
SYMBOLIC REGRESSION WITH SAMPLING  
 

 

Michael Kommenda
(a)

, Gabriel K. Kronberger
(b)

, Michael Affenzeller
(c)

, Stephan M. Winkler
(d)

, 

 Christoph Feilmayr
(e)

, Stefan Wagner
(f) 

 

 
(a – d, f)

 Upper Austria University of Applied Sciences 

School for Informatics, Communications, and Media 

Heuristic and Evolutionary Algorithms Laboratory 

Softwarepark 11, 4232 Hagenberg, Austria 
 

(e)
 voestalpine Stahl GmbH 

Research & Development Ironmaking 

4020 Linz, Austria 

 
(a) 

michael.kommenda@fh-hagenberg.at, 
(b) 

gabriel.kronberger@fh-hagenberg.at,
(c) 

michael.affenzeller@fh-hagenberg.at, 
(d) 

stephan.winkler@fh-hagenberg.at,
(e)

 christoph.feilmayr@voestalpine.com, 
(f)

 stefan.wagner@fh-hagenberg.at, 

 

 

 

 

ABSTRACT 

In this paper a way of improving the performance of 

genetic programming (GP) for regression tasks is 

presented. In general, most of the execution time is 

consumed during the evaluation step of an individual. 

Hence reducing the number of samples which are 

evaluated during the learning phase of the algorithm 

significantly reduces its execution time. A reduction of 

the available training samples might hamper the 

algorithm in its capability to learn the desired 

correlation. For this reason our approach evaluates each 

solution only on a randomly chosen part of all training 

samples, which is selected before the evaluation step. In 

the result section runs with different parameter settings 

of our approach and traditional genetic programming 

algorithms are compared regarding the solution quality 

and execution time to each other. 

 

Keywords: Genetic Programming, Symbolic 

Regression, Sampling, Machine Learning, Performance 

Analysis 

 

1. INTRODUCTION 

1.1. Regression 

Regression analysis is the task of modeling a 

relationship between a dependent (target) variable y and 

several independent (input) variables x in a dataset. 

Thus we want to get function f which calculates the 

target variable y using the input variables x and different 

weights w (1). The identified model is all the better the 

smaller the error term ε. 

 

            (1) 

 

Regression analysis is often performed using 

supervised machine learning algorithms such as support 

vector machines (SVMs), artificial neuronal networks 

(ANNs) and genetic programming (GP) or statistical 

methods such as linear and polynomial regression. All 

of these methods have in common that available data is 

divided into a training and test partition. The training 

partition is used to learn the model and afterwards the 

generalization capabilities of the selected models are 

evaluated on the test partition, which must not have 

been used during the training. Some algorithms 

additionally take a part of the training partition for 

parameter optimization or model selection. This part of 

the training partition is referred to as validation 

partition.  

After the identification of a model its performance 

must be measured. This is mostly done using the mean 

squared error (MSE) between the predicted and the 

original values of the target variable. Other correlation 

measures like the Pearson correlation coefficient (R²), 

Spearman’s rank correlation coefficient or variations of 

the MSE are also commonly used.  

 

1.2. Symbolic Regression by Genetic Programming 

Genetic programming (GP), an extension of genetic 

algorithms, was first studied at length by John Koza 

(1992). In contrast to the goal of genetic algorithms, 

finding a fixed length vector of predefined symbols, GP 

tries to find a variable length program to solve a given 

problem. The identified program is often represented as 

structure tree of a computer program, similar to 

symbolic-expressions of functional programming 

languages. Since GP evolves variable length programs 

no assumption about the structure of the programs 

needs to be made. GP is regarded as an evolutionary 

and population based optimization technique and the 

algorithmic steps are described in the following. 

Page 13

mailto:michael.kommenda@fh-hagenberg.at
mailto:gabriel.kronberger@fh-hagenberg.at
mailto:michael.affenzeller@fh-hagenberg.at
mailto:stephan.winkler@fh-hagenberg.at
mailto:christoph.feilmayr@voestalpine.com
mailto:stephan.winkler@fh-hagenberg.at
mailto:stephan.winkler@fh-hagenberg.at


The population is first initialized with random 

individuals (structure trees), whose quality is calculated 

by a problem dependent fitness function. In the case of 

symbolic regression the MSE is mostly used as fitness 

function. Every generation parts of the population are 

replaced by new child individuals, created by 

combining the information of two parent individuals, 

e.g., merging parts of the parent structure trees. 

Afterwards the newly created child individual is 

mutated with a given probability to induce additional 

diversity in the population. The probability for an 

individual to be selected as parent is usually correlated 

to its fitness. The algorithm finishes if a given 

termination criterion is meet, e.g. a maximum number 

of generations has been evaluated. A schematic 

representation of a GP algorithm is shown in Figure 1. 

When using GP for regression tasks the 

individuals are represented as structure trees, where 

each non terminal node represents a mathematical 

function and each terminal node represents either an 

input variable or a constant. Therefore the whole tree 

represents a mathematical formula as described in 

formula 1. During the evaluation step of the algorithm 

the estimated values of the target variable must be 

calculated for each created model. As this step is very 

time consuming, especially for large datasets, reducing 

the number of evaluated samples without losing 

predictive power is advantageous. 

 

2. ALGORITHM EXTENSIONS 

We introduced the relative number of evaluated samples 

as an additional parameter in the GP algorithm. This 

parameter ranges from [0, 1] and states the relative 

number of samples of the training partition that should 

be used in the algorithm. For example if the relative 

number of evaluated samples is 0.2 only 1/5 of the 

training partition is considered during the evaluation of 

the model. But overall the algorithm considers the 

whole information present in the trainings data, because 

this 1/5 is chosen repeatedly.  

There are two possibilities how this reduction of 

the training partition could be implemented. In the first 

algorithmic extension all individuals are evaluated on 

the same part of the training in each generation. The 

selected training samples are changed only during the 

generational step of the genetic algorithm. In contrast to 

this, the other possibility is to evaluate all individuals 

on a different part of the training set by randomly 

selecting the training samples before each evaluation. 

If every individual should be evaluated on the 

same training samples, the training partition is shuffled 

in every generation. The shuffling was implemented 

using a Fisher-Yates algorithm as described by Richard 

Durstenfeld (1964). Every individual is afterwards 

evaluated on the first K samples of the shuffled dataset. 

K defines the number of samples that should be used for 

evaluation and is calculated as the total number of 

training samples N multiplied with the relative number 

of evaluated samples. 

The other possibility is that every individual is 

evaluated on a different, randomly chosen, part of the 

training samples. In this case it would be inefficient to 

shuffle the whole training data before each evaluation. 

Therefore we select a sequence of K unique samples 

between the training samples start and end. This 

problem is equivalent to the problem of picking K items 

from a collection of N items and can be efficiently 

solved using the selection sampling technique described 

by Knuth (1997). The selection sampling technique 

works by iterating over all samples until K samples are 

selected and is shown in Table 1; N defines the total 

number of samples, n the number of remaining samples, 

K the number of samples to select and k the number of 

already selected samples. 

  

Figure 1: Schematic Representation of the GP algorithm 

Page 14



Table 1: Pseudo Code of the Selection Sampling 

Technique 

 
 

It can be shown that this algorithm produces an 

unbiased random subset of the total samples by varying 

the probability to select a sample. The probability is 

equal to the relative number of evaluated samples for 

the first sample. It increases while the number of 

remaining samples n decreases and decreases if a 

sample got selected. All samples are selected with the 

same probability and exactly K samples are selected. 

These two approaches to reduce the number of 

evaluated samples are only used for the training 

partition and so for the learning phase of the GP. In 

contrast all generated models are always evaluated on 

the whole validation partition, because the best 

performing model on the validation partition is returned 

as the result of the algorithm. Therefore the comparison 

value (MSE on the validation partition) must not be 

falsified, which forbids virtually reducing the size of the 

validation partition. Reducing the size of the test 

partition is also not reasonable, because it would change 

the estimation of the generalization capabilities of a 

model.  

The reasons why reducing the number of 

evaluations is desirable are listed in Poli and McPhee 

(2008). In the first place the execution time of the GP 

algorithm is drastically reduced and in addition it is less 

likely that a specialized individual dominates the whole 

population. We could verify these advantages by 

achieving a significant speed up in terms of execution 

time and no drawback in terms of the quality of the 

identified solutions. 

 

3. EXPERIMENTAL SETUP 

The tests for these algorithm adaptations were 

performed on a regression dataset from Dow Chemical. 

The dataset was used in the symbolic regression 

competition, a side event of the EvoStar 2010 

conference, and is publicly available at 

http://casnew.iti.upv.es/index.php/evocompetitions/105-

symregcompetition. It contains 57 different input 

variables of a chemical real world process at Dow 

Chemical and 1066 samples. The sizes of the different 

partitions were 375 samples for training, 375 for 

validation and 316 for testing.  

Furthermore we prepared a second dataset that 

contains data collected from an iron ore reduction 

process of our project partner voestalpine. It contains 

5449 samples and 23 input variables describing the 

input material, products and the state of the blast 

furnace. A detailed description of the blast furnace 

process can be found in Kronberger et al. (2009). In this 

larger dataset 1900 samples were used for training, as 

well as 1900 for validation and 1800 samples for the 

test partition. 

 

3.1. Experiments 

We tested the described improvements on the Dow 

Chemical and on the voestalpine dataset. The major 

difference between the different algorithm runs was the 

population size parameter, which was chosen 1000 or 

5000 respectively. The population size directly affects 

the execution time of the run because the number of 

evaluations during the algorithm run depends on the 

population size and on the number of generations. In 

addition the relative number of evaluated samples was 

varied between 0.1, 0.5, and 1.0. The parameter settings 

of the GP algorithm are summarized in Table 2.  

These two changing parameters led to six 

different parameter combinations which were tested 

with the two algorithmic adaptations; whether all 

samples are evaluated on a differently chosen part of the 

training samples or if the part of the training samples is 

fixed during each generation.  

 

Table 2: GP Algorithm Parameters 

Population size 1000, 5000 

Generations 300 

Relative number of 

evaluated samples 

0.1, 0.5 ,1 

Mutation rate 0.15 

Max tree height 10 

Max tree size 100 

Elites 1 

Crossover SubTreeCrossover 

Selection Tournament selection 

Tournament size 5 

 

3.2. Implementation 

The approaches described in this paper have been 

implemented using the most recent version (3.3) of 

HeuristicLab (Wagner, 2009). HeuristicLab is a generic 

framework for modeling, executing and comparing 

different heuristic optimization techniques and provides 

plenty of functions for result analysis and evaluation. 

Another advantage is that all operators necessary for 

using GP for symbolic regression are already available. 

A binary version of HeuristicLab is available at 

http://dev.heuristiclab.com/trac/hl/core. 

 

4. RESULTS 

In this section the results regarding the execution time 

of the algorithm and the solution quality (MSE on the 

test partition of the best model per algorithm) on the 

Dow Chemical and the voestalpine dataset are shown. 

The main parameters were the sample selection strategy 

(every generation or every evaluation), the relative 

number of evaluated samples, and the population size. 

As the GP process is stochastic we repeated each 

parameter setting 40 times. 

While k < K 

 Select actual sample with probability (K-k) / n 

 If sample is selected  

  Increase k 

 Decrease n 

 Step to next sample 

End 

Page 15

http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition
http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition
http://dev.heuristiclab.com/trac/hl/core


4.1. Execution time 

Figure 2 shows a boxplot of the different execution 

times of the algorithm with a population size of 1000. 

The x-axis indicates the sample selection strategy, 

whether the training samples were the same for one 

generation or if the training samples varied for every 

evaluation, and the relative number of evaluated 

samples parameter value. The y-axis shows the 

execution time of all 40 repetitions as boxes. The results 

regarding the execution time for GP algorithms with a 

population size of 5000 are shown in Figure 3. It is 

noticeable that the execution time of runs that use the 

same 10% of the training partition for all models in a 

generation (Figure 3, first box), spreads strongly, but 

the median (dotted line in the boxplot) is as expected 

lower than the median of the runs which use more  

 

 
Figure 2: Boxplot of the Execution Times of GP Runs 

on the Dow Chemical Dataset with Population Size 

1000 

 

 
Figure 3: Boxplot of the Execution Times of GP Runs 

on the Dow Chemical Dataset with Population Size 

5000 

samples of the training partition. The results on the 

voestalpine dataset are shown in Figure 4 and 5. The 

runs illustrate the same correlation between the relative 

number of evaluated samples and the execution time, 

except that the average execution time is longer because 

of the larger training, validation, and test partitions. 

Whenever only parts of training set are used, the 

runtime drops significantly. The validation and test 

partition have the same amount of samples for every 

algorithmic setting. Additionally, every structure tree 

must be interpreted before it can be evaluated. The 

interpretation is only dependent on the tree size and so it 

is not affected by the reduction of the evaluated 

samples. These two factors specify a lower bound on 

the execution time. 

 

 

 
Figure 4: Boxplot of the Execution Times of GP Runs 

on the voestalpine Dataset with Population Size 1000 

 
 

 
Figure 5: Boxplot of the Execution Times of GP Runs 

on the voestalpine Dataset with Population Size 5000 

 

Page 16



As it is shown in the figures above the runtime is 

drastically affected by the number of evaluated samples 

in each generation. However, the reduction would be 

useless, if the achieved quality was not competitive to 

the quality achieved by evaluating all available training 

samples.  

 

4.2. Generalization error 

The generalization error of the identified models is 

estimated by evaluating the models on the test partition. 

The validation partition could not be used for this task 

because the identified model is selected as the best 

performing model on the validation partition. The 

median MSE and its standard deviation of all 40 

algorithm runs, per sample selection strategy and 

population size on the Dow Chemical dataset, are listed 

in Table 2. There is no obvious difference when only 

parts of the training partition are used to learn the 

models. Additionally the standard deviation of the MSE 

is bigger when more samples are used for training 

(relative number of evaluated samples 1.0). The reason 

for this is that it is more likely that the models are 

overfitted when using more training samples. 

Table 2: Median and the standard deviation of the MSE 

on the test partition of the Dow Chemical dataset 

Sample selection 

strategy 

Population 

size 

Median 

(MSE) 

StDev 

(MSE) 

Generation 0.1 1000 0.0578 0.0080 

 5000 0.0520 0.0078 

Generation 0.5 1000 0.0637 0.0091 

 5000 0.0571 0.0329 

Generation 1.0 1000 0.0609 0.2512 

 5000 0.0598 0.0085 

Evaluation 0.1 1000 0.0560 0.0032 

 5000 0.0523 0.0056 

Evaluation 0.5 1000 0.0623 0.0171 

 5000 0.0620 0.0088 

Evaluation 1.0 1000 0.0622 0.0130 

 5000 0.0598 2.0066 

 

Table 3: Median and the Standard Deviation of the 

MSE on the Test Partition of the voestalpine Dataset 

Sample selection 

strategy 

Population 

size 

Median

(MSE) 

StDev 

(MSE) 

Generation 0.1 1000 162.17 53.65 

 5000 168.49 38.34 

Generation 0.5 1000 169.83 58.68 

 5000 158.09 49.99 

Generation 1.0 1000 178.63 67.41 

 5000 189.69 59.44 

Evaluation 0.1 1000 198.03 90.25 

 5000 184.79 61.48 

Evaluation 0.5 1000 169.08 67.04 

 5000 183.01 44.45 

Evaluation 1.0 1000 160.42 71.94 

 5000 159.75 47.77 

 

The results on the voestalpine dataset are shown in 

Table 3. On this dataset runs that use more samples for 

training have a slightly lower median MSE. However, 

the differences between the MSEs are not significant, 

when compared with the standard deviation. 

 

5. CONCLUSIONS AND OUTLOOK 

Not surprisingly a reduction of the evaluated samples 

decreases the execution time of the GP runs. In addition 

the result section also shows that runs which use fewer 

training samples perform as good as runs that use all the 

available training samples to learn the models. 

Therefore it is better to use fewer evaluated samples, 

because the saving of the execution time enables the 

user to do more test runs or to integrate more advanced, 

time extensive concepts in the GP algorithm. 

Another interesting approach to virtually reducing 

the number of training samples is using sliding 

windows in combination with GP (Winkler, Affenzeller 

and Wagner 2007). An advantage of this technique is 

that it can be used to predict time-dependent features, 

which is not possibly with the adaptations described in 

this paper. 

The next step is the integration of an automatically 

adaption of the relative number of evaluated samples 

parameter during the algorithm run to improve the 

achieved qualities while minimizing the necessary 

execution time. Another interesting approach is stated in 

the work of Gathercole and Ross (1994). They suggest 

weighting every sample according to its age (how long 

the sample has not been used for training) and its 

difficulty to be predicted correctly. They showed that 

this method outperforms random subset selection on 

classification problems and it would be interesting if 

their method could be adapted for symbolic regression 

problems. 

 

ACKNOWLEDGMENTS 

The work described in this paper was done within the 

Josef Ressel Centre for Heuristic Optimization 

Heureka! (http://heureka.heuristiclab.com/) sponsored 

by the Austrian Research Promotion Agency (FFG). 

 

REFERENCES 

Durstenfeld, R., 1964, Algorithm 235: Random 

permutation, Communications of the ACM, 7 (7), 

pp. 420 

Gathercole, C., Ross, P., 1994, Dynamic Training 

Subset Selection for Supervised Learning in 

Genetic Programming, Parallel problem solving 

from nature III, pp 312- 321, 09-14 October, 

Jerusalem, Israel 

Knuth, D., 1997, The Art of Computer Programming 

Volume 2 Seminumerical Algorithms¸ 3
rd

 Edition, 

Addison-Wesley Professional, pp 142 - 148 

Koza, J. R., 1992, Genetic Programming: On the 

Programming of Computers by Means of Natural 

Selection. MIT Press.  

  

Page 17

http://heureka.heuristiclab.com/


Kronberger, G., Feilmayr, C., Kommenda, M., Winkler, 

S., Affenzeller, M., Bürgler T., 2009, System 

Identification of Blast Furnace Processes with 

Genetic Programming, Proceedings of the IEEE 

2nd International Symposium on Logistics and 

Industrial Informatics (Lindi 2009), pp. 63-68, 

September 10-11, Linz, austria 

Poli, R., Langdon, W.B., McPhee, N.F., 2008, A field 

guide to genetic programming. Published via 

http://lulu.com and freely available at 

http://www.gp-field-guide.org.uk, (with 

contributions by J. R. Koza). 

Wagner, S., 2009, Heuristic Optimization Software 

Systems - Modeling of Heuristic Optimization 

Algorithms in the HeuristicLab Software 

Environment. Thesis (PhD), Johannes Kepler 

University Linz, Austria. 

Winkler, S. M., Affenzeller, M., Wagner, S., 2007, 

Selection Pressure Driven Sliding Window 

Behavior in Genetic Programming Based Structure 

Identification, Computer Aided Systems Theory – 

EUROCAST 2007, pp. 788-795, February 12-16, 

Las Palmas de Gran Canaria, Spain. 

 

AUTHORS BIOGRAPHIES 

 

MICHAEL KOMMENDA finished his studies in 

bioinformatics at Upper Austria University of Applied 

Sciences in 2007. Currently he is a research associate at 

the UAS Research Center Hagenberg working on data-

based modeling algorithms for complex systems within 

Heureka!. 

 

GABRIEL KRONBERGER is a research associate at 

the UAS Research Center Hagenberg. His research 

interests include genetic programming, machine 

learning, and data mining and knowledge discovery. 

Currently he works on practical applications of data-

based modeling methods for complex systems within 

Josef Ressel Center Heureka!. 

 

MICHAEL AFFENZELLER has published several 

papers, journal articles and books dealing with 

theoretical and practical aspects of evolutionary 

computation, genetic algorithms, and meta-heuristics in 

general. In 2001 he received his PhD in engineering 

sciences and in 2004 he received his habilitation in 

applied systems engineering, both from the Johannes 

Kepler University of Linz, Austria. Michael Affenzeller 

is professor at the Upper Austria University of Applied 

Sciences, Campus Hagenberg, and head of the Josef 

Ressel Center Heureka! at Hagenberg. 

 

STEPHAN M. WINKLER received his MSc in 

computer science in 2004 and his PhD in engineering 

sciences in 2008, both from Johannes Kepler University 

(JKU) Linz, Austria. His research interests include 

genetic programming, nonlinear model identification 

and machine learning. Since 2009, Dr. Winkler is 

professor at the Department for Medical and 

Bioinformatics at the Upper Austria University of 

Applied Sciences, Campus Hagenberg. 

 

CHRISTOPH FEILMAYR finished his diploma 

studies in chemical engineering at Technical University 

of Vienna in 2003. From that time he has worked as 

research engineer at voestalpine and has been mainly 

engaged with projects dealing with blast furnace iron 

making. 

 

STEFAN WAGNER received his MSc in computer 

science in 2004 and his PhD in engineering sciences in 

2009, both from Johannes Kepler University (JKU) 

Linz, Austria; he is professor at the Upper Austrian 

University of Applied Sciences (Campus Hagenberg). 

Dr. Wagner’s research interests include evolutionary 

computation and heuristic optimization, theory and 

application of genetic algorithms, machine learning and 

software development.  

Page 18

http://lulu.com/
http://www.gp-field-guide.org.uk/

