
 OPTIMIZING TIME PERFORMANCE IN REACHABILITY TREE- BASED
SIMULATION

Miguel Mujica(a), Miquel Angel Piera(b) , Mercedes Narciso(c)

Autonomous University of Barcelona, Department of Telecommunications and Systems Engineering.
Barcelona, Spain.

(a)MiguelAntonio.Mujica@uab.es, (b)MiquelAngel.Piera@uab.cat, (c)Mercedes.Narciso@uab.es,

ABSTRACT
This paper presents the highlights of a two-step
algorithm based on the reachability tree for optimizing
industrial system models coded with the Coloured Petri
Net formalism. The first step of the algorithm consists
in generating all the possible states that can be reached
by the system, and the second step of the algorithm
focuses on updating the time stamp values of the most
promising state subspaces of the system. Some tests
with benchmarking problems have been made to
evaluate the efficiency of the second part of the
algorithm, and the results obtained are analyzed in order
to identify the algorithm processes that need
improvements. Based on the results, an heuristic has
been developed to improve the performance with a
better choice of states to be expanded during the
generation of the reachability tree.

Keywords: Coloured Petri nets, reachability tree,
simulation, decision support systems, optimization time.

1. INTRODUCTION
Due to changes in the market rules (i.e. changes from
high volume production to high diversity), during the
last decade, companies shifted their methods for
producing goods to more flexible schemas of
production, distribution and logistics. With this
transformation, companies expected to improve their
productivity as more flexibility was gained by its value
chain. Soon it became clear that the more flexible the
processes were, the more difficult became it to
coordinate all the elements of the chain (suppliers,
production elements, distribution entities, etc).
 Therefore, it became important to tune decision
support tools that could help decision makers to
coordinate in the most efficient way the different
processes and elements of the system.
 Several approaches from diverse knowledge areas
have been developed to face some aspects of these
problems. In later years, with the improvement of
digital computers, digital simulation has emerged as a
tool capable to give support in the decision making
process of industrial systems. Petri Nets (PN) is a
modeling formalism that has been applied successfully
to develop accurate discrete event system models of

industrial and logistic systems. It presents certain
modeling characteristics which make it appropriate to
be applied in these fields; in particular it supports
models for concurrency, parallelism and conflicting
situations. Coloured Petri Nets (CPN) is a high
abstraction level modeling formalism that allows
modeling very complex industrial systems in a more
simplified representation (which result easier to
maintain) than the model that could be obtained with
Petri Nets (Jensen 1997). Both CPN and PN have been
used for modeling the structural behavior of systems but
they can also be employed to analyze system
performance. In order to achieve this objective the
formalism has been extended with time representations
(time stamps, global clock) (Jensen 1997).
 The reachability tree is a quantitative analysis tool
used in PN and CPN which allows storing all the
different states of a system in a tree-based structure. In
general it is employed to verify Petri nets behavior
through the exploration of the state space (Jensen,
Christensen, Hard, Holzman). In the work presented in
this article, the reachability tree approach has been used
to develop a two step efficient algorithm with the
objective to improve industrial systems performance.

1.1. The Reachability Tree
The reachability tree is a directed graph in which the
nodes represent the set of reachable states of the system
and the arcs correspond to the state changes. Such a
graph represents all the possible system’s scenarios and
can be used to verify and analyze some properties of the
system, but it shows some disadvantages when it is used
for optimizing purposes:

• In order to detect previously appeared states,

all the generated nodes must be stored in
computer memory causing most of the times
memory saturation due to the state explosion
problem.

• The simulation performance is reduced as the
memory burden grows when the storage of
states takes place.

• In order to simulate the system some nodes
need to be reevaluated, increasing the
computational time.

800

• When evaluating old nodes time
characteristics, an extra computational effort
appears because some branches must be
updated according to the combination of time
stamps.

 There have been some attempts to overcome the
problem of memory saturation due to the exponential
growth when new states are generated. Jard (1991) and
Christensen (2002) developed respectively an approach
that does not store all the states of the model and throws
away states on the fly, minimizing the amount of
computer memory used to explore the state space.
 These approaches have the advantage that reduce
the run-time of the state space exploration and result
very efficient for analyzing and verifying system
properties such as dead locks and safety properties, but
the old node analysis made is not as efficient as it could
be done with a different approach.
 Holzmann (1998) developed an algorithm that is
able to maintain all the states based in the hashing
principle. This approach uses an efficient way of storing
the different states of the system; however a main
disadvantage appears when two different states are
mapped to the same hash value (collision).
 The state analysis that has been implemented in the
algorithm presented in this article was based on the
principles reported by Narciso and Piera (2005). It
stores all state space information and evaluates only the
most promising branches in the tree. This approach
which does not overcome completely the problems of
speed and memory, is capable to generate results
analyzing the most promising branches of the tree and
updating the time stamp values based on the decision
rules reported in the same work. The state analysis has
been combined with the fast search and efficient
transition evaluation algorithms developed by Mujica
and Piera (2006, 2007) resulting in an efficient tool for
exploring the state space with optimization purposes,
and a very promising one to solve real life industrial
problems.

2. REACHABILITY TREE-BASED

SIMULATOR
A simulator to optimize industrial system performance
based on time analysis of old nodes stored in the
reachability tree has been coded.

2.1. Time representation for the Reachability Tree
To represent time in the reachability tree, it is necessary
to attach a global clock to each state besides the
correspondent time stamps of the tokens that belong to
the marking. To understand how time flows between
states when using the time extension it is proposed to
take any node in the state space (one suggestion is to
take the root node), and follow one of the directed arcs
to its successors (child nodes); the difference between
the clocks represents the amount of time that has past
when going from one node to the next one, i.e. the time
that takes the system to change from one state to the

other. If the same process is repeated with the
subsequent nodes until getting the objective state it will
be possible to obtain the complete flow time for the
process. A representation of a reachability tree with its
global clocks is presented in Figure 1.

Figure 1: Time Extension for Reachability Tree

 In this example the reachability tree is generated
under the CPN rules (color enabling rules). Time
advances during the generation of children nodes based
on the rule that the global clock must take the minimal
time between all time stamps of the enabling tokens
(Narciso and Piera 2005). Using these rules to explore
the reachability tree, it will be possible to analyze the
state evolution behavior using time stamps and the
global clock.

2.2. Updating Time in the State Space
After exploring the reachability tree, all the possible
system states are generated (i.e. a bounded state space)
and stored in the tree structure. The old nodes are stored
altogether with their time characteristics in a separate
list for later analysis.
 When time is involved in the analysis, it is common
to find old nodes which could differ one from the other
in their time extension characteristics (time stamps and
global clock). Since the same state can be reached from
a different node, the time extension characteristics of
old nodes should be properly updated in order to deal
with the timed state space. However when dealing with
optimization problems instead of system verification
properties, it is possible to save computational time
avoiding time evaluation for the old nodes which will
not lead to the solution of the optimization problem.
 The optimization of the paths in the state space is
carried out making a time analysis for the old nodes.
The algorithm compares the time stamps and global
clock, and updates the time values of the best path that
leads to the objective state. Narciso and Piera (2005)
proposed an approach which analyses the old nodes in a
way that the algorithm avoids the complete exploration
of branches in the reachability tree. It updates only the
ones that improve the paths which lead to the objective
states (optimization). The authors proposed a rule for
deciding between two old node states basing the

N1

N2 N3

N11

N5

N10

N4

N7 N6 N8

N9

 =

 = =

 = = = =

 = =

 =

 =

0

0 3 4

5 435

710 5

T1 T1 T2

T2 T1 T4 T2

T1 T3 T4

801

OLD

OLD

OLD

OLD NODES

FIRST STEP

1

2

3

4

5

.

.

.

OPTIMIZE

TIME VALUES

OLD

SECOND STEP

OLD NODES

1

2

3

4

5

.

.

.

decision only on the time stamps of the markings. One
example of how to use the mentioned rule is shown in
Figure 2.

Figure 2: The time analysis of an Old Node

 There are two markings representing the same
state. One state Mk which has been already stored
during the generation of the reachability tree is
compared with another marking Mj which represents the
same state but it has different time stamps values. In
this case three possible results can be obtained from the
evaluation:

• The time stamp values of the marking Mj are

less than the time stamp values of the original
marking Mk. Therefore it can be concluded that
the marking Mj will produce states with better
time values than the ones that are actually
stored in the reachability tree. In this case the
original marking Mk is replaced by the
marking Mj, and the time values are updated
for the best branch that goes from the original
marking to the final one.

• Dealing with time minimization, the time
stamp values of the marking Mj are greater
than the values of the marking Mk. In this case
it can be concluded that the Mk marking is
better than the marking Mj and the original
marking Mk will be kept without making any
value updating.

• Some time stamp values in the marking Mj are
better than the correspondent ones in the
marking Mk and some are worse. For this
outcome nothing can be concluded about the
two markings. In this case a depth search must
be done using the Mj time stamps values in
order to get to the final state and then a
decision based on the final time must be taken.
If the final time resulting from using the Mj
time values is better than the stored one, the
marking Mj will replace the original marking
Mk and the time stamps of the branch that goes
from Mj to the final state.

2.3. A Two- Step Reachability Tree Algorithm
In the first step of the algorithm, the CPN rules are used
to generate the complete state space. All the possible

states of the system are generated together with their
time values which depend mainly on the exploring
sequence of the algorithm. The repeated states that
appear during the exploration (old nodes) are stored in a
separate list with their correspondent time stamps and
global clock for a later analysis.
 In the second step of the algorithm (when all the
states of the system have been already generated) the
stored old nodes are analyzed comparing their time
stamp values with the correspondent values in the nodes
stored in the reachability tree. This procedure is carried
out with the purpose of finding the time values that
reduce the most the final time of the sequence of states
that go from the initial state to the final one. Therefore
the time span for the whole procedure is optimized. The
old node analysis is done following a simple order in
the old node list (from the first to the last element).
 The time analysis of tokens is based on the
algorithm and updating rules proposed by Narciso and
Piera (2005) which avoid the exhaustive analysis of all
branches at lower levels in the state space when a better
node is selected and the time stamps of the offspring
nodes are updated.
The two steps of the algorithm are outlined in Figure 3

Figure 3: The Two-Step Algorithm.

 In the first step the shaded nodes correspond to the
old nodes that appear during the state generation, and
are stored in the old node list. In the second step of the
algorithm the list is evaluated focusing on the time
stamp values of the nodes comparing them with the
ones stored in the reachability tree, applying the
evaluation algorithm previously mentioned.

3. TESTING THE SIMULATOR/OPTIMIZER
The simulator performance was tested by modeling
some job-shops which appear to be well-known
benchmarks (Dauzére et al 1994). Such job-shops are
the 3x3, 5x5 and the 6x6 job-shops. The objective of the
evaluation was to establish the efficiency of the second
step of the algorithm throughout the comparison of time

 Mk

REACHABILITY TREE

 Mj
TIME STAMP ANALYSIS

802

stamps between repeated states when the depth
exploration is done.

3.1. The Job-Shops
The job-shop in its different modalities is a
benchmarking problem which consists in a certain
number of jobs that must follow a specified sequence of
tasks through different machines. In the 5x5 job-shop
five jobs must go through processes in five different
machines, the goal of these benchmarks is to obtain the
sequence that minimizes the time span of the whole
procedure. The different job-shop models were coded
with the CPN formalism.
 A typical model for a job-shop is presented in figure 4.

Figure 4: The CPN Model of the 3x3 Job-Shop

 The place node P1 stores the tokens which
represent the information of the job and task numbers
(color J) and the one about the machine needed to
complete the correspondent task (color W). The place
node P2 stores the tokens with the logical sequence
information about the jobs in place P1 (colors E and W)
and the time consumption when the task is done (color
P). The last place node P3 represents the availability of
the different machines (color Z). In the initial state of
the system all jobs are waiting for the first task to be
done, and the machines are available and ready to be
used. The global clock and the time stamps are equal to
zero in this state.

3.2. Second Step: Performance evaluation
The aim of the data collected is to evaluate the
efficiency of the optimization process while the time
stamp analysis is carried out. During the simulation,
data of the following events was collected:

• The amount of repeated states (old nodes) that

appeared during the exploration.
• The number of old nodes that were updated

due to the comparison of their time stamp
combination.

• Number of not-updated nodes (rejected nodes)
due to the comparison of time stamp values.

• Number of old nodes for which it was not
possible to decide about updating based on
time stamp comparison. In order to come to a
decision, a depth exploration was done for
these cases.

• The number of nodes that needed to be
updated after the depth exploration was done
(because the final time was less than the
original one).

 The results obtained from the evaluation of the
different benchmarks are presented in Table 1.

Table 1: The Simulator Performance

Job-Shop type J-S 3x3 J-S 5x5 J-S 6x6

No. of different
States 693 7,776 117,650

Old Nodes
Found 2,032 24,625 487,408

Updated Nodes
at Initial

Evaluation
59 1,893 26,555

Discarded
nodes after

Initial
Evaluation

485 5,829 128,387

Nodes Unable
to Decide 1,488 16,903 332,475

Updated Nodes
after depth

explorations
11 10 35

 The above data was collected during the
optimization of the different benchmarks, maintaining
in memory all the information for the complete state
space and choosing the first available node as a depth-
first search logic.

3.3. Analysis of the Experimental Results
It can be seen that in the case of the job-shops, the
percentage of updated nodes after the depth exploration
is 0.7%, 0.06% and 0.01% for the 3x3, 5x5 and 6x6 job-
shop respectively. The previous results are important
since the optimization phase takes a lot of CPU time,
which can be reduced by minimizing the number of
depth explorations.
 It also can be seen that the time analysis becomes
more complicated and the number of states which are
unfeasible to decide, increase dramatically as the model
becomes more complex (from around 1,500 to 16,000
and 300,000 for each of the benchmarks). Based on the
result interpretation, it can be concluded that the
simulator performance could be improved if the amount
of irresolute nodes was reduced. The reduction was
achieved through an heuristic developed for making a
better selection of child nodes during the exploration of
the state space.

P2 P1 P3

1’(X,*) 1’(X+1,W) 1’(E,W,P) 1’(E,W,P) 1’(Z) 1’(Z)

[X=E]
[W=Z]

COLOUR DEFINITION DESCRIPTION
J Int 11..33 Job and Task

Identifier
W Int 1..3 Machine Needed

for the Next Job
X Int 11..33 Job and Task in

progress
E Int 11..33 Job and Task

Identifier
P INTEGER Time Spent for

each Job
Z Int. 1..3 Available

Machines

803

4. IMPROVING THE EXPLORATIONS
The results presented in Table 1 show that the time
analysis performance is not as efficient as it could be (it
only updates very few states after making the depth
exploration). A better way of selecting the nodes for the
exploration is proposed. The selection rule aims to
choose the best candidate among child states when the
next depth level is to be explored. Selecting a better
node will increase the number of rejected nodes, and the
number of depth explorations will be reduced when the
evaluation of old nodes takes place. In addition, it is
considered that choosing good nodes during the
exploration will lead to the best path in a faster way and
therefore the optimization time spent in the second
phase of the algorithm is reduced.

4.1. An Heuristic for Selecting the Best Nodes
The heuristic implemented was coded with the purpose
of observing the improvement that can be reached if a
better selection of states to be evaluated is done. A
utility function that allows assigning a value for each
one of the states was constructed. The function was
developed on the basis that the less value the time
stamps have, the less probable incrementing the clock is
for the subsequent evaluations of any marking.
 That is, given a Mj state of the reachability tree, let
F be the function that sums the time stamps Tsi where
the index i goes from token 1 to token Nj of the
marking.

1

()
jN

j i
i

F M Ts
=

= ∑ (1)

 During the exploration of the state space, the
selection of a node among child nodes is done based on
the value calculated by the function (1) and the node
which has the lowest value is the one to be selected. In
other words, given a set of k child nodes, the next node
among them to be evaluated is selected under the next
criteria:

 { }() 1,...,jMin F M j k∋ = (2)

 The index j represents the child nodes of a given
state.
 An example of how to use the utility function to
select the best child is presented in Figure 5.

Figure 5: Using the Utility function to select the Best
Node

 In this figure, there is a root node with four
different child nodes. If there were no utility function
implemented, the first child to be evaluated would be
the node on the left hand side (F=12). Using the utility
function, a value assignment to each of the different
child nodes is made; the child to be evaluated is the one
with the lowest utility value. In this example the node
with the value of 10 units is the chosen one. Therefore
the utility function is used to guide the depth-first
exploration algorithm for the generation of the
reachability tree.
 The heuristic was implemented in the algorithm,
the models were run again and the data was collected to
evaluate the new performance. The results obtained
using this algorithm are presented in Table 2.

Table 2: Simulating with the heuristic

Job-Shop type J-S 3x3 J-S 5x5 J-S 6x6

No. of different
States 693 7,776 117,650

Old Nodes
Found 2,032 24,625 487,408

Updated Nodes
at Initial

Evaluation
0 1,330 18,725

Discarded
nodes after

Initial
Evaluation

2,032 10,506 213,966

Nodes Unable
to Decide 0 12,789 254,717

Updated Nodes
after depth

explorations
0 22 34

4.2. Results
From the results presented in table 1 and 2, it can be
seen that using the utility function, the selection rule is
improved and as a result the performance of the
exploration task is drastically enhanced. It can be seen
that for the 3x3 job-shop the selection of the best path is
achieved at the first step of the algorithm. This
conclusion takes place since during the second phase of
the algorithm all stored nodes are discarded in the old
node list. Therefore it is not necessary to make a depth
exploration to decide whether a time stamp updating is
needed or not. In this particular case, the chosen states
for opening the reachability tree are the best ones. From
the results of the rest of the models (5x5 and 6x6 job-
shop), it can be seen that the number of updatings
practically remains the same. The analysis of the
number of discarded nodes, allows concluding that the
utility function improves the simulation performance.
 As a result of using the heuristic, the discarded
nodes increase by an amount of 5,000 for the 5x5 job-
shop and by around 100,000 for the case of the 6x6 job-
shop. The avoidance of the same quantity of depth
explorations during the analysis of old nodes gives as a
result a better performance of the simulator. The same
conclusion is drawn by the analysis of the irresolute

 ROOT

F=12 F=28 F=10 F=40
*

804

nodes. In the case of the 5x5 and 6x6 job-shops the
numbers of depth exploration is drastically reduced and
the performance of the simulator is improved since less
depth explorations are necessary.

4.3. Conclusions and Future Work
The reachability tree-based simulator presented in this
article is a promising approach for solving real life
industrial problems. It has been introduced an heuristic
implemented for the first step of the algorithm which
leads to exploring the reachability tree in a better way
by reducing the quantity of evaluations needed in the
second step. In this way time optimization is achieved.
It has been also demonstrated that focusing on the best
selection of nodes during the exploration of the
reachability tree improves drastically the simulator
performance. Due to the results presented, the
development of an heuristic focusing on the selection of
old nodes to be evaluated during the second step of the
algorithm is proposed as a future work. It is expected
that implementing such an heuristic in combination with
the one introduced in this article will further increase
the performance of the whole algorithm.

REFERENCES
Christensen, S., Kristensen, L.M., Mailund, T., 2001“A

Sweep-Line Method for State Space
Exploration“in TACAS, Springer-Verglag, Berlin-
Heidelberg

Christensen, S, Mailund T., 2002, “A Generalized
Sweep-Line Method for Safety Properties”, in
FME, Springer- Verlag, Berlin- Heidelberg

Dauzére-Peres, S., Lasserre, J.B., 1994, “An Integrated
Approach in Production Planning and
Scheduling”, in Lecture Notes and Mathematical
Systems, Springer-Verlag, Berlin.

Holzmann, G.J., 1998, “An analysis of Bitstate
Hashing”, in Formal Methods in System Design,
V13 (3), p.p.301-314, November.

Jard C., Jeron, T., 1991”Bounded –memory algorithms
for Verification On-the Fly”, in Proceedings of
CAV 1991, vol575 of Lecture Notes in Computer
Science.Springer-Verlag.

Jensen, K 1997. “Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use”. Vol. 1
Springer-Verlag. Berlin.

Jensen, K, 1997, “Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use”, Vol 2,
Springer-Verlag. Berlin

Mujica, M., Piera, M.A., 2006 ”Building an Efficient
Coloured Petri Net Simulator”, in Proceedings of
the International Mediterranean Modeling
Multiconference, p.p.153-158, October 4-6,
Barcelona, Spain

Mujica, M., Piera, M.A, 2007, ”Data Management to
Improve CPN Simulation Performance”, in
Proceedings of the International Mediterranean
Modeling Multiconference,p.p.53–58, 4-6 October,
Bergeggi, Italy

Mujica, M., Piera, M.A., 2007,”Improvements for a
Coloured Petri Net Simulator”, in Proceedings of
the 6th EUROSIM Congress on Modeling and
Simulation, p.p. 237, September 9-13, Ljubljana,
Slovenia

Narciso, M., Piera, M.A., y Figueras J., 2005,
“Optimización de Sistemas Logísticos Mediante
Simulación: Una Metodología Basada en Redes de
Petri Coloreadas”, Revista Iberoamericana de
Automática e Informática Industrial, vol 2(4), p.p.
54-65IAII, Valencia, España.

805

