
STUDY OF BIOLOGICALLY-INSPIRED NETWORK SYSTEMS: MAPPING COLONIES
TO LARGE-SCALE NETWORKS

Ahmet Zengin(a), Hessam Sarjoughian(b), Hüseyin Ekiz(c)

(a), (c) Sakarya University Technical Education Faculty

Department of Computer Science Education
Serdivan, Sakarya, TURKEY

(b)Arizona State University
School of Computing & Informatics

Arizona Center for Integrative Modeling and Simulation
Tempe, AZ, USA

 (a)azengin@sakarya.edu.tr , (b)sarjoughian@asu.edu, (c)ekiz@sakarya.edu.tr

ABSTRACT
Natural systems can offer important concepts for
modeling network systems. A biologically-inspired
discrete-event modeling approach is described for
studying networks’ scalability and performance traits.
Key adaptive and emergent attributes of honeybees and
their societal properties are incorporated into a set of
simulation models that are developed using the Discrete
Event System Specification approach. We describe our
approach which is based on mapping the behavior of the
honeybees to discrete event models. Large-scale
network models are simulated and evaluated to show
the benefits of nature-inspired network models.

Keywords: beehive, DEVS, networks, routing,
scalability, simulation.

1. INTRODUCTION
Network systems must communicate with one another
using a variety of algorithms and technologies. Many
systems supporting interconnectivity are required to
exhibit essential traits such as adaptability, scalability,
and reliability (survivability). At the same time, these
networked systems are expected to offer new and more
sophisticated services in the face of increasing system
heterogeneity (Lunceford and Page 2002). To cope with
the management of such networks in the presence of
ever increasing complexity, various decentralized and
centralized approaches are being used to address the
needs of private and public organizations (Steenstrup
1995).

Ecological models are being studied for
development and operation of decentralized
(distributed) systems such as communication networks.
Large-scale biological systems, such as bee colonies,
have advanced mechanisms that are scalable and
adaptable under varying environmental conditions
(Bonabeau, Dorigo, and Theraulaz 1999). The desirable
characteristics of the bee colony, scalability,

adaptability and survivability, are not present in any
single bee. Rather, they emerge from the collective
actions and interactions of all bees in the colony.

The design of complex and scalable network
applications, therefore, stands to benefit from the power
of biological principles and schemes. The focus of this
paper is on applying biological principles and
mechanisms to the design and implementation of
network applications. Swarm-based routing algorithms
offer a number of attractive features including
autonomy, robustness and fault tolerance. Distributing
intelligence on the network provides rapid control over
resources that can dynamically adapt to user’s
requirements. Such swarm-based algorithms adapt well
to dynamic topologies and compared to the current
state-of-the-art distance vector algorithm have been
shown to result in the highest throughput and lowest
delays in Internet-style networks. We have devised a
new class of agent-based routing algorithm based on
principles of biological swarms, which have the
potential to address some of the above problems in an
autonomous and intelligent fashion.

To develop and study dynamic and adaptive
swarm-based routing protocols, we have devised a
DEVS (Discrete Event System Specification) (Zeigler,
Praehofer, and Kim 2000) network model called
SwarmNet. Discrete event simulation is a resilient,
powerful and efficient computational device that
support exploring the behaviors of complex systems.
These models and networks are implemented in the
DEVSJAVA modeling and simulation environment
(Zeigler and Sarjoughian 2003, ACIMS 2008) which is
an implementation of the DEVS framework.

The nodes and links are characterized as the
elementary network components. Using the DEVS
hierarchical model composition concept, we develop
simulation models of networks with varying topologies
and scales. For example, we will use clusters to study
its impact on reducing communication and increasing

537

performance. The explicit and hidden behaviors of these
networks are observed under various experimental
configurations – e.g., nodes and links are assigned
different capacities. Lastly, we also examine the
performance of the DEVSJAVA environment for
networks having from tens to several thousands of
components and connections.

In the remainder of this paper, starting in Section
2, we briefly review some related key features of
SwarmNet and highlight its strengths and weaknesses.
In Section 3, we describe the modeling concepts from
honeybees are mapped to a set of adaptable agent-based
DEVS modeling constructs. In Section 4, we develop
and analyze example models in the SwarmNet
simulation environment. In Section 5, we summarize
our work and present some future research directions.

2. KEY FEATURES OF THE SWARMNET
Following treatment summarizes key features of the
SwarmNet which is packet-level discrete event network
simulator based on DEVSJAVA. It utilizes DEVS
formalism for describing network components and
inherits DEVS hierarchical and modular design
concepts.

DEVS Simulation Engine: The dynamics of
network systems can be described using discrete event
modeling. This is because the dynamics of network
systems can be characterized in terms of components
that can process and generate events. Among discrete
event modeling approaches, the Discrete Event Systems
Specification (DEVS) (Zeigler, Praehofer, and Kim
2000) is well suited for formally describing concurrent
processing and the event-driven nature of arbitrary
configuration of nodes and links forming network
systems. This modeling approach supports hierarchical
modular model construction, distributed execution, and
therefore characterizing complex, large-scale systems
with atomic and coupled models. Atomic models
represent the structure and behavior of individual
components via inputs (X), outputs (Y), states (S), and
functions (X, S, Y, δext, δint, δconf, λ, ta). The external
(δext), internal (δint), confluent (δconf), output (λ), and
time advance functions (ta) define a component’s
behavior over time (for examples of the atomic model
see the Listings 1 and 2). Internal and external transition
functions describe autonomous behavior and response
to external stimuli, respectively. The time advance
function represents the passage of time. The output
function is used to generate outputs.

Atomic models can be coupled together in a strict
hierarchy to form more complex models. Parallel
DEVS, which extends the classical DEVS, is capable of
processing multiple input events and concurrent
occurrences of internal and external transition functions.
The Parallel DEVS confluent transition function
provides local control by handling simultaneous internal
and external transition functions. A coupled model can
be constructed by composing models into hierarchical
tree structures. A coupled model is defined in terms of
its constituent atomic and/or coupled models.

Computational realizations of the DEVS formalism and
its associated simulation protocols are executed using
simulation engines such as DEVSJAVA (ACIMS
2008). DEVSJAVA is an object-oriented realization of
Parallel DEVS. It supports describing complex
structures and behaviors of network systems using
object-oriented modeling techniques and advanced
features of the Java programming language. The formal
foundation of DEVS, its efficient execution, and the
availability of sequential, parallel, or distributed
simulation engines using alternative computational
environments such as CORBA, HLA, and Web-services
are important considerations. Furthermore, the DEVS
models are extended with other kinds of models such as
fuzzy logic (Sarjoughian and Cellier 2001).

Network Modeling Approach: DEVS makes
modeling effort systematic so that complex behavior is
formed by coupling simple structured primitive models
(e.g. atomic model). In other words, behavior of an
atomic model does not exhibit a high level intelligence;
nevertheless coupled model shows fascinating emergent
behavior. Atomic models in a compact model interact
via messages to form complex collective behavior. In
order for modeling a distributed networked system, we
have defined a set of basic network simulation model
components including nodes which communicate with
one another via links. By coupling these model
components in DEVSJAVA, we can develop a variety
of network configurations and study network
characteristics. Since it is assumed that only nodes and
links of a network are able to cause bottleneck, they are
modeled as atomic models and only their states as well
as input and output variables are of interest. Other
network components such as packets and routing tables
are realized and modeled as stateless entities.

Modular and Hierarchical Design: A coupled
model specifies constructs for composing modular
models into hierarchical structures. Behavior of a
coupled model is defined by its constituent atomic
(and/or coupled) models. With closure under coupling
feature of DEVS, coupled models can be used as atomic
models in a larger model. Coupled models can be
constructed systematically using the concepts of ports
and couplings between them. When a component sends
messages via its output ports, the couplings relay the
messages to their designated input ports (Wymore
1993). Upon receipt of messages by atomic models,
they immediately process these messages which may
result in new states and generation of outputs.

Robust and accurate analysis and testing
framework: To define simulation objectives, we utilize
the concept of experimental frame an experimental
frame to define the conditions under which a model can
be experimented with and observed. Topologies of
network models or Internet core networks can be
evaluated in terms of their critical network components
and their dependencies. In this work, a typical
experimental frame consists of generator and transducer
atomic models. We employ generator in order to create
network traffic and to schedule special events such as

538

unavailability of links or nodes. To realize this, a
generator model sends messages to all the appropriate
network components. Defined experimental frame is
used for testing the model under various conditions and
observing its behavior. Having been equipped with an
experimental frame, simulation is run in under specific
experimental conditions and results are observed. The
results are then evaluated in terms of whether or not
they are within in acceptable range; otherwise, the
model parameters are changed and simulation
experiments are repeated.

Bio-inspired robust, adaptive, scalable and
collaborative design: As stated above, a swarm routing
approach which is biologically inspired model is
derived based on honeybees and their interactions called
honeybee scout-recruit mechanism during foraging. In
this framework, the movement of specialized packets
such as artificial bees (called scouts) can be used to
balance network loads. Given the similarity of this and
agent-based approaches, each node is capable of
accommodating an ensemble of scouts for controlling
congestion in a distributed environment. In our
implementation, analogous to honeybee scout-recruit
system, each network node is considered as a beehive so
that bees leave their hives for gathering nectar. Network
corresponds to the world of honeybees who seek richer
nectar sources, finding paths with higher capacities to
result in nectar sources that have higher profitability.
Control packets in the form of light-weight scout
entities searching for nectar and foraging for
information to aid survival of the network (honeybee
colonies). Each hive deploys a number of scouts to find
the most profitable paths for a given destination. Each
router then uses the information received from all the
nodes in the network obtained by its scouts to calculate
the shortest path to each destination in terms of a chosen
metric. Scouts control congestion by making alterations
to routing tables in order to route new traffic away from
congested nodes. Then, packets are dispatched from a
source to a destination according to information
gathered by scouts.

Cluster-based hierarchical routing: One of the
main criteria for appreciating the network simulators is
scalability. A network or simulator model is considered
scalable with respect to network size, if simulation
deserves its run properly while the number of network
components such as nodes and links grows constantly.
Because Internet should be designed in a hierarchical
manner for to be better managed, hierarchy is needed
for scalability (Zeigler and Mittal 2002). Cluster-based
hierarchical routing was invented for making memory
usage lesser of simulations over very large topologies.
A network topology is composed of several layers in a
hierarchical manner, thus shrinking routing table size.
To be able to make use of hierarchical routing for the
simulations, there is need for defining hierarchical
topology and hierarchical addressing. In this study, we
employed a clustering approach to support scalability
and implemented when coupling the models. Clustering
provides manageable network sizes by abstracting a

subnet to single node in a higher level network. By
considering a coupled model as an atomic model,
DEVS coupled model concept has a resemblance with
clustering. There exists a hierarchy of networks within
the total of all nodes and routers. Each coupled model
has a number of border nodes which are used for
connecting it to other coupled networks. In our
approach, clustering is done in addressing level of
nodes. Hierarchical and modular structure of DEVS
formalism facilitates implementation of clustering
approach. Border nodes have an additional routing table
consisting of the cluster names. This approach
substantially decreases the information stored in routers.

3. SwarmNET FRAMEWORK
We have defined a set of basic network simulation
model components including nodes which communicate
with one another via links (see Figures 1) as detailed
next. By coupling these model components in
DEVSJAVA, we can develop a variety of network
configurations and study their characteristics. Since it is
assumed that only nodes and links of a network are able
to cause bottleneck, they are modeled as atomic models
and only their states as well as input and output
variables are of interest. Other network components
such as packets and routing tables are realized and
modeled as stateless entities.

3.1. Network Model Specification
The nodes in the network are modeled as a DEVS
atomic component. Each node has several inputs and
outputs through which messages among nodes can be
received and sent (see Figure 1). IP address as a unique
id, unique name or code identifying each computer and
user is assigned to every node in the network so that a
packet can be directed to a specific destination. IP
addresses also specify the location of a router in the
network. The main part of the nodal structure is the
network interface (NIC) that provides fundamental
inter-networking services.

Routing Module

Global Routing Table
Local Routing Table

route

route

HIVE

Foragers
Scouts

receiver queue sender queue

processing_time

IP Address

bandwidth

Routing Schemes

Network Interface (NIC)

packet packet

routing decision process

Node

link

Routing Module

Global Routing Table
Local Routing Table

route

route

HIVE

Foragers
Scouts

receiver queue sender queue

processing_time

IP Address

bandwidth

Routing Schemes

Network Interface (NIC)

packet packet

routing decision process

Node

link

Figure 1: Node Model

At each node, packets are forwarded to their

destination by using information stored in its Routing

539

Module, which defines a node’s routing capability and
intelligence. Routing Module includes a routing table
for local network as well as a global routing table which
can be used to manage the routing between the local
network and other parts of the global network. In our
swarm application, beehive is configured to launch
scouts, foragers, and other bees to monitor and
reconfigure network resources. All link models are
capable of accommodating different kind of entities for
supporting different network designs.

The link is modeled as an atomic model. It has a
central role in defining networks having different
topologies. All links are communication channels and
therefore are viewed as bit-pipes which are
characterized with bandwidth (bits/sec) and
transmission or propagation delay specified in
milliseconds (see Figure 2). Each link is defined to be
bidirectional and thus supports concurrent bidirectional
interactions. Each duplex link has some finite capacity.
The packets that arrive are placed in the queues and are
transmitted to the next node using first-in first-out
(FIFO) strategy. Links are able to carry traffic of a
certain bandwidth up to the total capacity of the link.
The specification of the link is akin to a simple
processor with a queue that can process incoming
packets according to FIFO or some other discipline.
Each link has input and output ports for connecting two
nodes in a duplex manner (see for example Link 1
atomic model in Figure 2).

Delay
Queue

Link 1

Queue
Delay

Link 2

Duplex Link Model

in out

Figure 2: Bidirectional Link Model

Other network components such as routing tables

and packets modeled in DEVSJAVA as stateless
models. In Figure 3, the DEVSJAVA viewer shows the
content of the routing table for the router called
Router4. This is important both following the formation
of routing table in the execution mode. Packets are
modeled as a DEVS messages and categorized as
control and data packets. Control packets can carry bee
agents.

3.2. Honeybees and Network Conceptual Models of

Beehive
In this work, a swarm routing approach derived from
honeybees and their interactions was developed using
the concept of the honeybee scout-recruit mechanism
during foraging. The starting point for developing the
biologically inspired approach for modeling and
simulating network systems is that “real bees can find

optimum solutions in their foraging activity” (Seely
1995). Table 1 shows the analogy between honeybee
colonies and computer networks.

Figure 3: A Routing Table view in DEVJAVA, rows
corresponds to destinations and columns to neighbors.

Computer networks correspond to the colonies of

honeybees whose goal is to find paths to profitable
nectar sources. Each network node is analogous to a
beehive. The network links correspond to the scout-
recruit system where honeybees leave their hives to
gather food. Network nodes exchange control and data
packets. Data packets correspond to foragers carrying
nectar to beehives. The router inside each node uses the
information received from all the nodes in the network
(obtained by its control packets) to calculate the shortest
path to each destination in terms of a chosen metric.
The network links are used to limit the number of
control and data packets that can be sent and received
between nodes. This abstraction corresponds to the
amount of information scouts and foragers can carry
while searching for and transporting nectar. Each
network node deploys a number of control packets
(scouts) to find the most profitable paths for a given
destination.

Table 1: Analogy between Network Systems and
Honeybee Colonies

Computer Networks Honeybee Colonies
nodes beehive

network nectar collecting area
spare network resources nectar

links flying to/from
nectar/hive

control packets scouts
data packets foragers

routing information dances and cues
Inter-network control

packets
drones

540

The BEE (scout-recruit) routing algorithm is
defined by the following rules:

Rule 1: Periodically or in event-triggered way, each

node dispatches scout bees for gathering
information about network for choosing the
best route for sending packets over the network
as in scouting the nectar during foraging.

Rule 2: During foraging, the goal of each scout is to
collect nectar as much as possible.

Rule 3: Scouts then wonder around the network and
gather information about the status of the
network.

Rule 4: Given each node and its routing table, scouts
choose neighbor nodes with estimated
probabilities.

Rule 5: In the network, the nectar quantity can be
collected by walking along a certain route is
inversely proportional to the route cost.

Rule 6: Scouts are delayed at congested links.
Rule 7: Once a scout has reached its destination, it

goes back to its source. During going back, it
has high queuing precedence by which delay
on links is kept less.

Rule 8: A scout never visits a node twice. To do so,
scouts save a tabu list which includes the IPs
of the visited node.

Rule 9: A scout never uses a link that does not have
enough bandwidth.

Rule 10: A scout dies after it had reached its maximum
number of hops.

Rule 11: When all or some scouts have returned to their
beehives, the costs of found or recorded paths
are evaluated and entered in routing table.

Self-organization of artificial bees is based on

these relatively simple rules for derived from individual
insect’s behavior. These artificial bees correspond to a
special class of automata called scout-recruit system
that react to their local perception of the environment by
stochastically adopting predefined behaviors.
Autonomous actions are committee depending on local
information and local interactions.

Control packets help control congestion by making
alterations to routing tables in order to route new traffic
away from congested nodes. Control packets also play a
crucial role in ensuring survivability of the network
based on the same principle honeybee colonies maintain
their existence – i.e., by using scouts to search for
nectar. Furthermore, the movement of control packets is
used to balance network loads. Therefore, each node is
capable of accommodating an ensemble of scouts for
controlling network congestion.

4. SIMULATION MODELS
To show the capability (applicability) of the
biologically inspired network system modeling
approach, we started with well-known routing
algorithms which are also used implemented. For
instance, static link state algorithm is modeled to

initialize network and distance vectors to calculate
distances between nodes. In the implementation of all
these algorithms, we used hop count as a metric
although other metrics such as available link bandwidth
may also be used.

Since one of the main objectives of this approach
was to test performance of the new routing approach
against the state-of-the-art algorithms, a representative
network was used (see Figure 4). As we will show in
the other example applications, by changing the number
of node and link models and varying their parameters,
alternative network topologies can be readily created.
The network model used for comparing the above
algorithms has 11 nodes (i.e., n1, ... , n11) and 18
bidirectional links (link1, ..., link18) – this is the
representative network.

Each simulation run consisted of an adaptation to
topology phase (initialization) and a test phase. During
the initialization phase, system runs without load and
initial routing tables are formed according to the
number of hops (i.e., Dijkstra shortest path estimation
algorithm (Dijkstra 1959)). During the test phase, the
network performance was measured and recorded in
terms of average packet delay, throughput, convergence
time, and packet loss ratio. In Table 2, simulation
parameters are summarized. All values are chosen
according to algorithm test framework in which a
representative network is used to see algorithm behavior
and compare with other routing algorithms In the
following section, in order to test algorithm across
weighted conditions, all parameters are incremented.

Table 2: Simulation Model Parameters

Simulation Model Parameters
Topology 11 routers,

18 bidirectional links
Simulation time 1 sec.
Node’s buffers 1 MB
Node processor speed 1 msec/event
Link bandwidths 1.5 to 6 Mbps
Link delays 1 to 5 msec.
Traffic type Uniformly random
Event frequency 1000 event / sec.
Packet sizes 10 to 100 KB

We used two standard performance metrics:

throughput and packet delay. The amount of network
traffic is determined by the number of packets in the
network. Generally, many packets must wait in limited
capacity (FIFO queue) for processing at the nodes. We
avoided generation of packets with the same source and
destination nodes, although this can be done as long as
there is no direct source to destination connectivity (i.e.,
at least one link is used between the source and
destination nodes).

Simulation Results & Discussion: We compare
our approach with the RIP (Routing Information
Protocol) algorithm which is commonly used in today’s
Internet. The BEE routing algorithm is shown to yield
approximately 15.94% better throughput compared with

541

the RIP under optimum traffic load balancing (i.e., the
BEE algorithm handles 916.34 packets/sec while the
RIP algorithm can handle 790.5 packets/sec). Since
throughput in the BEE algorithm reaches its maximum
value in a shorter time (200 milliseconds), the BEE
algorithm has better response time compared with the
RIP algorithm. Once the network model with the BEE
algorithm reaches the steady state throughput, the
throughput remains nearly constant to the end of the
simulation. In comparison, the network model with the
RIP algorithm reaches its maximum throughput at a
much later time (500 milliseconds). Therefore, the load
balancing provided by the BEE algorithm is reached
rapidly and evenly in the presence of heavy network
traffic conditions.

We also compared the response times for each of
these algorithms based on the turnaround time of the
packets that are transmitted through the network. In our
implementation, the turnaround time is defined as a
packet’s life-span time which starts from the packet
generator and ends at the packet transducer while going
through the nodes and links of the network mode.
Average packet delays for the BEE and RIP algorithms
are 7 and 9 milliseconds, respectively. The primary
reason for this difference is attributed to the scouts in
the BEE algorithm. The scouts find optimum routes
quickly and thus allow faster response time to network
changes. Bees keep the traffic low relatively to RIP.
The ecological approach has better load balancing since
the probabilistic routing used in the BEE algorithm
forwards the packets’ alternative routes. Furthermore,
the network resources are better utilized and thus the
network traffic load is distributed evenly across nodes

and links. This reduces network congestions and results
in the packets reaching their destinations faster. The
simulation experiments show improved precision,
stabilization and consistency of the BEE routing
scheme. Also, the use of random traveling of the agents
(scouts) increases the robustness of the network
operation.

The developed approach supports modeling and
simulating adaptive, robust, and survivable network
applications. Since the SwarmNet environment is
developed using the DEVS formalism and it supports
modeling of networks using the biologically derived
rules instead of complex formulas, simulation models
can be developed systematically and simulated
efficiently. Given that the need to better understand the
Internet characteristics in terms of its topology,
alternative configurations, and unpredictability of
network traffic, researchers continue to develop greater
capabilities to simulate large-scale models (Fujimoto et
al. 2003, Floyd and Paxon 2001). For example,
simulations having more than 100,000 routers and
nodes have been developed using dozens of parallel
processors (Riley, Fujimoto, and Ammar 1999; Zegura,
Calvert, and Bhattacharjee 1996; Cowie, Nicol, and
Ogielski 1999).

Simulation experiments of large-scale network
models: A primary benefit of a network-based
modeling approach is its degree of support for large-
scale model development and efficient simulation. Due
to both scale and complexity of current network
systems such as the Internet, modeling and simulation
of these systems is non-trivial (Floyd and Paxson 2001).
While scalability issue is due to the routing databases of

Figure 4: An Experimental Frame connected with its Network Model under DEVSJAVA

542

the nodes increasing with the network size, which can
cause some routers’ databases to exceed their capacities,
complexity comes from variety of communication
media, communications equipment, protocols, and
hardware and software platforms found in the network.
To allow simple redesign of the routing database for
large-scale networks, the above clustering approach was
developed.

In order to study the scalability of the proposed
approach, we developed models for networks ranging
from 29 to 3520 components. Small networks were
created manually while large networks were produced
using a recursive topology-generating algorithm. To
verify and validate the approach on larger models, a set
of experiments were carried out and the results have
been evaluated in a comparative manner. In these
experiments, the key independent variables are the
degree of network connectivity and the number of
network components. Networks were modeled and their
simulation results were analyzed. The relation between
the network throughput and the number of nodes is
shown in Figure 5(a). The throughput gradually
decreases as the number of components increases since
the packet loss ratio increases in accordance with the
size of the models. However, performance losses for
large networks remain acceptable. Another observation
is that for all network sizes, the average delay across the
networks is increasing but not asymptotically increasing
(see Figure 5(b)).

NET1
NET2

NET3
NET4

0

50

100

150

200

250

28 319 960 3520

number of components

Th
ro

ug
hp

ut
 (P

ac
ke

ts
/s

)

min

max

average

(a)

NET1

NET2

NET3 NET4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

28 319 960 3520

number of components

av
ar

ag
e

de
la

y
(m

se
c.

)

min

max

average

(b)

NET1
NET2

NET3 NET4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

28 319 960 3520

number of components

co
nv

er
ge

nc
e

tim
e

(m
se

c.
)

min

max

average

(c)

NET1

NET2

NET3

NET4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

28 319 960 3520

number of components

pa
ck

et
 lo

se
 ra

tio
(%

)
min

max

average

(d)

Figure 5: Large-scale network (a) throughput, (b)
average delay, (c) convergence time, and (d) packet
loss measurements using the BEE algorithm.

Rapid convergence is a main feature of any
efficient routing algorithm. A routing algorithm must
show how quickly it can construct and update the
nodes’ routing tables given different scales of networks.
Figure 5(c) shows that the convergence time of the
biologically inspired routing algorithm is scalable.
Although larger networks exhibit a relatively long time
to converge as compared with smaller sized networks,
their convergence times are in milliseconds. A
stationary trait can be recognized in the convergence
trajectory as the scale of the network approaches a
thousand components. The reason is attributed to the
network being composed of similar networks since
larger models are recursively and automatically
constructed. This approach together with the parallelism
in the DEVSJAVA simulation engine causes
convergence time to increase less while the number of
components increases.

Finally, as shown in Figure 5(d), the packet loss
ratio gradually increases with the increase in the number
of components. The packet loss is shown to be linear or
better as the scale of the network is increased.
Simulations were executed in the DEVSJAVA
environment for a period of ten seconds. Using a
Windows computer with 2.4GHz processor and 512M
RAM, the representative network took a few minutes to

543

execute whereas the largest network simulation took
less than three hours to complete.

5. CONCLUSIONS
In this paper, we incorporated biologically inspired
modeling constructs into the general-purpose DEVS
modeling framework. The resulting SwarmNet
modeling approach affords scalable and efficient
simulation of computer network systems. The
developed BEE routing algorithm derived from the
concepts found in the social insect societies show better
performance compared with the commonly used RIP
algorithm. The proposed approach shows better
response time for discovery and deployment of new
routes and affords higher robustness. The use of the
control (scouts) packets does not play a significant role
in the total network load due to their lightweight design.
In the case of network malfunction such as link
unavailability or node congestion (i.e., node has reached
the maximum number of packets it can process), the
network remains functional since the probabilistic
routing adapts faster to fluctuations in the network and
can find alternative paths for destinations at run-time.
Based on these observations, the network has higher
survivability against surges.

From the perspective of model specification, the
node and link models can be extended to use
probabilistic timing and include security features. From
the application vantage point, it would be interesting to
apply this approach to modeling crowd behaviors since
existing simulation environments lack the underlying
formal theory provided by DEVS. Finally, this
SwarmNet modeling approach can support design of
emergent and scalable network systems and can be
simulated in distributed and/or service-oriented
computing technologies.

REFERENCES
ACIMS. Arizona Center for Integrative Modeling and

Simulation. 2008. http://www.acims.arizona.edu/
SOFTWARE/software.shtml

Bonabeau, E., Dorigo, M., and Théraulaz, G., 1999,
Swarm Intelligence: from natural to artificial
systems, Oxford University Press.

Cowie, D., Nicol, M., and Ogielski, A. T., 1999.
Modeling the global internet. Computing in
Science and Engineering, vol. 1, no. 1, pp. 42–50.

Dijkstra, E.W., 1959. A Note on Two Problems in
Connexion with Graphs. Numerische Mathematik
Vol. 1.

Floyd and Paxson, V., 2001. Difficulties in Simulating
the Internet, IEEE/ACM Transactions on
Networking, vol. 9, no. 4, pp. 392–403.

Fujimoto, R., Perumalla, K., Park, A., Wu, H., Ammar,
M., and Riley, G., 2003. Large-scale network
simulation: how big? how fast?. 11th IEEE/ACM
International Symposium on Modeling, Analysis
and Simulation of Computer Telecommunications
Systems(MASCOTS), p. 116, 2003.

Lunceford, W.H. and Page, E.H., 2002. Grand
Challenges for Modeling and Simulation, Editors,
Western Multiconference, San Antonio, TX.

Riley, G., Fujimoto, R., and Ammar, M. H., 1999. A
generic framework for parallelization of network
simulations, simulation: how big? how fast?. 11th
IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer
Telecommunications Systems(MASCOTS), pp.
128–, 1999.

Sarjoughian, H., and Cellier, F., 2001. Discrete Event
Modeling & Simulation Technologies: A Tapestry
of Systems and AI-based Theories and
Methodologies for Modeling and Simulation.
Springer Verlag, 2001.

Seely, T.D., 1995. The Wisdom of the Hive. Cambridge,
Mass: Harvard University Press.

Steenstrup, M. E. (Ed.)., 1995. Routing in
Communications Network. Prentice-Hall.

Wymore, W.A. 1993. Model-based Systems
Engineering: An Introduction to the Mathematical
Theory of Discrete Systems and to the
Tricotyledon Theory of System Design, Boca
Raton, CRC.

Zegura, Calvert, K. L., and Bhattacharjee, S., 1996.
How to model an internetwork, IEEE INFOCOM,
vol. 2. pp. 594–602, March 1996, San Francisco,
CA

Zeigler, B.P., Praehofer, H., and Kim, T.G., 2000.
Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic
Systems. Second Edition Academic Press.

Zeigler, B.P., Sarjoughian, H.S., 2003. Introduction to
DEVS Modeling & Simulation with JAVA:
Developing Component-based Simulation Models,
Available from:

 http:// www.acims.arizona.edu/PUBLICATIONS.
Zeigler, B.P., Mittal, S., 2001. Modeling and Simulation

of Ultra-large Networks: A Framework for New
Research Directions. ULN Workshop, July 2002.

Zengin, A., Sarjoughian, H.S, and Ekiz, H., 2004.
Biologically Inspired Discrete-Event Network
Modeling. Proceedings of the European
Simulation Symposium, pp. 317-324, Budapest,
Hungary, Oct. 17-20.

AUTHORS BIOGRAPHY
AHMET ZENGIN is Assistant Professor at Sakarya
University, Turkey. His experience with modeling and
simulation includes a one-year-stay in ACIMS Lab at
the Arizona State University. His research topics
include DEVS theory, multi-formalism modeling,
parallel and distributed simulation, modeling and
simulation of large-scale networks, distributed systems
management, biologically-inspired optimization
schemes. His main research interest lies in parallel and
distributed simulation and the High Level Architecture.

HESSAM S. SARJOUGHIAN is Assistant Professor
of Computer Science and Engineering at Arizona State

544

University, Tempe and Co-Director of the Arizona
Center for Integrative Modeling and Simulation. His
research includes modeling theory, multi-formalism
modeling, collaborative modeling, distributed co-
design, intelligent agents, and software architecture. His
professional experience has been with Honeywell and
IBM. Visit <http://www.eas.asu.edu/~hsarjou> and
<http://www.acims.arizona.edu> for more information.

HUSEYIN EKIZ is received M.Sc. in 1993 from Gazi
University, Turkey, and Ph.D. degree in computer
engineering in 1998 from the University of Sussex,
England. He is currently Professor of the Department of
Computer Systems Education and Dean of the
Technical Education Faculty, Sakarya University,
Turkey. His research interests are in the fields of
network systems, distance education, digital circuit
design and microprocessor architectures.

545

