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ABSTRACT 
In this paper we describe the use of evolutionary 

algorithms for the selection of relevant features in the 

context of tumor marker modeling. Our aim is to 

identify mathematical models for classifying tumor 

marker values AFP and CA 15-3 using available patient 

parameters; data provided by the General Hospital Linz 

are used. The use of evolutionary algorithms for finding 

optimal sets of variables is discussed; we also define 

fitness functions that can be used for evaluating feature 

sets taking into account the number of selected features 

as well as the resulting classification accuracies. 

In the empirical section of this paper we document 

results achieved using an evolution strategy in 

combination with several machine learning algorithms 

(linear regression, k-nearest-neighbor modeling, and 

artificial neural networks) which are applied using 

cross-validation for evaluating sets of selected features. 

The identified sets of relevant variables as well as 

achieved classification rates are compared. 

 

Keywords: Evolutionary Algorithms, Medical Data 

Analysis, Tumor Marker Modeling, Data Mining, 

Machine Learning, Classification, Statistical Analysis 

 

1. INTRODUCTION AND SCIENTIFIC GOALS 
In general, tumor markers are substances found in 

humans (especially blood and / or body tissues) that can 

be used as indicators for certain types of cancer. There 

are several different tumor markers which are used in 

oncology to help detect the presence of cancer; elevated 

tumor marker values can indicate the presence of 

cancer, but there can also be other causes. As a matter 

of fact, elevated tumor marker values themselves are 

not diagnostic, but rather only suggestive; tumor 

markers can be used to monitor the result of a treatment 

(as for example chemotherapy). Literature discussing 

tumor markers, their identification, their use, and the 

application of data mining methods for describing the 

relationship between markers and the diagnosis of 

certain cancer types can be found for example in 

(Koepke, 1992) (where an overview of clinical 

laboratory tests is given and different kinds of such test 

application scenarios as well as the reason of their 

production are described) and (Yonemori et al., 2006). 

The general goal of the research work described 

here is to identify models for estimating selected tumor 

marker values on the basis of routinely available blood 

values; in detail, estimators for the tumor markers AFP 

and CA 15-3 have been identified. The documented 

tumor marker values are classified as “normal”, 

“slightly elevated”, “highly elevated”, and “beyond 

plausible”; our goal is to design classifiers for the 2-

class-classification problem classifying samples into 

“normal” vs. “elevated”, “highly elevated”, or “beyond 

plausible”. 

In the research work reported on in this paper we 

use evolutionary algorithms for optimizing the selection 

of features that are used by machine learning algorithms 

for modeling the given target values. This approach is 

closely related to the method described in (Alba, 

García-Nieto, Jourdan, and Talbi 2007) where the 

authors compared the use of a particle swarm 

optimization (PSO) and a genetic algorithm (GA), both 

augmented with support vector machines, for the 

classification of high dimensional microarray data. 

 

2. DATA BASE 
Data of thousands of patients of the General Hospital 

(AKH) Linz, Austria, have been analyzed in order to 

identify mathematical models for tumor markers. We 

have used a medical data base compiled at the Central 
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Laboratory of the General Hospital Linz, Austria, in the 

years 2005 – 2008: 28 routinely measured blood values 

of thousands of patients are available as well as several 

tumor markers; not all values are measured for all 

patients, especially tumor marker values are determined 

and documented if there are indications for the presence 

of cancer. 

The blood data measured at the AKH in the years 

2005-2008 have been compiled in a data base storing 

each set of measurements (belonging to one patient): 

Each sample in this data base contains an unique ID 

number of the respective patient, the date of the 

measurement series, the ID number of the measurement, 

and several other clinical parameters; standard blood 

parameters are stored as well as tumor marker values. 

Data that could identify patients uniquely (as for 

example name, date of birth, …) where at no time 

available to the authors except the head of the 

laboratory. 

In total, information about 20,819 patients is stored 

in 48,580 samples. Please note that of course not all 

values are available in all samples; there are many 

missing values simply because not all blood values are 

measured during each examination. 

In (Winkler, Affenzeller, Jacak, and Stekel 2010) 

the authors give further details about the data used in 

the research work described here; background 

information about the blood parameters given in the 

following two subsections as well as references to 

important literature on these clinical parameters can be 

found there, too. 

 

2.1. Input Data  
The following features are available in the AKH data 

base and are potential inputs for modeling the given 

tumor marker values: ALT (lanine transaminase), AST 

(aspartate transaminase), BSG1 (the erythrocyte 

sedimentation rate), BUN (blood urea nitrogen), CBAA 

(basophil granulocytes), CEOA (eosinophil 

granulocytes), CH37 (cholinesterase), CHOL 

(cholesterol), CLYA (lymphocytes), CMOA 

(monocytes), CNEA (neutrophils), CRP (c-reactive 

protein), FE (iron), FER (ferritin), GT37 (γ-

glutamyltransferase), HB (hemoglobin), HDL (high-

density lipoprotein), HKT (hematocrit), HS (uric acid), 

KREA (creatinine), LD37 (lactate dehydrogenase) 

MCV (mean corpuscular / cell volume), PLT 

(thrombocytes), RBC (erythrocytes), TBIL (bilirubin), 

TF (transferring), WBC (leukocytes), and finally the 

age and the sex of the patients. 

 

2.2. Target Data  
In addition to the features listed in the previous section, 

the following tumor markers are also documented in the 

AKH data base: AFP (alpha-fetoprotein), CA 125 

(cancer antigen 125), CA 15-3 (mucin 1), CEA 

(carcinoembryonic antigen), CYFRA (fragments of 

cytokeratin 19), and PSA (prostate-specific antigen). 

The two tumor markers analyzed in this work can 

be described in the following way: 

• AFP: Alpha-fetoprotein is a protein found in 

the blood plasma; during fetal life it is 

produced by the yolk sac and the liver. For 

example, AFP values of pregnant women can 

be used in screening tests for developmental 

abnormalities as increased values might for 

example indicate open neural tube defects, 

decreased values might indicate Down 

syndrome. AFP is also often measured and 

used as a marker for a set of tumors, especially 

endodermal sinus tumors (yolk sac carcinoma), 

neuroblastoma, hepatocellular carcinoma, and 

germ cell tumors (Duffy and Crown, 2008). 

• CA 15-3: Mucin 1 (MUC1), also known as 

cancer antigen 15-3 (CA 15-3), is a protein 

found in humans; it is used as a tumor marker 

in the context of monitoring certain cancers 

(Niv, 2008), especially breast cancer. 

 

2.3. Data Preprocessing 
Before analyzing the data and using them for training 

classifiers we have preprocessed the available data: 

First, all variables have been linearly scaled to the 

interval [0;1]: For each variable vi, the (predefined) 

minimum value mini is subtracted from all contained 

values and the result divided by the difference between 

mini and the (also predefined) maximum plausible value 

maxplaui; all values greater than the given maximum 

plausible value are replaced by 1.0. Then, all samples 

belonging to the same patient with not more than one 

day difference with respect to the measurement data 

have been merged. This has been done in order to 

decrease the number of missing values in the data 

matrix. In rare cases, more than one value might thus be 

available for a certain variable; in such a case, the first 

value is used. 

Additionally, all measurements have been sample-

wise re-arranged and clustered according to the patients' 

IDs; this has been done in order to prevent data of 

certain patients being included in the training as well as 

in the test data. 

Before using modeling algorithms for training 

classifiers we have compiled separate data sets for each 

analyzed target tumor marker tmi: First, all samples 

containing measured values for tmi are extracted. 

Second, all variables are removed from the resulting 

data set that contain values in less than 80% of the 

remaining samples. Third, all samples are removed that 

still contain missing values. This procedure results in a 

specialized data set dstmi for each tumor marker tmi. 

Details about these data preprocessing steps can be 

found in (Winkler, Affenzeller, Jacak, and Stekel 2010). 
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3. MODELING APPROACH 
As for example discussed in detail in (Alba, García-

Nieto, Jourdan, and Talbi 2007), feature selection is 

often considered an essential step in data analysis as this 

method can reduce the dimensionality of the datasets 

and often conducts to better analyses.  

Given a set of features F = {f1, f2, …, fn}, our goal 

here is to find a subset F’  F that is on the one hand as 

small as possible and on the other hand allows modeling 

methods to identify models that estimate given target 

values as well as possible. This implies that we have to 

deal with a tradeoff situation as in most cases we will 

see that more complex models (i.e., models using more 

features) show better fit on data. 

This optimization approach is schematically shown 

in Figure 1. 

 

The fitness of a feature selection Fk is calculated in 

the following way: We use a machine learning method 

(linear regression, k-nearest-neighbor modeling, 

artificial neural networks, SVMs, or any other kind of 

training algorithm) for estimating predicted target 

values estk and compare those to the original target 

values orig; the coefficient of determination (R2) 
function is used for calculating the quality of the 

estimated values, i.e., we calculate the quality of the 

model produced using Fk, r2(Fk): r2(Fk) = r2(estk,orig). 
Additionally, we also calculate the ratio of selected 

features a as a(Fk,F) = ||Fk||/||F||. Finally, using a 

weighting factor α, we calculate the fitness of the set of 

features Fk: 

fitness(Fk) = α * a(Fk,F) + (1- α) * (1-r2(Fk)) (1) 

 

As an alternative to the coefficient of 

determination function we can also use a classification 

specific function that calculates the ratio of correctly 

classified samples, either in total or as the average of all 

classification accuracies of the given classes (as for 

example described in (Winkler 2009), Section 8.2): 

For all samples that are to be considered we know 

the original classifications origClass, and using 

(predefined or dynamically chosen) thresholds we get 

estimated classifications estClassk for estimated target 

values estk (calculated using features set Fk). The total 

classification accuracy cak is calculated as  

ca(Fk) = ||{j: estClassk[j] = origClass[j]}|| / ||estClass|| 
    (2) 

Class-wise classification accuracies cwca are 

calculated as the average of all classification accuracies 

for each given class c œ C, cak,c, separately: 

cak,c = ||{j: estClassk[j] = origClass[j] & 
              origClass[j] = c}|| / ||j: origClass[j] = c|| (3) 

cwca(Fk) = ΣcœC(cak,c) / ||C|| (4) 

We can now define the classification specific 

fitness of feature selection Fk as 

fitnessclass(Fk) = α * a(Fk,F) + (1- α) * (1-ca(Fk)) (5) 

or 

fitnessclass(Fk) = α * a(Fk,F) + (1- α) * (1-cwca(Fk)) (6) 

 

We use evolutionary algorithms for search for 

solutions that minimize the given fitness functions. 

Evolutionary algorithms are used for generating 

solutions consisting of bit vectors bj, where bj(m) 
denotes whether variable m is used by solution 

candidate j or not. This rather simple definition of 

solution candidates enables the use of standard genetic 

operators for crossover and mutation of bit vectors: We 

use uniform, single point, and 2-point crossover 

operators for binary vectors and bit flip mutation that 

flips each of the given bits with a given probability. 

Explanations of these operators can for example be 

found in (Holland 1975) and (Eiben and Smith, 2003). 

We have implemented and tested several EAs for 

guiding the search for optimal feature sets, especially 

evolution strategies (ES) (Rechenberg 1973; Schwefel 

1994) and genetic algorithms (GAs) (Holland 1975). 

When applying the ES based approach, 

populations consisting of μ individuals are used; in each 

generation, λ children are generated using random 

parent selection, recombination (which is optional) and 

mutation, and then the μ best solutions (selected from 

 

 

 
Full medical data set 

(blood parameters, tumor 

marker target values) 

1    0    1    1    0    0    0    1 

0    0    0    1    1    0    1    1 

0    0    0    1    1    0    1    1 

Data subset 
(selected blood 

parameters, tumor 

marker target 

values) 

Parents selection, 
crossover, mutation 

Evaluation, 
i.e., modeling: 

 

lin. reg., kNN, 
ANN, … 

 

(k-fold cross 

validation) 

Offspring 
        selection 

Figure 1: A hybrid evolutionary algorithm for feature selection in the context of tumor marker modeling. Machine 

learning algorithms are applied for evaluating feature sets. 

0.482 

0.692 
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the children, if the comma strategy is chosen, or from 

parents and children, if the plus strategy is chosen) 

become the next generation’s members. Additionally, 

the ratio of successful mutations (i.e., mutations that 

lead to an improvement of the solutions’ qualities) is 

monitored; if this ratio is less than 1/5, then the 

mutation operator’s flip probability is (in our 

implementation) multiplied by 0.9, and if it is greater 

than 1/5, then it is divided by 0.9. 

The GA approaches used in the authors’ research 

work include the application of parents selection 

(proportional or linear rank, e.g.), crossover, and 

mutation. Optionally, offspring selection can also be 

applied: After generating new solutions by crossover 

and mutation, these new solutions are inserted into the 

next generation’s population only if they are better than 

their parents. Details about this procedure can for 

example be found in (Affenzeller, Winkler, Wagner, 

and Beham 2009). 

 

4. IMPLEMENTATION 
The approach described in this paper (including the 

evolutionary algorithms used for optimizing feature 

selection as well as the machine learning methods used 

for evaluating feature sets) have been implemented 

using the HeuristicLab (HL) framework 

(http://www.heuristiclab.com; (Wagner 2009)), a 

framework for prototyping and analyzing optimization 

techniques for which both generic concepts of 

evolutionary algorithms and many functions to evaluate 

and analyze them are available; we have used these 

implementations for producing the results summarized 

in the following section. 

 

5. EMPIRICAL TESTS AND RESULTS 
5.1. Test Series Setup 
In this section we document modeling results for tumor 

markers AFP and CA 15-3. We have applied the 

evolutionary modeling and feature selection approach 

described in Section 3 using an (10+100) evolution 

strategy (without recombination, only using mutation); 

the number of evaluations (of the ES algorithm) was for 

some test runs limited to 1,000 and for others to 10,000, 

and the parameter α (which weights the ratio of selected 

features, see Section 3) was in some cases set to 0.2 and 

in other to 0.5. Initially, each feature was selected by 

each solution candidate with 20% probability. When 

mutating a solution candidate, the initial bit flip 

probability (i.e., the probability of changing the 

information about using a certain feature) for each 

feature was set to 0.5, and this bit flip probability was 

(as described in Section 3) modified with respect to 

success ratio; the minimum value for the bit flip 

probability was set to 0.1. 

We have tested each algorithm setting 5 times 

using different machine learning algorithms (with 

varying algorithm specific parameter settings); 5-fold 

cross validation was applied. Linear regression (linReg), 

k-nearest-neighbor (kNN) learning, and artificial neural 

networks (ANNs) have been used as machine learning 

algorithms; details about their implementation in HL 

can for example be found in (Winkler, Affenzeller, 

Jacak, and Stekel 2010). The number of neighbors (k) 

considered in kNN classification was varied and set to 

3, 5, and 10, respectively; for training ANNs the 

number of hidden nodes was set to 10, and 30% of the 

available training samples were used as validation set, 

i.e., the network that performed best on validation 

samples was eventually presented as result of the 

learning process. 

For evaluating modeling results, the fitness 

function (1) given in Section 3 was used. In the 

following subsections we summarize the results 

documented for these test parameters; for each tumor 

marker and each modeling scenario we list the input 

features selected by the evolutionary process (features 

not selected in each test run are given in brackets) as 

well as average best fitness values (which are used by 

the evolutionary algorithm and are calculated using 

validation samples) and test classification accuracies 

(i.e., the ratios of correctly classified samples that were 

not considered during the learning process). 

 

5.2. Test Results for AFP 
 

Table 1: Results for AFP (linReg; α = 0.2) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 (AGE), AST, 

(CH37), (HKT), 

(KREA), (PLT),  

0.6867 80.73% 

10,000 AST, CH37, (HKT) 0.6677 80.33% 

 

Table 2: Results for AFP (kNN; α = 0.2) 
k Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

3 1,000 (AGE), AST, CH37, 

GT37, HB, (HKT), 

(PLT), (TBIL), 

(WBC) 

0.8574 78.38% 

10,000 AST, CH37, (HKT), 

(WBC) 

0.8226 77.93% 

5 1,000 AST, (BUN), CH37, 

GT37, (HB), (TBIL) 

0.7822 79.02% 

10,000 AST, (BUN), CH37, 

GT37, (HB) 

0.7687 79.30% 

10 1,000 AST, (BUN), CH37, 

(HB) 

0.7149 80.87% 

10,000 AST, (BUN), CH37, 

(HB) 

0.7149 80.03% 

 

Table 3: Results for AFP (ANN; α = 0.2) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 AST, CH37, 

(HKT) 

0.6482 82.54% 

10,000 AST, CH37 0.6475 82.49% 

 

Table 4: Results for AFP (linReg; α = 0.5) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 AST, (CH37), (HB), 

(PLT) 

0.4636 79.24% 

10,000 AST 0.4556 78.91% 
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Table 5: Results for AFP (kNN; α = 0.5) 
k Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

3 1,000 AST 0.5872 75.90% 

10,000 AST 0.5872 75.90% 

5 1,000 AST 0.5289 77.86% 

10,000 AST 0.5289 77.86% 

10 1,000 AST, (CH37), 

(HKT), (WBC) 

0.5385 79.93% 

10,000 AST 0.5055 78.84% 

 

Table 6: Results for AFP (ANN; α = 0.5) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 AST 0.4384 79.53% 

10,000 AST 0.4384 79.53% 

 

5.3. Test Results for CA 15-3 
 

Table 7: Results for CA 15-3 (linReg; α = 0.2) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 (AGE), AST, 

(CH37), (HKT), 

(KREA), (PLT), 

0.6867 80.73% 

10,000 AST, CH37 0.6677 80.33% 

 

Table 8: Results for CA 15-3 (kNN; α = 0.2) 
k Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

3 1,000 (AST), (BUN), 

(CEOA), 

(CMOA), 

(CNEA), (HKT), 

LD37 

0.8979 67.90% 

10,000 (AST), (BUN), 

(CEOA), (CNEA), 

(HKT), LD37 

0.8847 67.73% 

5 1,000 (CEOA), 

(CMOA), (CRP), 

(GT37), (HKT), 

LD37, (WBC) 

0.8149 70.44% 

10,000 (CEOA), 

(CMOA), (CRP), 

(HB), LD37 

0.8104 70.23% 

10 1,000 (BUN), (CEOA), 

(CMOA), (CRP), 

(HB), (HKT), 

LD37 

0.7568 72.01% 

10,000 (BUN), (CEOA), 

(CMOA), (CRP), 

(HB), (HKT), 

LD37 

0.7522 71.37% 

 

Table 9: Results for CA 15-3 (ANN; α = 0.2) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 (AST), (CBAA), 

(CNEA), HB, 

LD37, (GT37), 

(PLT), (SEX) 

0.7030 73.91% 

10,000 (AST), (CNEA), 

(GT37), (HB), 

LD37 

0.6793 73.18% 

 

Table 10: Results for CA 15-3 (linReg; α = 0.5) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 AST, (CH37), 

(HB), (PLT) 

0.4636 79.24% 

10,000 AST 0.4556 78.91% 

 

Table 11: Results for CA 15-3 (kNN; α = 0.5) 
k Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

3 1,000 (CMOA), (HKT), 

LD37 

0.6196 65.80% 

10,000 (CMOA), (HKT), 

LD37 

0.5878 65.45% 

5 1,000 (CMOA), (HKT), 

(CRP), (LD37) 

0.5860 65.97% 

10,000 (CMOA), (HKT), 

(CRP), (LD37) 

0.5731 65.23% 

10 1,000 (CEOA), (CEA), 

(GT37), LD37, 

(RBC) 

0.5602 70.46% 

10,000 (CEOA), (GT37), 

LD37, (RBC) 

0.5488 70.21% 

 

Table 12: Results for CA 15-3 (ANN; α = 0.5) 
Evalu-

ations 

Selected features Best 

fitness 

Avg. test 

accuracy

1,000 (LD37), (AST), 

(HB) 

0.4863 70.94% 

10,000 AST, HB 0.4674 72.35% 

 

6. CONCLUSIONS AND OUTLOOK 
From the tables given in Section 5 we see that in most 

cases rather small feature sets are sufficient for 

achieving satisfying classification results: The test 

classification accuracies documented here are in most 

cases comparable to those summarized in (Winkler, 

Affenzeller, Jacak, and Stekel 2010); as expected, the 

best classifiers are here produced using ANNs. 

Obviously, setting α=0.5 leads to very strong 

parsimony pressure, whereas setting α=0.2 seems to be 

the better choice as it leads to better classification 

results using only comparably small feature sets. 

Furthermore, we also see that the test results 

documented after 1,000 evaluations are in many cases 

better than those documented after 10,000 evaluations. 

On the one hand, future work should deal with the 

identification of feature sets and models for other tumor 

markers which are already available in the data based 

used in this research work; on the other hand, the 

authors will also try to identify estimation models for 

tumor diagnoses based on tumor marker information as 

well as standard blood parameters. 
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