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ABSTRACT 
Natural systems can offer important concepts for 
modeling network systems. A biologically-inspired 
discrete-event modeling approach is described for 
studying networks’ scalability and performance traits. 
Key adaptive and emergent attributes of honeybees and 
their societal properties are incorporated into a set of 
simulation models that are developed using the Discrete 
Event System Specification approach. We describe our 
approach which is based on mapping the behavior of the 
honeybees to discrete event models. Large-scale 
network models are simulated and evaluated to show 
the benefits of nature-inspired network models. 

 
Keywords: beehive, DEVS, networks, routing, 
scalability, simulation. 

 
1. INTRODUCTION 
Network systems must communicate with one another 
using a variety of algorithms and technologies. Many 
systems supporting interconnectivity are required to 
exhibit essential traits such as adaptability, scalability, 
and reliability (survivability). At the same time, these 
networked systems are expected to offer new and more 
sophisticated services in the face of increasing system 
heterogeneity (Lunceford and Page 2002). To cope with 
the management of such networks in the presence of 
ever increasing complexity, various decentralized and 
centralized approaches are being used to address the 
needs of private and public organizations (Steenstrup 
1995).  

Ecological models are being studied for 
development and operation of decentralized 
(distributed) systems such as communication networks.  
Large-scale biological systems, such as bee colonies, 
have advanced mechanisms that are scalable and 
adaptable under varying environmental conditions 
(Bonabeau, Dorigo, and Theraulaz 1999). The desirable 
characteristics of the bee colony, scalability, 

adaptability and survivability, are not present in any 
single bee. Rather, they emerge from the collective 
actions and interactions of all bees in the colony.  

The design of complex and scalable network 
applications, therefore, stands to benefit from the power 
of biological principles and schemes. The focus of this 
paper is on applying biological principles and 
mechanisms to the design and implementation of 
network applications. Swarm-based routing algorithms 
offer a number of attractive features including 
autonomy, robustness and fault tolerance. Distributing 
intelligence on the network provides rapid control over 
resources that can dynamically adapt to user’s 
requirements. Such swarm-based algorithms adapt well 
to dynamic topologies and compared to the current 
state-of-the-art distance vector algorithm have been 
shown to result in the highest throughput and lowest 
delays in Internet-style networks. We have devised a 
new class of agent-based routing algorithm based on 
principles of biological swarms, which have the 
potential to address some of the above problems in an 
autonomous and intelligent fashion.  

To develop and study dynamic and adaptive 
swarm-based routing protocols, we have devised a 
DEVS (Discrete Event System Specification) (Zeigler, 
Praehofer, and Kim 2000) network model called 
SwarmNet. Discrete event simulation is a resilient, 
powerful and efficient computational device that 
support exploring the behaviors of complex systems. 
These models and networks are implemented in the 
DEVSJAVA modeling and simulation environment 
(Zeigler and Sarjoughian 2003, ACIMS 2008) which is 
an implementation of the DEVS framework.  

The nodes and links are characterized as the 
elementary network components. Using the DEVS 
hierarchical model composition concept, we develop 
simulation models of networks with varying topologies 
and scales. For example, we will use clusters to study 
its impact on reducing communication and increasing 
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performance. The explicit and hidden behaviors of these 
networks are observed under various experimental 
configurations – e.g., nodes and links are assigned 
different capacities. Lastly, we also examine the 
performance of the DEVSJAVA environment for 
networks having from tens to several thousands of 
components and connections.  

In the remainder of this paper, starting in Section 
2, we briefly review some related key features of 
SwarmNet and highlight its strengths and weaknesses. 
In Section 3, we describe the modeling concepts from 
honeybees are mapped to a set of adaptable agent-based 
DEVS modeling constructs. In Section 4, we develop 
and analyze example models in the SwarmNet 
simulation environment. In Section 5, we summarize 
our work and present some future research directions.  

 
2. KEY FEATURES OF THE SWARMNET 
Following treatment summarizes key features of the 
SwarmNet which is packet-level discrete event network 
simulator based on DEVSJAVA. It utilizes DEVS 
formalism for describing network components and 
inherits DEVS hierarchical and modular design 
concepts.  

DEVS Simulation Engine: The dynamics of 
network systems can be described using discrete event 
modeling. This is because the dynamics of network 
systems can be characterized in terms of components 
that can process and generate events. Among discrete 
event modeling approaches, the Discrete Event Systems 
Specification (DEVS) (Zeigler, Praehofer, and Kim 
2000) is well suited for formally describing concurrent 
processing and the event-driven nature of arbitrary 
configuration of nodes and links forming network 
systems. This modeling approach supports hierarchical 
modular model construction, distributed execution, and 
therefore characterizing complex, large-scale systems 
with atomic and coupled models. Atomic models 
represent the structure and behavior of individual 
components via inputs (X), outputs (Y), states (S), and 
functions (X, S, Y, δext, δint, δconf, λ, ta). The external 
(δext), internal (δint), confluent (δconf), output (λ), and 
time advance functions (ta) define a component’s 
behavior over time (for examples of the atomic model 
see the Listings 1 and 2). Internal and external transition 
functions describe autonomous behavior and response 
to external stimuli, respectively. The time advance 
function represents the passage of time. The output 
function is used to generate outputs.  

Atomic models can be coupled together in a strict 
hierarchy to form more complex models. Parallel 
DEVS, which extends the classical DEVS, is capable of 
processing multiple input events and concurrent 
occurrences of internal and external transition functions. 
The Parallel DEVS confluent transition function 
provides local control by handling simultaneous internal 
and external transition functions. A coupled model can 
be constructed by composing models into hierarchical 
tree structures. A coupled model is defined in terms of 
its constituent atomic and/or coupled models. 

Computational realizations of the DEVS formalism and 
its associated simulation protocols are executed using 
simulation engines such as DEVSJAVA (ACIMS 
2008). DEVSJAVA is an object-oriented realization of 
Parallel DEVS. It supports describing complex 
structures and behaviors of network systems using 
object-oriented modeling techniques and advanced 
features of the Java programming language. The formal 
foundation of DEVS, its efficient execution, and the 
availability of sequential, parallel, or distributed 
simulation engines using alternative computational 
environments such as CORBA, HLA, and Web-services 
are important considerations. Furthermore, the DEVS 
models are extended with other kinds of models such as 
fuzzy logic (Sarjoughian and Cellier 2001).  

Network Modeling Approach: DEVS makes 
modeling effort systematic so that complex behavior is 
formed by coupling simple structured primitive models 
(e.g. atomic model). In other words, behavior of an 
atomic model does not exhibit a high level intelligence; 
nevertheless coupled model shows fascinating emergent 
behavior. Atomic models in a compact model interact 
via messages to form complex collective behavior. In 
order for modeling a distributed networked system, we 
have defined a set of basic network simulation model 
components including nodes which communicate with 
one another via links. By coupling these model 
components in DEVSJAVA, we can develop a variety 
of network configurations and study network 
characteristics. Since it is assumed that only nodes and 
links of a network are able to cause bottleneck, they are 
modeled as atomic models and only their states as well 
as input and output variables are of interest. Other 
network components such as packets and routing tables 
are realized and modeled as stateless entities.  

Modular and Hierarchical Design: A coupled 
model specifies constructs for composing modular 
models into hierarchical structures. Behavior of a 
coupled model is defined by its constituent atomic 
(and/or coupled) models. With closure under coupling 
feature of DEVS, coupled models can be used as atomic 
models in a larger model. Coupled models can be 
constructed systematically using the concepts of ports 
and couplings between them. When a component sends 
messages via its output ports, the couplings relay the 
messages to their designated input ports (Wymore 
1993). Upon receipt of messages by atomic models, 
they immediately process these messages which may 
result in new states and generation of outputs.  

Robust and accurate analysis and testing 
framework: To define simulation objectives, we utilize 
the concept of experimental frame an experimental 
frame to define the conditions under which a model can 
be experimented with and observed. Topologies of 
network models or Internet core networks can be 
evaluated in terms of their critical network components 
and their dependencies. In this work, a typical 
experimental frame consists of generator and transducer 
atomic models. We employ generator in order to create 
network traffic and to schedule special events such as 
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unavailability of links or nodes. To realize this, a 
generator model sends messages to all the appropriate 
network components. Defined experimental frame is 
used for testing the model under various conditions and 
observing its behavior. Having been equipped with an 
experimental frame, simulation is run in under specific 
experimental conditions and results are observed. The 
results are then evaluated in terms of whether or not 
they are within in acceptable range; otherwise, the 
model parameters are changed and simulation 
experiments are repeated.   

Bio-inspired robust, adaptive, scalable and 
collaborative design: As stated above, a swarm routing 
approach which is biologically inspired model is 
derived based on honeybees and their interactions called 
honeybee scout-recruit mechanism during foraging. In 
this framework, the movement of specialized packets 
such as artificial bees (called scouts) can be used to 
balance network loads. Given the similarity of this and 
agent-based approaches, each node is capable of 
accommodating an ensemble of scouts for controlling 
congestion in a distributed environment. In our 
implementation, analogous to honeybee scout-recruit 
system, each network node is considered as a beehive so 
that bees leave their hives for gathering nectar. Network 
corresponds to the world of honeybees who seek richer 
nectar sources, finding paths with higher capacities to 
result in nectar sources that have higher profitability. 
Control packets in the form of light-weight scout 
entities searching for nectar and foraging for 
information to aid survival of the network (honeybee 
colonies). Each hive deploys a number of scouts to find 
the most profitable paths for a given destination. Each 
router then uses the information received from all the 
nodes in the network obtained by its scouts to calculate 
the shortest path to each destination in terms of a chosen 
metric. Scouts control congestion by making alterations 
to routing tables in order to route new traffic away from 
congested nodes. Then, packets are dispatched from a 
source to a destination according to information 
gathered by scouts.  

Cluster-based hierarchical routing: One of the 
main criteria for appreciating the network simulators is 
scalability. A network or simulator model is considered 
scalable with respect to network size, if simulation 
deserves its run properly while the number of network 
components such as nodes and links grows constantly. 
Because Internet should be designed in a hierarchical 
manner for to be better managed, hierarchy is needed 
for scalability (Zeigler and Mittal 2002). Cluster-based 
hierarchical routing was invented for making memory 
usage lesser of simulations over very large topologies. 
A network topology is composed of several layers in a 
hierarchical manner, thus shrinking routing table size. 
To be able to make use of hierarchical routing for the 
simulations, there is need for defining hierarchical 
topology and hierarchical addressing. In this study, we 
employed a clustering approach to support scalability 
and implemented when coupling the models. Clustering 
provides manageable network sizes by abstracting a 

subnet to single node in a higher level network. By 
considering a coupled model as an atomic model, 
DEVS coupled model concept has a resemblance with 
clustering. There exists a hierarchy of networks within 
the total of all nodes and routers. Each coupled model 
has a number of border nodes which are used for 
connecting it to other coupled networks. In our 
approach, clustering is done in addressing level of 
nodes. Hierarchical and modular structure of DEVS 
formalism facilitates implementation of clustering 
approach. Border nodes have an additional routing table 
consisting of the cluster names. This approach 
substantially decreases the information stored in routers.   

 
3. SwarmNET FRAMEWORK 
We have defined a set of basic network simulation 
model components including nodes which communicate 
with one another via links (see Figures 1) as detailed 
next. By coupling these model components in 
DEVSJAVA, we can develop a variety of network 
configurations and study their characteristics. Since it is 
assumed that only nodes and links of a network are able 
to cause bottleneck, they are modeled as atomic models 
and only their states as well as input and output 
variables are of interest. Other network components 
such as packets and routing tables are realized and 
modeled as stateless entities.  

 
3.1. Network Model Specification 
The nodes in the network are modeled as a DEVS 
atomic component. Each node has several inputs and 
outputs through which messages among nodes can be 
received and sent (see Figure 1). IP address as a unique 
id, unique name or code identifying each computer and 
user is assigned to every node in the network so that a 
packet can be directed to a specific destination. IP 
addresses also specify the location of a router in the 
network. The main part of the nodal structure is the 
network interface (NIC) that provides fundamental 
inter-networking services.  
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Figure 1: Node Model 
 
At each node, packets are forwarded to their 

destination by using information stored in its Routing 
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Module, which defines a node’s routing capability and 
intelligence. Routing Module includes a routing table 
for local network as well as a global routing table which 
can be used to manage the routing between the local 
network and other parts of the global network. In our 
swarm application, beehive is configured to launch 
scouts, foragers, and other bees to monitor and 
reconfigure network resources. All link models are 
capable of accommodating different kind of entities for 
supporting different network designs. 

The link is modeled as an atomic model. It has a 
central role in defining networks having different 
topologies. All links are communication channels and 
therefore are viewed as bit-pipes which are 
characterized with bandwidth (bits/sec) and 
transmission or propagation delay specified in 
milliseconds (see Figure 2). Each link is defined to be 
bidirectional and thus supports concurrent bidirectional 
interactions. Each duplex link has some finite capacity. 
The packets that arrive are placed in the queues and are 
transmitted to the next node using first-in first-out 
(FIFO) strategy. Links are able to carry traffic of a 
certain bandwidth up to the total capacity of the link. 
The specification of the link is akin to a simple 
processor with a queue that can process incoming 
packets according to FIFO or some other discipline. 
Each link has input and output ports for connecting two 
nodes in a duplex manner (see for example Link 1 
atomic model in Figure 2). 

 

Delay 
Queue 

Link 1 

Queue 
Delay 

Link 2 

Duplex Link Model 

in  out  

 
Figure 2: Bidirectional Link Model 

 
Other network components such as routing tables 

and packets modeled in DEVSJAVA as stateless 
models. In Figure 3, the DEVSJAVA viewer shows the 
content of the routing table for the router called 
Router4. This is important both following the formation 
of routing table in the execution mode. Packets are 
modeled as a DEVS messages and categorized as 
control and data packets. Control packets can carry bee 
agents.  

 
3.2. Honeybees and Network Conceptual Models of 

Beehive 
In this work, a swarm routing approach derived from 
honeybees and their interactions was developed using 
the concept of the honeybee scout-recruit mechanism 
during foraging. The starting point for developing the 
biologically inspired approach for modeling and 
simulating network systems is that “real bees can find 

optimum solutions in their foraging activity” (Seely 
1995). Table 1 shows the analogy between honeybee 
colonies and computer networks. 

 

 
Figure 3: A Routing Table view in DEVJAVA, rows 
corresponds to destinations and columns to neighbors.  

 
Computer networks correspond to the colonies of 

honeybees whose goal is to find paths to profitable 
nectar sources. Each network node is analogous to a 
beehive. The network links correspond to the scout-
recruit system where honeybees leave their hives to 
gather food. Network nodes exchange control and data 
packets. Data packets correspond to foragers carrying 
nectar to beehives. The router inside each node uses the 
information received from all the nodes in the network 
(obtained by its control packets) to calculate the shortest 
path to each destination in terms of a chosen metric. 
The network links are used to limit the number of 
control and data packets that can be sent and received 
between nodes. This abstraction corresponds to the 
amount of information scouts and foragers can carry 
while searching for and transporting nectar. Each 
network node deploys a number of control packets 
(scouts) to find the most profitable paths for a given 
destination.  

 
Table 1: Analogy between Network Systems and 
Honeybee Colonies 

Computer Networks Honeybee Colonies 
nodes beehive 

network nectar collecting area 
spare network resources nectar 

links flying to/from 
nectar/hive 

control packets scouts 
data packets foragers 

routing information dances and cues 
Inter-network control 

packets 
drones 
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The BEE (scout-recruit) routing algorithm is 
defined by the following rules: 

 
Rule 1: Periodically or in event-triggered way, each 

node dispatches scout bees for gathering 
information about network for choosing the 
best route for sending packets over the network 
as in scouting the nectar during foraging. 

Rule 2:  During foraging, the goal of each scout is to 
collect nectar as much as possible. 

Rule 3:  Scouts then wonder around the network and 
gather information about the status of the 
network. 

Rule 4: Given each node and its routing table, scouts 
choose neighbor nodes with estimated 
probabilities. 

Rule 5: In the network, the nectar quantity can be 
collected by walking along a certain route is 
inversely proportional to the route cost. 

Rule 6: Scouts are delayed at congested links. 
Rule 7: Once a scout has reached its destination, it 

goes back to its source. During going back, it 
has high queuing precedence by which delay 
on links is kept less.  

Rule 8: A scout never visits a node twice. To do so, 
scouts save a tabu list which includes the IPs 
of the visited node.  

Rule 9: A scout never uses a link that does not have 
enough bandwidth.  

Rule 10: A scout dies after it had reached its maximum 
number of hops.  

Rule 11: When all or some scouts have returned to their 
beehives, the costs of found or recorded paths 
are evaluated and entered in routing table.  

 
Self-organization of artificial bees is based on 

these relatively simple rules for derived from individual 
insect’s behavior. These artificial bees correspond to a 
special class of automata called scout-recruit system 
that react to their local perception of the environment by 
stochastically adopting predefined behaviors. 
Autonomous actions are committee depending on local 
information and local interactions. 

Control packets help control congestion by making 
alterations to routing tables in order to route new traffic 
away from congested nodes. Control packets also play a 
crucial role in ensuring survivability of the network 
based on the same principle honeybee colonies maintain 
their existence – i.e., by using scouts to search for 
nectar. Furthermore, the movement of control packets is 
used to balance network loads. Therefore, each node is 
capable of accommodating an ensemble of scouts for 
controlling network congestion. 

 
4. SIMULATION MODELS  
To show the capability (applicability) of the 
biologically inspired network system modeling 
approach, we started with well-known routing 
algorithms which are also used implemented. For 
instance, static link state algorithm is modeled to 

initialize network and distance vectors to calculate 
distances between nodes. In the implementation of all 
these algorithms, we used hop count as a metric 
although other metrics such as available link bandwidth 
may also be used.  

Since one of the main objectives of this approach 
was to test performance of the new routing approach 
against the state-of-the-art algorithms, a representative 
network was used (see Figure 4). As we will show in 
the other example applications, by changing the number 
of node and link models and varying their parameters, 
alternative network topologies can be readily created. 
The network model used for comparing the above 
algorithms has 11 nodes (i.e., n1, ... , n11) and 18 
bidirectional links (link1, ..., link18) – this is the 
representative network. 

Each simulation run consisted of an adaptation to 
topology phase (initialization) and a test phase. During 
the initialization phase, system runs without load and 
initial routing tables are formed according to the 
number of hops (i.e., Dijkstra shortest path estimation 
algorithm (Dijkstra 1959)). During the test phase, the 
network performance was measured and recorded in 
terms of average packet delay, throughput, convergence 
time, and packet loss ratio. In Table 2, simulation 
parameters are summarized. All values are chosen 
according to algorithm test framework in which a 
representative network is used to see algorithm behavior 
and compare with other routing algorithms In the 
following section, in order to test algorithm across 
weighted conditions, all parameters are incremented.  

 
Table 2: Simulation Model Parameters 

Simulation Model Parameters 
Topology 11 routers,  

18 bidirectional links 
Simulation time 1 sec. 
Node’s buffers 1 MB 
Node processor speed 1 msec/event 
Link bandwidths 1.5 to 6 Mbps 
Link delays 1 to 5 msec. 
Traffic type Uniformly random 
Event frequency 1000 event / sec. 
Packet sizes 10 to 100 KB 

 
We used two standard performance metrics: 

throughput and packet delay. The amount of network 
traffic is determined by the number of packets in the 
network. Generally, many packets must wait in limited 
capacity (FIFO queue) for processing at the nodes. We 
avoided generation of packets with the same source and 
destination nodes, although this can be done as long as 
there is no direct source to destination connectivity (i.e., 
at least one link is used between the source and 
destination nodes). 

Simulation Results & Discussion: We compare 
our approach with the RIP (Routing Information 
Protocol) algorithm which is commonly used in today’s 
Internet. The BEE routing algorithm is shown to yield 
approximately 15.94% better throughput compared with 
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the RIP under optimum traffic load balancing (i.e., the 
BEE algorithm handles 916.34 packets/sec while the 
RIP algorithm can handle 790.5 packets/sec). Since 
throughput in the BEE algorithm reaches its maximum 
value in a shorter time (200 milliseconds), the BEE 
algorithm has better response time compared with the 
RIP algorithm. Once the network model with the BEE 
algorithm reaches the steady state throughput, the 
throughput remains nearly constant to the end of the 
simulation. In comparison, the network model with the 
RIP algorithm reaches its maximum throughput at a 
much later time (500 milliseconds). Therefore, the load 
balancing provided by the BEE algorithm is reached 
rapidly and evenly in the presence of heavy network 
traffic conditions.  

We also compared the response times for each of 
these algorithms based on the turnaround time of the 
packets that are transmitted through the network. In our 
implementation, the turnaround time is defined as a 
packet’s life-span time which starts from the packet 
generator and ends at the packet transducer while going 
through the nodes and links of the network mode. 
Average packet delays for the BEE and RIP algorithms 
are 7 and 9 milliseconds, respectively. The primary 
reason for this difference is attributed to the scouts in 
the BEE algorithm. The scouts find optimum routes 
quickly and thus allow faster response time to network 
changes. Bees keep the traffic low relatively to RIP. 
The ecological approach has better load balancing since 
the probabilistic routing used in the BEE algorithm 
forwards the packets’ alternative routes. Furthermore, 
the network resources are better utilized and thus the 
network traffic load is distributed evenly across nodes 

and links. This reduces network congestions and results 
in the packets reaching their destinations faster. The 
simulation experiments show improved precision, 
stabilization and consistency of the BEE routing 
scheme. Also, the use of random traveling of the agents 
(scouts) increases the robustness of the network 
operation.  

The developed approach supports modeling and 
simulating adaptive, robust, and survivable network 
applications. Since the SwarmNet environment is 
developed using the DEVS formalism and it supports 
modeling of networks using the biologically derived 
rules instead of complex formulas, simulation models 
can be developed systematically and simulated 
efficiently. Given that the need to better understand the 
Internet characteristics in terms of its topology, 
alternative configurations, and unpredictability of 
network traffic, researchers continue to develop greater 
capabilities to simulate large-scale models (Fujimoto et 
al. 2003, Floyd and Paxon 2001). For example, 
simulations having more than 100,000 routers and 
nodes have been developed using dozens of parallel 
processors (Riley, Fujimoto, and Ammar 1999; Zegura, 
Calvert, and Bhattacharjee 1996; Cowie, Nicol, and 
Ogielski 1999).  

Simulation experiments of large-scale network 
models: A primary benefit of a network-based 
modeling approach is its degree of support for large-
scale model development and efficient simulation. Due 
to both scale and complexity of current network 
systems such as the Internet, modeling and simulation 
of these systems is non-trivial (Floyd and Paxson 2001). 
While scalability issue is due to the routing databases of 

Figure 4: An Experimental Frame connected with its Network Model under DEVSJAVA 

542



the nodes increasing with the network size, which can 
cause some routers’ databases to exceed their capacities, 
complexity comes from variety of communication 
media, communications equipment, protocols, and 
hardware and software platforms found in the network. 
To allow simple redesign of the routing database for 
large-scale networks, the above clustering approach was 
developed.  

In order to study the scalability of the proposed 
approach, we developed models for networks ranging 
from 29 to 3520 components. Small networks were 
created manually while large networks were produced 
using a recursive topology-generating algorithm. To 
verify and validate the approach on larger models,  a set 
of experiments were carried out and the results have 
been evaluated in a comparative manner. In these 
experiments, the key independent variables are the 
degree of network connectivity and the number of 
network components. Networks were modeled and their 
simulation results were analyzed. The relation between 
the network throughput and the number of nodes is 
shown in Figure 5(a). The throughput gradually 
decreases as the number of components increases since 
the packet loss ratio increases in accordance with the 
size of the models. However, performance losses for 
large networks remain acceptable. Another observation 
is that for all network sizes, the average delay across the 
networks is increasing but not asymptotically increasing 
(see Figure 5(b)).  
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Figure 5: Large-scale network (a) throughput, (b) 
average delay, (c) convergence time, and (d) packet 
loss measurements using the BEE algorithm.   

Rapid convergence is a main feature of any 
efficient routing algorithm. A routing algorithm must 
show how quickly it can construct and update the 
nodes’ routing tables given different scales of networks. 
Figure 5(c) shows that the convergence time of the 
biologically inspired routing algorithm is scalable. 
Although larger networks exhibit a relatively long time 
to converge as compared with smaller sized networks, 
their convergence times are in milliseconds. A 
stationary trait can be recognized in the convergence 
trajectory as the scale of the network approaches a 
thousand components. The reason is attributed to the 
network being composed of similar networks since 
larger models are recursively and automatically 
constructed. This approach together with the parallelism 
in the DEVSJAVA simulation engine causes 
convergence time to increase less while the number of 
components increases.  

Finally, as shown in Figure 5(d), the packet loss 
ratio gradually increases with the increase in the number 
of components. The packet loss is shown to be linear or 
better as the scale of the network is increased. 
Simulations were executed in the DEVSJAVA 
environment for a period of ten seconds. Using a 
Windows computer with 2.4GHz processor and 512M 
RAM, the representative network took a few minutes to 
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execute whereas the largest network simulation took 
less than three hours to complete.  

 
5. CONCLUSIONS  
In this paper, we incorporated biologically inspired 
modeling constructs into the general-purpose DEVS 
modeling framework. The resulting SwarmNet 
modeling approach affords scalable and efficient 
simulation of computer network systems. The 
developed BEE routing algorithm derived from the 
concepts found in the social insect societies show better 
performance compared with the commonly used RIP 
algorithm. The proposed approach shows better 
response time for discovery and deployment of new 
routes and affords higher robustness. The use of the 
control (scouts) packets does not play a significant role 
in the total network load due to their lightweight design. 
In the case of network malfunction such as link 
unavailability or node congestion (i.e., node has reached 
the maximum number of packets it can process), the 
network remains functional since the probabilistic 
routing adapts faster to fluctuations in the network and 
can find alternative paths for destinations at run-time. 
Based on these observations, the network has higher 
survivability against surges.  

From the perspective of model specification, the 
node and link models can be extended to use 
probabilistic timing and include security features. From 
the application vantage point, it would be interesting to 
apply this approach to modeling crowd behaviors since 
existing simulation environments lack the underlying 
formal theory provided by DEVS. Finally, this 
SwarmNet modeling approach can support design of 
emergent and scalable network systems and can be 
simulated in distributed and/or service-oriented 
computing technologies. 
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