars come from the incoming road 

i, where  is the right of way 

parameter of road i,  and  

 Assuming an initial datum  and 

the flux function (2), the solution  of the RS at J is 

given by: 

 

          (3) 

   
  and  

 

        (4) 

 
 

  
where  is the map such that  

 and  if  

 

3. RIEMANN SOLVERS 
 

In this section, we consider the flux function (2) and 

describe the construction of Riemann Solvers at 

junctions, which satisfies rules (A), (B) and (C).   

 Fix a junction J of  type. We indicate the cars 

densities on incoming roads and outgoing ones, 

respectively, by: 

 

                              (5) 

 

                             (6)                      

  

 From condition (c2), fixing the flux function (2) 

and assuming  as 

the initial datum of an RP at J, the maximum fluxes on 

roads are: 

 

    (7) 

 

    (8) 

 

where  is the Heavyside function. 

 According to the real case study, we analyze RSs 

for two junction types:  and . 

 

3.1. The case n = 2 and m = 1 
Consider a junction J of  type (two incoming 

roads,  and 2, and one outgoing road, 3).   

 The solution to the RP at J with initial datum 

 is constructed in the following 

way. Since, from rule (B), the aim is to maximize the 

through traffic, we set: 

 

                                     (9) 

 

Introduce the conditions:  

 

(A1)  

(A2)  

 

If  the solution to the RP is 

 

If  we have that: 

•  when A1 and 

A2 are both satisfied; 

•  when A1 holds 

and A2 is not satisfied; 

•  when A1 is not 

satisfied and A2 holds. 

 The case of both A1 and A2 false is not possible, 

since it would be . 
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 Once  is known, from (3) and (4) we get the 

solution   

 

3.2. The case n = 1 and m = 3 
Fix a junction J of  type (one incoming road, 1, and 

three outgoing roads, 2, 3, and 4).   

 For , if , , 

represents the percentage of cars, which, from road 1, 

goes to road , the fluxes solution to the RP at  are:  

 

                                          (10) 

 

where 

 

,                        (11) 

 

with   

 Notice that  is dependent on values of  and 

. Define the variable: 

 

                  (12) 

 

and the following sets: 

 

,                        (13) 

 

,               (14) 

 

,       (15) 

 

. (16) 

 

 The open set 

 

                              (17) 

 

is decomposed as  where , 

, , and .  

 A unique RS is associated to each region 

. Precisely, we have that:  

if   

if   

if   

if   

 Once  is known, the solution of the RS  is 

easily found again from (3) and (4).  

  

3.3. Examples  
Consider a junction J of  type, an initial datum 

 and  From (7) and (8), 

the maximal fluxes on roads are: 

 

           (18) 

 

Hence, we have that: 

 

 

 

and 

 

                                (19) 

 

From (3) and (4), the density solutions are: 

 

                                         (20) 

 

 For a junction J of  type, assign the initial 

datum . We get that: 

 

                                 (21) 

 

Regions  are depicted in Figure 2. Assume 

  hence: 

 

                     (22) 
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The corresponding density solutions are: 

 

                                   (23) 

 

 
Figure 2: Decomposition of the region , where 

, , , and  

 

 

4. OPTIMIZATION OF ROAD NETWORKS 
Consider a junction J of type  and an initial datum 

. We define the cost functional  

as: 

 

                (24) 

 

which measures the kinetic energy of cars travelling at 

the junction.  

 Assigned a time horizon , with T sufficiently 

big, we want to maximize  by a suitable 

choice of traffic coefficients  or right of way 

parameters (if )   

.  

 

4.1. The case n = 2 and m = 1 
Given a junction J of  type, for the flux function 

(2) and T sufficiently big, the cost functional  

assumes the form: 

 

                               (25) 

 

where, for : 

 if  and  or 

,  and ;  

 if , or ,  

and ;  

 if  or , ; 

 if  and , 

with 

 

                                                (26) 

  

 The optimal choice of right of way parameters is 

found analytically according to Cutolo et al. 2009 as 

follows.  

 

Theorem. Consider a junction J of type. For the 
flux function (2) and T sufficiently big,  is 
optimized for the following values of p: 
 

1) if  then: 

(a) if  or ; 

(b) if ; 

(c) if ; 

2)  if  then: 

(a)  or  if  or 

; 

(b)  or , if ; 

(c) if ; 

3) if  then: 

(a)  or , if ; 

(b) , if ; 

(c)  or , if ; 

(d)  or  if ; 

4)  if  then: 
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(a)  or , if , with 

 or ; 

(b)  or , if , 

with ; 

(c)  or , if 

, with ; 

(d) , if ; 

(e) , if , 

where 
 

                                       (27) 

 

4.2. The case n = 1 and m = 3 
For a junction J of   type, assuming T sufficiently 

big, the cost functional  becomes: 

 

                           (28) 

 

where 

 if , or  and 

;  

 if  and ;  

for   

 if  and, for  

; 

 if  or, for  

 and . 

 Observe that since  and  depend 

on the initial data, the functional (28) assumes different 

expressions in each region  and to find 

the analytical optimal distribution coefficients is a huge 

task. Hence the values of  and , which optimize 

(28), are found numerically through the software 

Mathematica.  

 

Remark. The choice of the initial datum at J strongly 
influences the values of optimal  and .  

For example, if , , and 
 

                      (29) 

 
The functional has an analytical maximum for 

 which is the optimal solution only if 

 Otherwise, some numerical methods are 
needed.  
 

5. SIMULATIONS 
In this section, we present some simulation results in 

order to test the numerical algorithm for the 

optimization of  junctions and to analyse the effects 

of random and optimal choices of distribution 

coefficients and right of way parameters on the real case 

study.  

 

5.1. Single junctions 
Consider a junction of  type. Again the incoming 

road is labelled with 1, while outgoing roads with 2, 3, 

and 4. We compare different behaviours of the cost 

functional (28) using: optimal numerical distribution 

coefficients (optimal case); random distribution 

coefficients, namely parameters taken randomly when 

the simulation starts and then kept constant (random 
case).  

 The road traffic evolution is simulated using the 

flux function (2) in a time interval , where 

 min. Numerical approximations are made by the 

Godunov method with space step  and  

given by the CFL condition (see Godunov 1959). We 

assume that, at the starting instant of simulation (t = 0), 

all roads of the network are empty. Moreover, we 

choose the following Dirichlet boundary data: 

, , , .  

 Notice that initial conditions and boundary data are 

such that the network dynamics exhibits congestions on 

outgoing roads and optimal distribution coefficients are 

given by   

 Figures 3 and 4 show that, simulating the junction 

with optimal  and  values, traffic conditions are 

improved with respect to random cases: the optimal cost 

functional is higher with respect to others. In particular, 

although the asymptotic state is not reached (the final 
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T), the optimization algorithm always gives better 

performances than other simulation cases. 

   

 

Figure 3: behaviour of  for optimal choice of  

and  (solid line), and random distribution 

coefficients (dashed lines) 

 

 

Figure 4: zoom of  for optimal choice of  and 

 (solid line), and random distribution coefficients 

(dashed lines) 

 

5.2. Real network in Salerno 
In this subsection we present some simulation results 

for the network of Figure 1.  

 The evolution of traffic flows is simulated in a time 

interval , where  min, using the Godunov 

method with  and . Initial 

conditions and boundary data for all roads are in Table 

1 and are chosen so as to simulate a network with 

congested roads.  

 Again, we consider two types of simulations: 

optimal and random cases. Optimal right of way 

parameters at junctions 1 and 2 are found according to 

the Theorem of previous Section, while optimal 

distribution coefficients at junctions 3 and 4 are 

computed using a numerical algorithm.  

 

 

 

 

 

 

Table 1: Initial conditions and boundary data for roads 

of the network 

Road Initial 

condition 

Boundary 

data 
a 0 0.3 

b 0 0.3 

c 0.3 / 

d 0 0.4 

e 0.6 0.4 

f 0.7 0.9 

g 0.3 / 

h 0.3 / 

i 0.65 0.9 

l 0.75 0.9 

m 0.85 0.9 

 

 In Figures 5 and 6, we report the behaviour of the 

cost functional , defined as the sum of the kinetic 

energy on all network roads. Notice that random 

simulation curves (dashed lines) are always lower than 

the optimal one (continuous line). Such phenomenon is 

easy justified: when, at road junctions of  and  

types, optimal distribution coefficients and right of way 

parameters are, respectively, used, traffic flows are 

redistributed, hence allowing a congestion reduction.  

 
Figure 5:  for optimal choice of distribution 

coefficients (solid line) and random parameters (dashed 

lines)   

 

 
Figure 6: zoom of  ; optimal choice of distribution 

coefficients (solid line); random parameters (dashed 

lines)   
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6. CONCLUSIONS  
In this paper, we have studied traffic flows on a portion 

of the Salerno urban network, in Italy.  

 Exact solutions for optimal right of way parameters 

in case of  junctions, and numerical 

approximations for optimal distribution coefficients in 

case of  junctions have been used in order to 

improve the viability conditions. In particular, the 

optimization of distribution coefficients for  

junctions has been treated here for the first time.  

 The goodness of the optimization results has been 

confirmed by simulations, concluding that real benefits 

on traffic performances are possible.    
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