
ABSTRACT 
Unexpected detrimental events probably pose the most 
dangerous threat to every planning activity. They are the 
consequence of both explicit and unconscious presump-
tions made during the planning process. These presump-
tions are the manifestation of the modeler’s own expecta-
tions, which can be seriously flawed. Model and simulation 
based risk management tries to identify potentially danger-
ous presumptions (for the real world planning) by looking 
for astonishing results in models in general and simulations 
in particular. The astonishment is triggered by (simulation) 
events that are violations of model assumptions (the model 
specific instantiations of the presumptions) or events which 
are simply counter-intuitive. The main idea of this ap-
proach is illustrated using examples taken from reliability 
theory. This choice has been made for didactical purposes: 
the analytical perspicuity of these examples is much better 
than the one of complex simulation models. Subsequently, 
the benefits of the approach are demonstrated for military 
conflict simulation models.  
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1. INTRODUCTION: MANAGING RISK 
Risk management has become a paramount task of model-
ing and simulation in a great variety of applications. Hith-
erto finance markets and military endeavors have been the 
most prominent domains of risk management, but it seems 
to be indispensable for industrial applications, too. From a 
generalized point of view, risk (in the broader sense) has 
two dimensions: risk in the narrower sense and real uncer-
tainty (Knight 1921). Risk (in the narrower sense) is asso-
ciated with known dangerous events and the possibilities of 
their occurrence. These possibilities are regarded to be as-
sessable, using “hard facts” (e.g. frequencies) (Risk type 
1). Real uncertainty is an attribute of known dangerous 
events for which the possibility of occurrence is indeter-

minable on objective grounds (Type 2) and of completely 
unexpected events, which reveal their detriment only after 
they have happened (Type 3).  
 The more modern classification of parametric and 
structural uncertainty (which can not be attributed to a sin-
gle origin) has a slightly different meaning, but addresses 
approximately the same distinction as type 2 and 3 uncer-
tainty. Parametric uncertainty means that we know the re-
levant factors for a given phenomenon, but miss the exact 
(initial) values of these factors. In other words, we have 
good empirical evidence that the causal reasoning of the 
model we use is an adequate representation of the relations 
in the real world. What is sometimes hard to find are the 
"right" parameters for the model. Parametric uncertainty is 
roughly equivalent to uncertainty type 2 in the modified 
Knight’s classification, but it also includes type 1, if we see 
probabilities as special expressions of parameter uncer-
tainty. Structural uncertainty means that we are not sure if 
we know all the relevant factors and that we most probably 
do not know their interdependencies. Or, in other words, 
there are serious reasons to believe that the model we use 
to represent the phenomenon is at least incomplete. Hence, 
structural uncertainty ideally reflects the concept of type 3 
uncertainty in the former classification, only substituting 
unknown factors for unknown events.  
 Ex ante, all three types of risk are equally important. 
In practice, on the contrary, the amount of work dealing 
with the first type of risk dominates the other two. This 
disequilibrium is due to the human inclination to operate 
on mathematically treatable information. Type 2 events are 
therefore often transformed into type 1 events using subject 
matter experts and their estimations as substitutes for ob-
jectively generated probabilties. Slightly simplifying mat-
ters, this paper treats risk type 2 as parametric uncertainty 
and risk type 3 as structural uncertainty. 

The remainder of this paper is organized as follows: 
Section 2 outlines the difference we make between plan-
ning presumptions and modeling assumptions. Section 3 
introduces the concept of astonishment. Section 4 provides 
the reader with an example of an astonishing result in the 
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field of parametric uncertainty. Section 5 gives a second 
example which can be attributed to structural uncertainty. 
Section 6 discusses tactical wargaming, in general. Section 
7 presents a simulation based wargaming method for pa-
rametric uncertainty, section 8 repeats it for structural un-
certainty. Section 9 concludes the paper by reiterating its 
contributions and suggests some conclusions and future re-
search directions.  

2. PLANNING PRESUMPTIONS – MODELING 
ASSUMPTIONS 

Making plans for the future of complex social systems is 
always affected by personal presumptions. They are un-
avoidable for many reasons. First, the perception and con-
ception of human beings are limited by their experience 
and cognitive constraints (bounded rationality, see, e.g., 
Gigerenzer and Selten 2002). Second, planning in social 
systems is impossible without making predictions on the 
behavior of other humans. These predictions are necessar-
ily unreliable. 

Examples for such presumptions are: 
 
• the equivalence of political “solutions” in differ-

ent cultures, 
• the superiority of western thinking and governing 

to all other forms, 
• the impossibility of anomalies in hitherto well-

understood systems, 
• taking statistical correlations as causal dependen-

cies. 
 
In general, only a small part of such presumptions is 

mentioned during the planning process, a much greater part 
is unconscious, but detectable via questioning. Some pre-
sumptions are even difficult to detect, because they are 
deeply hidden in attitudes and beliefs. Such presumptions 
are classical examples of risk type 3.  

If we deliberately reflect on our plans and make plan-
ning support models, the conscious part of these presump-
tions become modeling assumptions. 

Modeling is seen here as a process that, if successful, 
helps a subject S to solve a problem P situated in an origi-
nal (system) O at a given time T. The model M of the orig-
inal O is always regarded as an abstraction (Stachowiak 
1973). The notion of assumptions is concentrated in the 
following definition: An assumption A is a hitherto not (or 
insufficiently) empirically corroborated statement (in the 
sense of an assertion)  

 
• of a subject S,  
• about an original O, 
• with the intention (purpose) I relative to 

- a problem P situated in O and 
- a timeframe T. 

Some typical assumptions used in many (simulation) 
models are:  

 
• Stability of processes, 
• Uniformity of interactions over time and space, 
• Linearity of interrelations, 
• Processes have reached equilibrium,  
• Empirical data fit approximately uniform, expo-

nential, normal etc. distribution, 
• Independence of statistical parameters. 

 
In the narrow sense used here (for a broader view see 

Hofmann 2003), model assumptions are always explicit 
and therefore conscious, whereas some planning presump-
tions can still remain unconscious even after the modeling. 

Model assumptions are examples for uncertainty of 
type 2.  

 In the following sections and examples, this distinc-
tion between explicit modeling assumptions as instantia-
tions of risk type 2 and hidden personal presumptions as 
examples of risk type 3 will be further clarified. 

3. ASTONISHMENT 
With regard to the two types of risk scrutinized here, aston-
ishment can be triggered by the violation of an explicit as-
sumption or a hidden presumption. In the first case, during 
the realization phase an event occurs that seemed highly 
improbable during the planning phase. Consequently, the 
contrary had been assumed. In the second case, an event 
occurs which has not been expected during the planning. 
Some of such events can be advantageous for the own 
goals, but, in general, they are detrimental, because when 
things turn out different as supposed to be, plans cannot be 
accomplished optimally. Planners and decision makers 
must therefore try to reduce the amount of astonishing 
events during the realization phase.  

The methodology to cope with events that have been 
considered improbable (type 2) differs from that applicable 
to unexpected events (type 3). In the first case (parametric 
uncertainty) it is always possible to reflect on the assump-
tions made. In tactical wargaming, a method developed for 
the German army, for example, all explicit modeling as-
sumptions are deliberately taken as violated. The criticality 
and plausibility of this violation is estimated and contin-
gency plans can be developed (see section 7). 

Since we simply do not know unexpected events we 
cannot use this approach for type 3 risk (structural uncer-
tainty). The default strategy of military decision makers for 
type 3 risk, for example, is the creation of reserves. Never-
theless, it would be advantageous to find as many poten-
tially detrimental events in advance, because the planning 
of countermeasures could be much more specific (see sec-
tion 8). The basic idea is to generate some astonishing re-
sults/events in a simulation, thereby reducing the amount 
of astonishing results/events in reality. 
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Before we discuss the application of these concepts 
within the framework of wargaming based on complex 
military simulation models, we will highlight the core idea 
with two analytical examples presented in the next two 
sections. These examples are taken for their simplicity, 
clearness and mathematical accuracy. Although the hard 
probabilistic reasoning might be somewhat misleading, the 
examples focus on the essential. The first example will 
demonstrate an unexpected effect in parameter variation 
and the second example is intended to illustrate a structural 
surprise. 

The main difference between these examples and risk 
management in real world applications, like wargaming, is, 
that the astonishing results in the examples can be proven 
to be hard facts, whereas the simulation results in wargam-
ing are generally only conjectures. 

4. ON THE SAFETY OF AIRCRAFT WITH TWO 
OR FOUR ENGINES 

In this section we consider an airline which wants to buy a 
new aircraft and has to decide between two types. One air-
craft type (A2) has two engines and the other type (A4) four 
engines. It is assumed, that the decision of the airline’s 
manager which aircraft will be bought, is made on the sole 
basis of the reliability of the aircraft. That also implies, for 
instance, that the different numbers of passengers which 
can be carried, are not taken into account. 
 The airline defines with respect to own experiences 
that aircraft A2 (A4) is working (i.e., is still flying and can 
touch down safe), if and only if at least one (at least two) 
of the engines are still working. Furthermore, it is assumed 
that 
 

1. the engines are working independently of each 
other (an assumption which may not be fulfilled 
in all practical situations), and 

2. the probability p, that an engine is working is the 
same for both aircraft and all their engines (one 
might think of one type of engine which is used in 
both aircraft). 

 
 In the past the airline has already bought a lot of air-
craft. For making their decision they use a simulation 
which – for a given value of p – computes the reliability of 
the aircraft. It is important, that in the past the decision 
were made on basis of simulations for values of p close to 
1, because the engines itself are very reliable under good 
flight conditions. Also, a changing of p during the flight 
was not taken into account. Now, in recent years it turned 
out that this assumptions have been too optimistic. In ex-
tremely bad weather the reliability of the engines can sig-
nificantly decrease. Due to fierce competition on the air 
transportation market airlines have to fly even under such 
extreme conditions. 

 Let P2(p) resp. P4(p) be the reliability of aircraft A2 
resp. A4 (which only depends on p), i.e., the probability 
that the aircraft is still flying and can touch down safe. For 
values of p close to 1 the M&S-Team of the research group 
had observed in the past the relation P2 (p) < P4 (p) holds 
for all p close to 1. They now make – most probably un-
conscious - the implicit assumption – coming from their 
experience - that P2 (p) < P4 (p) for all p ∈ [0,1]. This 
would lead to an absolute preference of aircraft A4. 
 Skeptical about this reasoning the airline’s manager 
demands critical rethinking of all assessments made on re-
liability. Using their simulation system the research group 
starts with p = 1 and obtain P2 (1) = P4 (1)=1. This is an 
obvious result, since all engines are working with probabil-
ity 1 and therefore – per definition – the aircraft is work-
ing. Taking p = 0.9, an already low reliability rate, they get  
P2 (0.9) = 0.99 and P4 (0.9) = 0.9963, which satisfies their 
expectation that P2 (p) < P4 (p) for all p ∈ [0,1]. Assured in 
their opinion about the superior reliability of four-engine 
aircraft, they try p = 0.6 and obtain P2 (0.6) = 0.84 and  
P4 (0.6) = 0.8208, i.e., P2 (0.6) > P4 (0.6), and are abso-
lutely astonished. This should be impossible! It seems un-
believable to them, that an aircraft with four engines can be 
less safe than a two-engine aircraft.  
 In fact, this result is not surprising at all. Using ele-
mentary probability calculus we get (see, e.g., Rohatgi 
1976) 
 
P2 (p) = 1 – (1 – p)2 
 
and  
 
P4 (p) = 1 – (1 – p)4 – 4 p (1 – p)3. 
 
Both functions are presented graphically in Figure 1. 
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Figure 1: The Reliability Functions of Aircraft with two 
resp. four Engines. 
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 We see that in case of p ∈ (2/3,1] A4 is more reliable 
than A2, while in case of p ∈ [0,2/3) A2 is indeed more re-
liable than A4. Consequently, the expectation  
P2 (p) < P4 (p) for all p ∈ [0,1] is obviously false. The max-
imum difference between the system reliabilities P2 and P4 
are 0.0128917 for p ∈ (2/3,1] and 0.179558 for p ∈ [0,2/3). 
That implies that a two-engine aircraft is, at worst, only 
0.98 times less safe than a four-engine aircraft under good 
conditions but a four-engine aircraft can be as far as 0.52 
times less safe than a two-engine aircraft under extremely 
critical conditions. 
 Of course, this reasoning cannot be a decisive argu-
ment to buy (or construct or use) only two-engine aircraft, 
since it completely neglects the actual distribution of p in 
reality (which may even be hard to find). However, the re-
search group should have realized, that some assumptions 
they have made in judging the reliability of aircraft, may 
not hold in all cases. Such a self-critical attitude is the cor-
nerstone of risk management in real applications.  
 By the way, in a group of 13 computer scientist and 
mathematicians we asked to estimate the two reliability 
functions, only one person has made the right guess. 

5. NON-MONOTONIC RELIABILITY 
FUNCTIONS 

A company wants to set up a network with three nodes and 
three edges (see Figure 2). 
 

 
 

Figure 2: The Network. 
 
 It is known that 
 

1. The nodes are working independent of each other 
with probability p. 

2. The edges are faultless independent of each other 
with probability q. 

3. Nodes and edges are working independent of each 
other.  

 
 The company defines that the network is working (i.e., 
reliable) if and only if there is a connection between all 
faultless nodes. Furthermore it is defined that if all nodes 
are failed the network is supposed to be not working. Let 
P(q,p) be the probability that the network is working. The 
company´s M&S-Experts wants to get an idea of the reli-
ability of the whole system depending on q and p. Due to 
their experience they expect that for a given q the reliabil-
ity of the system is a monotone-increasing function of p. 

Moreover, they do not know any system that exhibits non-
monotonic reliability behavior with respect to its compo-
nents reliability. Furthermore they expect P(q,1)=1, since 
their first guess is, that if all nodes are failing then the 
whole system is failing and if all nodes are working with 
probability 1 the whole system should work with probabil-
ity 1. Please, stop reading for a few seconds: What is your 
opinion? Which behavior of the reliability function P(q,p) 
are you expecting?  

The M&S-Experts of the company uses a simulation 
in order to get insights into the behavior of the system. In 
case of q = 0.5 they obtain P(0.5,0.45) = 0.621 and  
P(0.5,1) = 0.5, i.e., the reliability of this system is in case 
of p = 0.5 larger than in case of p = 1. This outcome seems 
to them quite dubious. It is against the common under-
standing and the usual properties of reliability functions 
(see, e.g., Barlow and Proschan 1975). As mentioned 
above the experts are expecting a monotone-increasing 
function with P(0.5,1) = 1, which obviously is not fulfilled. 
These facts contradict their expert knowledge and this 
makes the system even more interesting to them. 
 The reliability function of the system can be computed 
as follows: 

 
P(q ,p) = (1 - q)3 3 (1 - p)2 p  

 + 3 (1 - q)2 q ( 3 (1 - p)2 p + (1 - p) p2 ) 
 + 3 (1 - q) q2 ( 3 (1 - p)2 p + 2 (1 - p) p2 + p3 ) 
 + q3 ( 3 (1 - p)2 p + 3 (1 - p) p2 + p3 ). 
 

 The function P(q,p) is drawn in Figure 3 for the cases 
q = 0, 0.5, 1.  
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Figure 3: The Reliability Functions of the Network for the 
Cases q = 0, 0.5, 1. 
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P(q,p) 

 As we can see we have P(0.5,0.5) > P(0.5,1). The reli-
ability function P(q,p) – not only for fixed values of q - of 
the system as a function of q and p is depicted in Figure 4. 
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Figure 4: The Reliability Function P(q,p) of the Entire Sys-
tem. 
 
 The reason why this system does not behave like the 
experts expected it to do, is that it is not a monotonic sys-
tem, i.e., if a failed element is repaired, then the system 
may change from a working system to a failed system. The 
reliability analysis of such systems is, in our opinion, a 
very interesting challenge for the future.  

6. WARGAMING – A MILITARY TOOL OF RSIK 
MANAGEMENT 

“Wargaming is a flexible instrument designed to develop, 
compare, and improve courses of action (COA)”. This is a 
definition given by the German General Staff College. It 
can also be seen as one of the most important methods of 
risk management within the military domain. The origin of 
institutionalized Wargaming dates back to emerging Prus-
sia and its General Staff in 19th century and can be de-
scribed as means to interactively play the uncertain devel-
opment of a military (and later on non-military as well) 
operations. Both, Clausewitz and Moltke the elder saw the 
potential of Wargaming in a staff being better prepared for 
the incalculable course of an operation (v. Clausewitz 
1832). They also advised it for the “free play” of its mem-
bers’ creativity and the intensified examination of planned 
COA (Hofmann and Lehmann 2007).  

Military leadership is a domain where personal pre-
sumptions and, consequently, model assumptions have al-
ways played and are continuing to play a decisive role. The 
“model” used from commanders and their staffs is usually 
an abstract representation of own and enemy units on a ter-
rain representation. Most of the explicitly mentioned pre-
sumptions of commander and staff are depicted within this 
environment. They are therefore visible or visualizable 
model assumptions (like the currently perceived situation 
or the supposed enemy commander’s intent), which can be 
directly addressed. Some presumptions (like, just for ex-

ample, the general superiority of mission-type tactics over 
order-type tactics and the higher value of special forces 
even in standard combat), in contrast, are not mentioned 
and therefore also not challenged. 
 Wargaming incorporates, even traditionally, two rather 
different aspects of investigation: analysis and exploration. 
In general, wargaming for COA analysis is based on a se-
quential process of some largely independent cycles (repe-
titions) of “moves” from at least two different teams within 
a gaming environment (sand table, map or computer based 
system). Within this paradigm it follows an Action – Reac-
tion – Counteraction pattern using an impartial umpire to 
judge the outcome. The outcome can also be calculated us-
ing fixed rules (like in chess) or simulations (see section 
7). 

The central rationale of this analytical aspect of war-
gaming is the scrutiny of a succession of events that consti-
tute a COA. Since all COA are given before the wargam-
ing starts, the range of possible events is limited to what 
the team members regard as possible within that COA. 
From a generalized point of view, this kind of wargaming 
tries to reduce the uncertainty of known events and is 
therefore dealing with a special kind of parametric uncer-
tainty (the decision relevant parameters of the COA). This 
technique can be applied on explicit model assumptions, 
too. One simply negates them and scrutinizes the effects. 

The explorative aspect of wargaming is often hidden 
to the external observer, since it follows no general meth-
odological rules and is basically a mental activity. Explora-
tion means to think outside the standard analytical evalua-
tion scheme. It is a questioning of own beliefs and 
assumptions and a speculative search for chances and ex-
ceptional risks. In such, explorative wargaming is an at-
tempt to deal with structural uncertainty. 

Both aspects of wargaming can be supported by com-
bat or other military simulation systems. However, there is 
a significant distinction in the methodologies used to deal 
with parametric (already in use) and structural (currently 
tested within the German army) uncertainty (Hofmann and 
Junge 2008). 

7. SIMULATION BASED WARGAMING FOR 
RISK TYPE 2 (PARAMETRIC UNCERTAINTY) 

It is possible to use a stochastic simulation system instead 
of an umpire to evaluate the outcome of different COA. 
The wargaming factions implement their plan (COA) by 
fine-tuning the deployment of their units and giving initial 
orders. After the simulation has started all elementary 
combat processes, including off-road combat mode move-
ment, reconnaissance and mutual attrition, are automati-
cally simulated using random generators to mimic the ef-
fect of parametric uncertainty. In an interactive simulation 
it is possible and necessary to command the units by inter-
rupting the simulation run, whereas in a closed simulation 
no human intervention is possible after the start.  

q 

p 
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 The major advantage of interactive simulations is 
more flexibility in the command of the COA realization. 
However, this flexibility has two drawbacks for wargam-
ing: First the evaluation of COA is dependent on human 
knowledge about the intricacies of the special simulation 
model and dependent on the human skills in the operation 
of the simulation. Second, interactive simulations are much 
slower than closed simulations (the difference can amount 
to several orders of magnitude). As a consequence of this 
limitation and of learning effects, it is seldom possible to 
make more than a few repetitions with the same (own and 
enemy) COA combination. Thus, there is little variation 
included into the evaluation. The parametric uncertainty of 
real combat is therefore often underestimated. 
 With closed simulation it is possible to make hundreds 
of simulation runs using different random numbers for all 
kind of elementary processes (movement, attrition, recon-
naissance, communication etc.). Although this variation is 
somewhat compensated by its military “blindness” with 
respect to an interactive human commander, it can never-
theless capture a huge range of parametric uncertainty. The 
standard routine to take this uncertainty into consideration 
is the computation of measures of central tendency and 
dispersion (mean and variance, for example) (Ross 2002). 
For simplicity, let us assume that every simulation run ends 
with an exactly measurable result somewhere between a 
clear success (100) and a complete failure (0). A frequently 
used setting in standard military wargaming consists of 
three own COA which are compared with two enemy COA 
(usually the most likely and the most dangerous COA). A 
possible simplified result of a closed-simulation based sta-
tistical evaluation within this setting could look like Table 
1. 
 
Table 1: Simulation based Statistical Evaluation of COA 
(Example) 

Most likely 
Enemy 
COA 

Number of 
runs mean variance 

COA 1 
COA 2 
COA 3 

100 
100 
100 

60 
55 
50 

30 
20 
10 

 
Most dan-
gerous En-
emy COA 

Number of 
runs mean variance 

COA 1 
COA 2 
COA 3 

200 
200 
200 

50 
40 
50 

30 
10 
10 

 
 In order to get a definite result from these numbers it 
is necessary to weight between the two cases and the statis-
tical measures. If we, for example, equally weight most 
likely and most dangerous enemy COA and ignore vari-
ance, COA 1 must be favoured because it has the highest 

average mean (55). A risk aversive decider would discount 
means by a certain proportion of the variance and would 
put a higher weight on the second case (the most dangerous 
enemy COA). This could lead to the preference of COA 3. 
 It is obvious that uncertainty in this approach is attrib-
uted as a statistical parameter to the given COA. The ran-
dom effects in such a simulation system are produced by 
well understood random generators on the micro level of 
elementary process. However, the complicated interrela-
tion and interaction of these processes can lead to a macro 
phenomenon (the overall combat, the outcome of a COA 
pair) which is astonishing. Since no combat simulation sys-
tem can claim to be a valid representation of the future, the 
uncertainty measures created by this method are only 
measures of risk type 2 and should not be misinterpreted as 
measures of type1. 

This standard reasoning can be easily transformed to a 
new method of dealing with modelling assumptions. In-
stead of analyzing the COA, explicit model assumptions 
are negated, implemented and the consequences of this ne-
gation analysed via stochastic simulation. The main meth-
odological difference between the standard procedure and 
the special method of assumption-centred stochastic simu-
lation is to take variance as decision criteria in the latter 
much more serious than in the former, since our focus of 
interest is the uncertainty attributed to the assumptions and 
not a disputable mean. The idea is to classify the analysed 
assumptions according to their criticality and plausibility 
(see Dewar 2002 and Hofmann 2007 for further informa-
tion). 

It should be mentioned that military simulation sys-
tems have reached an unprecedented level of complexity 
(Hofmann 2005). The example and reasoning presented are 
simplifications. Therefore, it now should have become 
clear, why we have chosen the aircraft example in section 
4. It would have been extremely difficult to describe a 
wargaming example with the same completeness.  

8. SIMULATION BASED WARGAMING FOR 
RISK TYPE 3 (STRUCTURAL UNCERTAINTY) 

The basic idea of this approach is to use closed simulations 
to detect (not analyze) critical assumptions (and thereby 
actively dealing with structural uncertainty). The major ad-
vantage of closed simulations in comparison to interactive 
ones is, as already mentioned, the much greater speed of 
the former. It is therefore possible to run hundreds or even 
thousand of simulation runs within the time available for 
the decision making. The crucial question is, how struc-
tural variability can be introduced into the systems? By the 
use of random generators for the elementary process it is 
only possible to generate parametric variance. What is 
needed are random effects on the level of events and within 
the command and control modules. Random events can be 
easily generated if the demand for valid representations is 
completely given up. Then, a random event can be, for ex-
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ample, a regular event (detection, shot, etc.) without cause 
or a randomly chosen event from a historical data base. In-
troducing randomness into the command and control mod-
ules is somewhat more difficult, but nevertheless possible, 
if the notion of optimal behavior is neglected. By deliber-
ately generating suboptimal behavior via random func-
tions, the behavior of a command and control module be-
comes incalculable. Which is exactly what is intended. The 
key concept of the evaluation of such simulation runs is the 
exclusive debriefing of their extremes and the abdication of 
statistical reasoning. Disastrous simulation runs (from the 
perspective of the own planning) are taken as possible 
threats (implying critical assumptions), extremely advanta-
geous runs are taken as possible chances. Means and 
measures of variance are not investigated, because the 
model is invalid anyway. All extreme simulation runs have 
to be checked by human experts, which can quickly discard 
them as completely implausible or further scrutinize them, 
because they appraise the chain of events as possible re-
gardless its inconsequent creation within the simulation 
system. Their main function of this approach is to broaden 
the view of the planner with respect to unexpected future 
trajectories.  
 Invalid representations, deliberately modeling subop-
timal behavior of automated forces and the renouncement 
of statistical evaluation for the benefit of mere extremes 
may seem absurd at first glance, but taken together and 
seen from the perspective of structural uncertainty they 
make perfect sense. Such simulations can be seen as explo-
rations into the hidden realm of personal presumptions, 
that might be challenged by some extreme runs. 
 However, it is necessarily clear, that even this ap-
proach can not capture the whole range of possibilities 
spanned by real systems. Their major contribution in mili-
tary (and maybe other kinds of) risk management might be, 
to open the decision maker’s view to the completely unex-
pected by simply confronting him astonishing courses of 
action.  

Reflecting this section it is now easily possible to ex-
plain the connection between the example in section 5 and 
simulation based tactical wargaming for structural uncer-
tainty. Reliability functions that are non-monotonic in their 
components’ reliability are extremely rare in practice and 
teaching. Thus, such an example will be astonishing for 
most engineers and students as well, recognizing their own 
presumptions about the subject (Hofmann and Lehmann 
2007).  

9. SUMMARY, CONCLUSION AND OUTLOOK 
In most real applications risk is a multifaceted problem 
comprising objective and subjective probabilistic dangers 
as well as completely unknown threats. Some of the most 
critical uncertainties can be attributed to hidden personal 
presumptions and hitherto unquestioned modeling assump-
tions. Thus, an exhaustive methodology of risk manage-

ment has to incorporate some strategies to cope with this 
challenge. In order to operationalize presumptions and as-
sumptions we propose to see personal presumptions as part 
of what is called structural uncertainty, and the systematic 
questioning of explicit modeling assumptions as part of 
dealing with what is called parametric uncertainty.  
 With two simple examples we tried to demonstrate the 
importance of astonishing model/simulation results for the 
detection of (parametric model) assumptions and (struc-
tural) presumptions in the reliability of technical systems. 
 As a serious domain of application we subsequently 
introduced tactical wargaming. Two different methods of 
simulation and experimental design have been presented 
for parametric and structural uncertainty. The first ap-
proach follows traditional statistical reasoning for COA 
comparison, while stressing the importance of variance as 
opposed to means. In complete contrast to classical sto-
chastic simulation and its evaluation by means of statistical 
reasoning, the second method is focused on the unex-
pected, uncommon, exceptional, ignoring validity and op-
timality. It is a method of thought triggering and definitely 
not of hard deduction. 
 Recent experiments during three major exercises have 
demonstrated the value of the unusual approaches, broad-
ening the view on risk in general, and unexpected events in 
particular. 
 We are convinced that the methodologies do not only 
apply to military problems, but also to all kinds of other 
domains with parametric and structural uncertainty, includ-
ing economic and industrial applications. 
 However, much work remains to do. First of all, more 
experiments have to be done in order to fine-tune the me-
thods. Second, the value of the methods, especially the 
second one, heavily depend on unpredictable but sensible 
variability of the simulation system. For that purpose, 
much expertise has to be integrated into the respective 
modules. Third, we would really like to demonstrate the 
benefits of our approach in other domains. 
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