
A CASE STUDY IN WORKFLOW MODELLING USING CONTROL-FLOW

PATTERNS

Y. Callero
(a)

, I. Castilla
(b)

, R.M. Aguilar
(c)

(a)(b)(c)
Department of Systems Engineering and Automation, and Computer Architecture.

Universidad de La Laguna. Spain
(a)

ycallero@isaatc.ull.es,
(b)

ivan@isaatc.ull.es,
(c)

raguilar@ull.es

ABSTRACT
Business Process Reengineering is a field where

state-of-the-art powerful tools are required to

obtain valid and profitable results. In this sense,

Business Process Simulation is becoming one

well-known instrument to analyze and return

valuable solutions, although a potential user has

to face the lack of a standard modelling

approach. This paper introduces the most

important difficulties that arise when dealing

with the practical implementation of one of

these approaches, the Synchronizing Workflow

Models; and presents an example illustrating

how these problems have been solved with the

Discrete Event Simulation library, SIGHOS.

Keywords: Business Process Management,

Discrete Event Simulation, Workflow Patterns,

Simulation Tool, Synchronized Workflow

Models, Business Process Reengineering.

1. INTRODUCTION

The workflow concept is inherently related to

the notion of process, as it was originally

conceived since industrialization in

manufacturing and the office (Georgakopoulos,

Hornick and Sheth 1995). “Processes” separate

work activities into well-defined tasks, roles,

rules and procedures in order to increase

efficiency.

Over time, this way of working leads to a

fragmentation of the business that negatively

impacts on cost and on the motivation of the

personnel.

In this sense, Business Process

Reengineering (BPR) makes its appearance. As

stated by Muthu, Whitman and Cheraghi

(2006), reengineering is the fundamental

rethinking and radical redesign of business

processes to achieve dramatic improvements in

critical, contemporary measures of performance

such as cost, quality, service and speed. A

Business Process (BP) is a market-centred

description of an organization’s activities,

implemented as an information process and/or a

material process (Medina-Mora, Winograd,

Flores and Flores 1992).

Business Process Simulation (BPS) is an

important tool within BPR. As described by

Wynn, Dumas, Fidge, Hofstede and Aalst

(2008), BPS is focused on the achievement of

two main goals:

1. the analysis of the behaviour of a

process, by means of the development

of accurate simulation models;

2. the understanding of the effects of

running that process through the

performance of simulation

experiments.

Three components describe a BPS (Wynn,

Dumas, Fidge, Hofstede and Aalst 2008):

1. basic model building blocks, such as

entities, resources, activities, and

connectors;

2. activity modelling constructs, such as

split, join, branch and assemble;

3. and advanced modelling functions,

such as attributes, expressions and

resource schedules.

Russell, Hofstede and Mulyar (2006)

delineate the fundamental requirements that

arise during business process modelling on a

recurring basis and describe them in an

imperative way. A pattern-based approach is

used to describe these requirements. Such

approach offers both a language- and

technology- independent means of expression in

a form that is sufficiently generic to allow for a

wide variety of applications.

However, there is no generally accepted

modelling technique for implementing

workflow patterns as part of a simulation tool.

Different notations, such as EPCs (Event-

Driven Process Chain) or BPMN (Business

Process Management Notation) have been posed

that try to overcome the difficulties arisen when

implementing such models.

Precisely, the EPC notation has served as a

basis for adapting SIGHOS, a discrete event

simulation library developed by the Simulation

Group from the University of La Laguna, to

support the use of workflow patterns in the

simulation of business processes. The rest of

this paper is structured as follows. The first

section defines the main concepts related to

Page 265

mailto:ycallero@isaatc.ull.es
mailto:ivan@isaatc.ull.es
mailto:raguilar@ull.es

workflows modelling. Next, the methodology

used to model the functionalities proposed by

the control-flow patterns based on Synchronized

Workflow Models is detailed. Once the strategy

is explained, a practical approach is taken to

present the structures designed in SIGHOS for

modelling said patterns. A modelling example is

presented in the next section. The last section

contains a summary of the conclusions drawn

from our research.

2. WORKFLOW BASICS

Having set the definition of business process,

the Workflow Management Coalition (WfMC)

defines “workflow” as the partial or total

automation of a business process during which

documents, information or tasks are passed

from one participant to another for action,

according to a set of procedural rules.

(Workflow Management Coalition 1999)

There is little consensus in the workflow

specification due to the lack of universal

concepts for modelling business processes

(Aalst, Hofstede, Kiepuszewski and Barros

2003).

One of the most widespread terminologies

used to describe the concepts and general

structure of a workflow is the WfMC

terminology (Workflow Management Coalition

1999). The concept of “process instance” is

especially important to understand the

behaviour of SIGHOS models. The WfMC

terminology describes a process instance as a

single enactment of a process, or activity within

a process, including its associated data. Each

process instance is executed on a separate

thread. However, if a process includes parallel

activities, the corresponding process instance

would include multiple concurrent threads of

execution.

2.1. Control flow perspective

Among the different perspectives (control-flow,

data, resource and operational) to the workflow

specifications stated in (Aalst, Hofstede,

Kiepuszewski and Barros 2003), this research

work focuses on the control-flow perspective.

Russell, Hofstede and Mulyar (2006)

studied countless practical cases involving real

companies, and proposed 43 patterns which

define the requirements for modelling the

different scenarios defined within the control

flow perspective. Many workflow definition

languages, modelling tools and workflow

engines have resulted from this practical

approach like: BPEL (Hinz, Schmidt and Stahl

2005), XPDL (Aalst 2003), ARIS (Davis 2001),

Gridant (Amin, Hategan, von Laszewski,

Zaluzec, Hampton and Rossi 2004) and WW-

FLOW (Kim, Kang, Kim, Bae and Ju 2000).

Kiepuszewski, Hofstede and Aalst (2003)

expose the basic control flow constructs,

common to most of these approaches:

 AND-Split is a point within the

workflow where a single thread of

control splits into two or more threads

which are executed in parallel.

 AND-Join is a point in the workflow

where two or more parallel executing

tasks converge into a single common

thread of control.

 OR-Split is a point within the

workflow where a single thread of

control decides on which branch to

take when encountered with multiple

alternative workflow branches.

 OR-Join is a point within the workflow

where two or more alternative task

workflow branches re-converge to a

single common task as the next step

within the workflow.

2.2. Theoretical foundations

Whilst the patterns proposed by Russell et al.

are convenient for a practical approach, some

more robust theoretical foundation is required

that characterizes control flow modelling.

Therefore, formal tests about expressiveness

limits and properties of a model may be

performed.

Petri nets have been traditionally employed

to specify control flows, since activities can be

seen as transitions; and causal dependencies as

places, transitions and arcs. Kiepuszewski

(2003) uses the properties of the Petri nets to

distinguish among four different techniques

employed to model control-flow patterns.

First, Kiepuszewski defines the Standard

Workflow Models as the most “natural”

interpretation of the WfMC definitions.

Standard Workflow Models have the ability to

create multiple concurrent instances of one

activity.

Safe Workflow Models, on the contrary,

never create multiple concurrent instances of an

activity. Consequently, the corresponding Petri

net is safe.

Intuitively, a Structured Workflow Model is

a model where each OR-Split has a

corresponding OR-Join and each AND-Split has

a corresponding AND-Join, with no arbitrary

cycles allowed.

Last, Synchronizing Workflow Models

appear from a different interpretation of the

WfMC definitions of basic control flow

constructs. An AND-Join typically follows an

AND-Split and can be seen as a construct that

synchronizes a number of active threads. To

synchronize that kind of construct, commercial

Page 266

tools generally use a token-based technique. The

semantics of Synchronizing Workflow Models

can be easily captured by using Coloured Petri

nets.

3. SIGHOS AND SYNCHRONIZING

WORKFLOW MODELS

3.1. SIGHOS, a discrete event simulation tool

The potential of Simulation as a tool for

business process modelling has not been yet

recognized by much of the business community

(Hlupic and Robinson 1998). However, BPS

may be used to achieve a higher level of

understanding when studying and analyzing

businesses which are inherently complex. Not

only this, simulation has several characteristics

that make it appealing for business process

modelling. Indeed, a process-based world view,

as defined from a simulation modelling

perspective, can be seen as a time-ordered

sequence of interrelated events which describe

the entire experience of an entity as it flows

through the system (Balci 1988). This definition

can be easily matched with the flow of entities

through business processes.

SIGHOS (SIGHOS project homepage

2010) is a process-oriented discrete event

simulation tool which was originally intended to

simulate hospital management (Aguilar,

Castilla, Muñoz, Martín and Piñeiro 2006).

Being Java-based, SIGHOS takes advantage

from the known benefits of using Java to

implement a discrete event simulation tool

(Buss 2002)(L'ecuyer and Buist 2005)(Goes,

Pousa, Carvalho, Ramos and Martins 2005).

Robustness, portability, and ease of

implementation and documentation for

programmers are some of the strengths usually

associated with Java. Moreover, Java is

inherently Internet- and Thread- aware, that is,

the language includes in its core definition

primitives to deal with network communications

and concurrent programming.

SIGHOS evolved from its original

conception to a broader range of applications

such as call centres (Castilla, Muñoz and

Aguilar 2007) by generalizing the structures

employed to define processes (Castilla, García

and Aguilar 2009). However, these first simple

structures were not powerful enough to deal

with the multiple complexities that a real

business process may pose to a modeller. Thus,

taking control-flow patterns as a reference, the

business process modelling capacity of this tool

was expanded. The difficulties arise when

coping with the problems posed, by definition,

by synchronizing workflow models.

3.2. Why synchronizing models?

Synchronizing Workflow Models allows the

modelling of multiple instances of a process

unlike Safe Workflow, Structured Workflow or

Standard Workflow models as posited by

Kiepuszewski (2003).

A priori, the Synchronizing Workflow

Models are best suited to the SIGHOS tool since

they solve the deadlock problem and efficiently

allow for the problems of modelling multiple-

instance patterns and loops to be overcome.

Kiepuszewski advised to use the Token-

based strategy in the Synchronizing Workflow

Models implementation. The goal of using this

strategy is to solve the possible appearance of

deadlocks during the runtime. This strategy

implies that each node in the model has to

propagate one or several tokens indicating the

state of the outgoing threads.

3.3. Token-based strategy implemented by

SIGHOS

SIGHOS adopts the token-based strategy from

two basic nodes: SingleSuccessor or

MultiSuccessor. The former can only be linked

to a single node, while the latter may have

several linked nodes.

Based on these two kinds of nodes, SIGHOS

implements four basic constructs:

 Initializer node

 Finalizer node

 Task node

 Structured node

An Initializer is a MultiSuccesor node that

represents a source of new tokens, so that the

generation of a token involves the creation of a

new thread. AND-Split, OR-Split and

Conditional nodes are based on this node. If a

true token is received, the node propagates a

true token through the active outgoing branches,

and a false token through the inactive ones. In

case a false token is received, the node

propagates a false token through each outgoing

branch.

 Conditional nodes are a special case of OR-

Split. Upon receipt of a true token, the node

checks each associated condition changing the

resulting token value depending on the check

result. Upon receipt of a false token, a false

token is sent to each outgoing branch.

 A Finalizer is a SingleSuccesor node that

represents a sink of tokens. A token removal

represents the finalization of thread execution.

This node is the basis for AND-Join or OR-Join

nodes. The propagation of tokens depends on

the criteria present at each node for yielding

flow control:

Page 267

 An AND-Join node generates a new

token from the confluence of incoming

tokens. This node defines an

acceptance value as the total amount of

true tokens that it must receive through

the incoming branches. When enough

tokens are received, a true token is sent

to the node’s successor and the account

of tokens is reset. This type of node has

two operating modes: safe and unsafe.

Using one or another operating mode

affects the way the concurrent receipt

of tokens through the same incoming

branch is treated. In safe mode, only

one token per branch and simulation

timestamp is taken into account; the

rest are simply discharged. In unsafe

mode, all the tokens are considered and

taken as valid.

 An OR-Join node simply propagates

the same token which arrived to the

successor. The only control that is

performed affects the concurrent

arrival of tokens. At that moment, the

control state has to decide if all or only

one thread is subsequently sent to the

successors. If the criteria for yielding

control is not met once every incoming

branch token has been received, a false

token is propagated.

A Task node is also a SingleSuccesor node

and represents the execution of some kind of

activity. The activity is executed upon receipt of

a true token. Once the execution is complete, a

true token is propagated. However, if the

execution is cancelled or the node receives a

false token - meaning the execution is not to be

carried out - a false token is propagated.

Structured nodes are SingleSuccessor nodes

which consist of one node that defines the

structure’s starting point, and another one that

defines its end. All kind of complex branches

can link such starting and end points. Only upon

arrival of a true token, the control is yielded to

the sub-flow contained in the structure.

Otherwise, the false token is simply propagated

to its successors.

3.4. Improving Synchronizing Workflow

Models

One of the problems that Kiepuszewski (2003)

associates with Synchronizing Workflow

Models is the impossibility of handling multiple

process instances without running into serious

limitations. Such limitations result from his

formal definition involving Petri nets. SIGHOS

takes advantage from not assuming such a

formal base. One goal of the tool is the conduct

of efficient simulations from the standpoint of

parallelism and concurrence (Castilla, García

and Aguilar 2009). That is why the functional

core of the tool is optimized to simulate various

processes and their multiple instances without

limitations. For example, with the token-based

strategy, a process could have several active

instances executing the same task given enough

available resources. The tokens that indicate the

validity of each instance are totally independent,

which allows the model to be coherent.

 Another important problem associated with

Synchronizing Workflow Models is the control

of different iterations within a loop which is

solved by treating each node as a structured one.

This leaves the handling of the possible

arbitrary cycles that are defined in the model as

the only outstanding problem. SIGHOS handles

the patterns of arbitrary cycles by implementing

a system of environment variables, associated

with the model or defined by the user, and an

expression set which allows for the conditions

associated with these variables to be defined.

There is also a set of user events that allows the

values of these variables to be modified at

different points in the model. These structures

allow arbitrary cycles to be modelled,

maintaining control over the possible

appearance of infinite loops. On the one hand,

when a true token enters one of these cycles, the

set of conditions associated with this cycle will

control the exit from the cycle for that token. On

the other hand, when a false token enters one of

these cycles, this token propagates, both to the

exit branch for a cycle as well as to the branch

that generates the loop. This leads to an infinite

propagation of the false token, which results in

an improper execution of the simulation. This

undesirable situation can be solved if each false

token keeps track of the nodes it has been to.

Should a false token return to a node through

which it has already passed, it is assumed to be

immersed in a loop and deleted from the

simulation since it is no longer producing

relevant information.

4. CONTROL-FLOW PATTERNS

SUPPORTED BY SIGHOS

This section analyzes which control flow

patterns are supported by SIGHOS. Patterns are

divided into categories depending on its

functionality. These categories are: basic control

flow patterns, advanced branching and

synchronization patterns, multiple instance

patterns, iteration patterns, termination patterns

and trigger patterns.

Each category is discussed in a separate

subsection, including an explanation about

whether each specific workflow control pattern

(WCP) is supported by SIGHOS or not.

Page 268

4.1. Basic Control Flow Patterns

These basic patterns capture elementary aspects

of process control.

Table 1. Basic control flow patterns support

Basic Control Flow

Patterns

Supported by

SIGHOS

WCP1: Sequence YES

WCP2: Parallel Split YES

WCP3:

Synchronization
YES

WCP4: Exclusive

Choice
YES

WCP5: Simple Merge YES

No further explanation is required since the

support of these patterns is trivial.

4.2. Advanced Branching and

Synchronization Patterns

These patterns characterise more complex

branching and merging concepts which arise in

business processes.

Table 2. Advanced branching and

synchronization patterns support

Advanced Branching

and Synchronization

Patterns

Supported by

SIGHOS

WCP6: Multi-Choice YES

WCP7: Structured

Synchronizing Merge
YES

WCP8: Multi-Merge YES

WCP9: Structured

Discriminator
YES

WCP28: Blocking

Discriminator
YES

WCP29: Cancelling

Discriminator
NO

WCP30: Structured

Partial Join
YES

WCP31: Blocking

Partial Join
YES

WCP32: Cancelling

Partial Join
NO

WCP33: Generalised

AND-Join
YES

WCP37: WCP: Local

Synchronizing Merge
YES

WCP38: General

Synchronizing Merge
NO

WCP41: Thread

Merge
YES

WCP42: Thread Split YES

SIGHOS focuses large part of its current

operating potential on the ability to represent

patterns of this class. Modelling primitives are

provided for almost the entire set of patterns,

but three. The Cancelling Discriminator, the

Cancelling Partial Join and the General

Synchronizing Merge are not considered

because of their non-local semantics limitations.

This problem will be revisited in section 5.

4.3. Multiple Instance Patterns

These patterns describe process models

including an activity with multiple active

threads of execution.

Table 3. Multiple instance patterns support

Multiple Instance

Patterns

Supported by

SIGHOS

WCP12: Multiple

Instances without

Synchronization

YES

WCP13: Multiple

Instances with a Priori

Design-Time

Knowledge

YES

WCP14: Multiple

Instances with a Priori

Run-Time Knowledge

NO

WCP15: Multiple

Instances without a

Priori Run-Time

Knowledge

NO

WCP34: Static Partial

Join for Multiple

Instances

YES

WCP35: Cancelling

Partial Join for

Multiple Instances

NO

WCP36: Dynamic

Partial Join for

Multiple Instances

NO

SIGHOS offers the possibility of handling

multiple instances as long as they are pre-

defined in the model. The system is not yet able

to deal with instances created dynamically

during the simulation. That is why the

remaining patterns in this class are not accepted,

and why a process for cancelling activities has

not been defined.

4.4. State-based Patterns

State-based patterns are more easily

accomplished in process languages that support

the notion of state. In this context, the state of a

process instance is considered to include the

broad collection of data associated with current

execution, that is, the status of various activities

as well as process-relevant working data such as

activity and case data elements.

Page 269

Table 4. State-based patterns support

State-based Patterns
Supported by

SIGHOS

WCP16: Deferred

Choice
NO

WCP17: Interleaved

Parallel Routing
YES

WCP18: Milestone NO

WCP39: Critical

Section
NO

WCP40: Interleaved

Routing
YES

Only 2 out of 5 patterns (the interleaved

ones) are implemented in SIGHOS. The

remaining patterns are beyond the scope of the

library.

4.5. Cancellation and Force Completion

Patterns

Several of the patterns above have variants that

utilize the concept of activity cancellation where

enabled or active activity instances are

withdrawn. Various forms of exception

handling in processes are also based on

cancellation concepts.

Table 5. Cancellation and force completion

patterns support

Cancellation and

Force Completion

Patterns

Supported by

SIGHOS

WCP19: Cancel Task NO

WCP20: Cancel Case NO

WCP25: Cancel

Region
NO

WCP26: Cancel

Multiple Instance

Activity

NO

WCP27: Complete

Multiple Instance

Activity

NO

SIGHOS does not provide any cancellation

method, neither for cases nor for activity

executions.

4.6. Iteration Patterns

The following patterns represent repetitive

behaviour in a workflow.

Table 6. Iteration patterns support

Iteration Patterns
Supported by

SIGHOS

WCP10: Arbitrary

Cycles
YES

WCP21: Structured

Loop
YES

WCP22: Recursion NO

SIGHOS allows for the modelling of loops

and arbitrary cycles. The recursive case is not

considered.

4.7. Termination Patterns

These patterns face completion of workflows.

Table 7. Termination patterns support

Termination Patterns
Supported by

SIGHOS

WCP11: Implicit

Termination
YES

WCP43: Explicit

Termination
NO

Being designed as an event-oriented

simulator, SIGHOS directly supports the

implicit termination pattern. Explicit

termination, understood as a generalization of

the cancellation patterns, is discharged due to

the limitations in terms of non-local semantics

of the library.

4.8. Trigger Patterns

Trigger patterns deal with the external signals

that may be required to start certain tasks.

Table 8. Trigger patterns support

Trigger Patterns
Supported by

SIGHOS

WCP23: Transient

Trigger
NO

WCP24: Persistent

Trigger
NO

Triggers also rely on non-local semantics

which cannot be solved by the single use of

tokens. Thus, their implementation goes beyond

the scope of the library.

5. CONTROL-FLOW PATTERNS NOT

IMPLEMENTED BY SIGHOS

As shown in the previous section, SIGHOS has

been proved to be a valid tool to implement

most of the patterns defined by Russell,

Hofstede and Mulyar (2006). However, some

patterns have not been implemented yet due to

different reasons with a remarkable influence of

non-local semantics (Aalst, Desel, Eichstätt-

ingolstadt, Kindler and Paderborn 2002). Non-

local semantics make reference to those

situations where a node requires information

which is not local to the node (that is, which

belongs to a different part of the model) in order

to take a decision on the propagation of a

process instance. The token strategy introduced

in section 3.2 copes with some of the problems

derived from such semantics but others remain

unsolved.

Page 270

 Registration
Request

Documentation
check

Consult head of
service

CONSULT NEEDED

Development of
correction request

INCORRECT

Sign of correction
request

Dispatch of
correction request

Wait for
acknowledgment

Wait for
corrections

(1 month limit)

ACKNOWLEDGMENT
RECEIVEDUSER MAKES CORRECTIONS

CORRECT / NOT FOR THIS DEPARTMENT

USER DOESN’T MAKE CORRECTION

Development of
inform

RESOLUTION
REQUIREMENT

Sign
 of inform

Development of
resolution Sign of resolution

Registration fof
resolution

Development of
waiver

WAIVER REQUIREMENT

WITHOUT WAIVER REQUIREMENT

WITHOUT RESOLUTION REQUIREMENT

Record of
registration

request

REGISTRATION REQUIREMENT

Development of
notification Sign of notification

Wait for
acknowledgment

ACKNOWLEDGMENT
RECEIVED

Record of
Registration

POSITIVE RESOLUTION

NEGATIVE RESOLUTION

WITHOUT
REGISTRATION
REQUIREMENT

Dispatch of
notification

Call the user

ACKNOWLEDGMENT
NOT RECEIVED

Call the user

ACKNOWLEDGMENT
NOT RECEIVED

Wait for
allegations Cancel process

All processes except the
cancel process

Cancellation patterns (WCP19, WCP20,

WCP25, WCP26, WCP27, WCP29, WCP32

and WCP35) perfectly illustrate the problems

derived from the use of non-local semantics.

These patterns require explicitly breaking the

execution logic of the simulator. A cancel

pattern normally affects a process instance or a

set of process instances. However, the process

instance that activates the cancellation can be

located in a completely different part of the

Figure 1. Registry of Associations workflow diagram

Page 271

model. Locating such instances implies complex

memory structures and an efficient search

algorithm, thus increasing the memory and CPU

requirements for the simulator.

6. MODELLING EXAMPLE: REGISTRY

OF ASSOCIATIONS

Several civil service processes have been

reorganized into electronic processes in Canary

Islands government. A specific case study was

described in (Callero and Aguilar 2009). Upon

the basis of the workflow modelling of this case,

a deeper analysis is presented in this section.

6.1. Description of the problem
Spain and the autonomous regions governments

share the competences about the control of

associations. The autonomous region

government takes all responsibility for the

establishment of different ways to set up,

manage or dissolve associations. The Registry

of Associations was defined to manage all of

these operations.

Focusing in Canary Islands region, each

province (Las Palmas and Santa Cruz de

Tenerife) has its own Registry of Associations

head office and its own staff. Whereas Las

Palmas office has two government employees

and two technicians, Santa Cruz office has three

government employees and one technician. In

addition, there are one head of service and one

general director for the entire autonomous

region. All the activities of the Registry of

Associations are carried out by the described

staff.

6.2. Flow modelling
The workflow of the process is shown in Figure

1. The Registry of Associations has nineteen

different activities. The activities are modelled

using Task Nodes.

The execution of the activities is started by

a customer request but the execution flows

depends on the process characteristics. Sixteen

different processes can be executed in Registry

of Associations, thus creating decision points to

route the flow depending on the process

characteristics: does the subprocess

documentation needs to be corrected or

consulted? Is the process resolution negative or

positive?

Using Conditional nodes, associated to the

environment variables, it is possible to emulate

the ExclusiveChoice pattern in order to model

the decision points.

Notification and registration subprocess at

the end of the process are another key point in

the flow of the Registry of Associations. This

subprocess generates a parallel execution of

tasks. One parallel branch is involved in the

notification tasks and the other branch is

involved in the registration tasks. Both branches

are synchronized at the end of the flow.

SIGHOS Structured Nodes give to the

modeller the possibility to define Structured

Synchronizing Merge pattern behaviour to

simulate processes like notification and

registration subprocess.

7. CONCLUSIONS

Workflow technology is still under development

in its traditional application areas (business

process modelling and business process

coordination), but also in emergent areas of

component frameworks and inter-workflow,

business-to-business interaction (Aalst,

Hofstede, Kiepuszewski and Barros 2003).

In this paper, a practical example of an

application of synchronized models for the

modelling of workflow patterns has been

presented.

It is clear that the token-based strategy

provides an enormous freedom of design,

although not all of its potential has been

exploited yet. In other words, from the point of

view of the developing group, the SIGHOS

library can still be significantly improved in the

area of modelling workflow patterns.

A modelling example has been also

introduced to illustrate the use of SIGHOS and

the synchronized models to simulate a real

problem. Future work will further develop this

model.

ACKNOWLEDGMENTS

This work is being supported by a project

(reference DPI2006-01803) from the Ministry

of Science and Technology with FEDER funds.

Iván Castilla is being supported by an FPU

grant (ref. AP2005-2506) from the Ministerio de

Educación y Ciencia of Spain.

Yeray Callero is being supported by a

postgraduate grant from CajaCanarias Canary

Island bank.

REFERENCES

Aalst, W. M., Desel, J., Eichstätt-ingolstadt, K.

U., Kindler, E. and Paderborn, U., 2002.

On the semantics of EPCs: A vicious

circle. Proceedings of the EPK 2002:

Business Process Management using

EPCs, 71-80.

Aalst, W. M., Hofstede, A., Kiepuszewski, B.

and Barros, A., 2003. Workflow Patterns.

Distributed and Parallel Databases, 14, 5

- 51.

Page 272

Aalst, W.M., 2003. Patterns and XPDL: A

Critical Evaluation of the XML Process

Definition Language, QUT Technical

report, Brisbane.

Aguilar, R. M., Castilla, I., Muñoz, R., Martín,

C. A. and Piñeiro, J. D., 2006. Verification

and validation in discrete event simulation:

A case study in hospital management.

International Mediterranean Modeling

Multiconference 2006 proceedings.

Amin, K., Hategan, M., von Laszewski, G.,

Zaluzec, N., Hampton, S. and Rossi, A.,

2004. Gridant: A client-controllable grid

workflow system. 37th Hawai’i

International Conference on System

Science, 5–8.

Balci, O., 1988. The implementation of four

conceptual frameworks for simulation

modeling in high-level languages.

Proceedings of the 20th conference on

Winter simulation - WSC '88, 287-295.

Buss, A., 2002. Component based simulation

modeling with simkit. Proceedings of the

Winter Simulation Conference, 243-249.

Callero, Y. and Aguilar, R., 2009. Use of

simulation in egovernment process

development. A case study using the

simulation tool SIGHOS. 21st European

Modeling & Simulation Symposium

proceedings, 1, 253-260.

Castilla, I., Muñoz, R. and Aguilar, R. M., 2007.

Helpdesk Modeling and Simulation with

Discrete Event Systems and Fuzzy Logic.

European Modeling and Simulation

Symposium (EMSS 2007) proceedings.

Castilla, I., García, F. and Aguilar, R., 2009.

Exploiting concurrency in the

implementation of a discrete event

simulator. Simulation Modelling Practice

and Theory, 17, 850-870.

Davis, R., 2001. Business process modelling

with ARIS: a practical guide, Springer-

Verlag London.

Georgakopoulos, D., Hornick, M. and Sheth, A.,

1995. An overview of workflow

management: From process modeling to

workflow automation infrastructure.

Distributed and Parallel Databases, 3,

119-153.

Goes, L., Pousa, C., Carvalho, M., Ramos, L.

and Martins, C., 2005. JSDESLib: A

Library for the Development of Discrete-

Event Simulation Tools of Parallel

Systems. 19th IEEE International Parallel

and Distributed Processing Symposium.

Hinz, S., Schmidt, K. and Stahl, C., 2005.

Business Process Management,

Berlin/Heidelberg: Springer-Verlag.

Hlupic, V. and Robinson, S., 1998. Business

process modelling and analysis using

discrete-event simulation. Winter

Simulation Conference Proceedings, 25,

534-548.

Kiepuszewski, B., Hofstede, A. and Aalst, W.

V., 2003. Fundamentals of control flow in

workflows. Acta Informatica, 39, 143-

209.

Kiepuszewski, B., 2003. Expressiveness and

suitability of languages for control flow

modelling in workflows. Faculty of

Information Technology. Queensland

University of Technology.

Kim, Y., Kang, S., Kim, D., Bae, J. and Ju, K.,

2000. WW-FLOW: Web-based workflow

management with runtime encapsulation.

IEEE Internet Computing, 4, 55–64.

L'ecuyer, P. and Buist, E., 2006. Simulation in

java with ssj. Proceedings of the Winter

Simulation Conference, 611-620.

Medina-Mora, R., Winograd, T., Flores, R. and

Flores, F., 1992. The action workflow

approach to workflow management

technology. Proceedings of the 1992 ACM

conference on Computer-supported

cooperative work - CSCW '92, 281-288.

Muthu, S., Whitman, L. and Cheraghi, S. H.,

2006. Business Process Reengineering: A

Consolidated Methodology. Proceedings

of the 4th Annual International Conference

on Industrial Engineering Theory,

Applications, and Practice, 1999 U.S.

Department of the Interior - Enterprise

Architecture, 8-13.

Russell, N., Hofstede, A. H. and Mulyar, N.,

Workflow ControlFlow Patterns: A

Revised View, BPM Center Report BPM-

06-22.

Page 273

SIGHOS project homepage. Available from:

http://sourceforge.net/projects/sighos/.

[APR 2010]

Workflow Management Coalition, 1999.

Workflow Management Coalition

Terminology Glossary. Document Number

WFMC-TC-1011.

Wynn, M., Dumas, M., Fidge, C., Hofstede, A.,

and Aalst, W. V., 2008. Business Process

Management Workshops, Springer Berlin

Heidelberg.

AUTHORS BIOGRAPHY
YERAY CALLERO was born in Haría,

Lanzarote and attended the University of La

Laguna, where he studied Engineering

Computer Science and obtained his degree in

2008. He is currently working on his PhD with

the Department of Systems Engineering and

Automation at the same university. His research

interests include simulation and embedded

system software design.

IVÁN CASTILLA was born in La Laguna,

Tenerife and attended the University of La

Laguna, where he studied Engineering

Computer Science and obtained his degree in

2004. He is currently working on his PhD with

the Department of Systems Engineering and

Automation at the same university. His research

interests include parallel discrete event

simulation and computer architecture.

ROSA M. AGUILAR received her MS degree

in Computer Science in 1993 from the

University of Las Palmas de Gran Canaria and

her PhD degree in Computer Science in 1998

from the University of La Laguna. She is an

associate professor in the Department of

Systems Engineering and Automation at the

University of La Laguna. Her current research

interests are decision making based on discrete

event simulation systems and knowledge-based

systems, intelligent agents, and intelligent

tutorial systems.

Page 274

