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ABSTRACT 
The objective of this article is to apply the Design of 
Experiments technique along with the Discrete Events 
Simulation technique in an automotive process. The 
benefits of the design of experiments in simulation 
include the possibility to improve the performance in 
the simulation process, avoiding trial and error to seek 
solutions. The methodology of the conjoint use of 
Design of Experiments and Computer Simulation is 
presented to assess the effects of the variables and its 
interactions involved in the process. In this paper, the 
efficacy of the use of process mapping and design of 
experiments on the phases of conception and analysis 
are confirmed. 
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1. INTRODUCTION 
As an example of conjoint application of simulation and 
design of experiments, the work of Nazzala, 
Mollaghasemi and Anderson (2006) can be cited, as it 
integrates simulation, design of experiments and 
economic analysis in a decision-making process at a 
semiconductors company, using a simulation model 
validated according to techniques presented by Law and 
Kelton (2000), Nayani and Mollaghasemi (1998), and 
Sargent (1998). 
 The benefits of the design of experiments in 
simulation include the possibility of improving the 
performance on the simulation process, avoiding the 
trial-and-error techniques to seek solutions. Kleijnen, 
Sanchez, Lucas and Cioppa (2005) affirm that research 
related to design of experiments is frequently found in 
specialized magazines, rarely read by simulation 
practitioners.  
 Thus, the objective of this article is to apply the 
design of experiments techniques along with the 
discrete events simulation technique in a process of an 
automotive industry. The effect of the input variables 
(number of ungrease machine, number of shifts and 
numbers of works) over the output variable (total of 

parts produced per day) is intended to be evaluated. 
Moreover, the effects of the interaction between the 
input variables through full factorial design is also 
intended to be assessed. 

 
2. COMPUTER SIMULATION IN 

MANUFACTURING ENVIRONMENTS 
According to Harrell, Ghosh and Bowden (2000), and 
Law and Kelton (2000), simulation is the imitation of a 
real system, computer-modeled, for evaluation and 
improvement of its performance. In other words, 
simulation is the importing of reality to a controlled 
environment where its behavior can be studied, under 
various conditions, without physical risks and/or large 
costs involved. Banks (2000) affirms that simulation 
involves the creation of an artificial history of reality 
and, based on this artificial history, observations and 
inferences on the operating characteristics of the real 
system that is represented can be made.  

O’Kane, Spenceley and Taylor (2000) affirm that 
simulation has become one of the most popular 
techniques to analyze complex problems in 
manufacturing environments.  

According to Banks, Carson, Nelson and Nicol 
(2005), simulation is one of the most widely used tools 
in manufacturing systems, more than in any other area. 
Some reasons may be enumerated:  

• The increase in productivity and quality in the 
industry is a direct result from automation. As 
automation systems become more and more 
complex, they can only be analyzed using 
simulation; 

• The costs with equipment and installations are 
huge; 

• Computers are becoming cheaper and faster; 
• Improvements on simulation software reduced 

the time of development of models; 
• The availability of animation resulted in higher 

comprehension and usage from manufacturing 
managers. 
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3. DESIGN OF EXPERIMENTS 
The word experiment is used in a very precise form to 
indicate an investigation where the system under study 
is under control of the investigator. On the contrary, for 
an observational study, some characteristics will be out 
of the control of the investigator (Cox and Reid, 2000). 
According to Montgomery (2001), the experiment can 
be seen as a test, or as a series of tests, in which the 
proposed changes are applied on the input variables of a 
process or system, to, then, observe and identify the 
changes occurred on the output variables. 

Still according to Montgomery (2001), the design 
of experiments refers to the process of planning of 
experiments in a way that appropriate data can be 
analyzed through statistical methods, resulting in valid 
and objective conclusions. According to Kelton (1999), 
one of the main goals of the experimental design is to 
estimate how changes in input factors affect the results, 
or answers of the experiment.  

Some terms are commonly used in design of 
experiments. Mason, Gunst and Hess (2003) define 
factor as a controllable experimental variable, which 
variation influences the response variable. Each factor 
must assume some values, defined as levels. The 
changes occurred on the mean of the values of the 
response variable correspond to the effects. 

Besides the effects caused by the factors, the 
effects created by the interaction of the factors can be 
determined. These interactions correspond to combined 
effects, where the effect of each factor depends on the 
levels of the other factors.  

The decisional process of the experimentalist falls 
back on a trade-off between performance versus cost, 
where the necessity of a more precise recognition of a 
greater number of factors and interactions bears a larger 
number of experiments and replicates.  

According to Cox and Reid (2000), the advantages 
of the use of a full factorial lies on the higher efficiency 
in estimating the main effects of the factors under the 
variable in analysis, and, specially, the definition of the 
interaction among all the factors.  

According to Sanchez, Moeeni and Sanchez 
(2006), many studies related to operations management 
use the full factorial design of experiments because of 
its simplicity and due to the fact that its project allows 
the analyst to identify interactions among the factors, as 
well as the main effects. As examples of these studies 
works from Enns (1995), who used the factorial design 
to evaluate the usage rate and sequencing techniques in 
a process can be mentioned. Malhotra and Ritzman 
(1994) considered a full factorial design to evaluate the 
impact of demand variability, usage capacity, and route 
flexibility in postal service stations. 

The disadvantage of the use of the full factorial lies 
on the amount of time and experiments to be made. 
According to Kelton (1999), when the number of 
factors becomes moderately large, the number of 
experiments explodes. A possible solution for this 
situation is the use of fractional factorial, in which only 
a fraction of all possible combinations are evaluated. 

This solution is indicated to situations where a great 
number of factors to be analyzed exist, where only the 
main effects of the factors are considered important.  

The realization of the experiments is frequently 
expensive or even impracticable. For these situations, 
the use of simulated experiments is recommended, and 
this integration between design of experiments and 
simulations is presented as follows. 

 
4. DESIGN OF SIMULATED EXPERIMENTS 
According to Kelton (1999), the use of simulation aids 
directly the execution of experiments that are costly or 
even impossible to be carried out in practice. Still 
illustrating the conjoint applicability of design of 
experiments and simulation, Barton (2002) points out in 
his work that, typically, simulation researchers 
emphasize the realization of experiments on the 
simulator and the analysis of the responses obtained, not 
paying attention to a previous phase to this one, where 
the planning of the experiment to be carried out must be 
made, with the possibility of being carried out in 
practice through Design of Experiments (DOE). 

According to Kleijnen, Sanchez, Lucas and Cioppa 
(2005), many simulation practitioners could obtain 
more information from their analysis if they used 
statistical theories, more specifically with the use of 
design of experiments developed specifically for 
computer models. 

To understand the role of simulation in the 
execution of experiments, it is only necessary to 
imagine that, in an experiment, the response variable 
(RV), or dependent variable, can be represented as: RV 
= f (IV), where IV represents the input variables 
(independent variables). Thus, according to Kelton 
(1999), the transformation function f represents the 
simulation model itself.  

Nowadays, simulation software accompanies 
generators of random numbers. So, according to Kelton 
(1999), from the design of experiments point of view, it 
is possible to excerpt the experimental randomization 
that frequently corresponds to a hard problem in 
physical experiments. Another important verification is 
that, when the execution of the experiments occurs in a 
simulation model, all the input factors became 
controllable. Barton (2002) emphasizes this statement 
affirming that nuisance variables rarely appear in 
simulation models, because normally, there is control 
over all other factors. 

Another important advantage of the use of 
simulation in the execution of experiments is replicating 
the experiments many times, obtaining many estimates 
of the main effects and interaction of the factors. These 
replicates will favor the conclusion of the significance 
or non-significance of the effect. Frequently, physical 
experiments are made in a small number of replicates, 
or even without them, due to the experiment difficulty 
or even the cost involved. These limitations do not 
occur in simulation once the model is constructed and 
validated.  
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Dessouky and Bayer (2002) integrated the 
selection of the maintenance policy in the process 
construction phase, through simulation (software 
ProModel 4.0) and application of DOE, through the 
Taguchi technique.  

In this research, 4 factors (problem severity, 
maintenance policy, resource capacity and validation 
time) and 2 levels were defined. The experience of the 
specialists and the system knowledge were used to 
define the factors and variables.  

Schappo (2006) presents an analysis of an 
assembly process of compressors and cellular layout 
alternatives, making use of design of experiments 
techniques and computer simulation as an analysis tool 
of the different scenarios with the objective of 
quantitatively measuring the changes introduced on the 
system which is being studied, improving the 
performance indicators in the manufacturing process as 
well as productivity increase.  

In the opinion of Kleijnen, Sanchez, Lucas and 
Cioppa (2005), most projects were originally developed 
for experimentation in the real world, and they have 
been adapted to be used in simulation studies, instead of 
being developed specifically inside the simulation 
principles. Classical texts of design of experiments, 
such as Box, Hunter and Hunter (1978), Box and 
Draper (1987), Montgomery (2001), Myers and 
Montgomery (2002), focus not on the necessity of 
simulation analysts, but on the practical restrictions and 
conduction of experiments in the real world. Other texts 
about simulation such as Law and Kelton (2000) and 
Banks, Carson, Nelson and Nicol (2005) cover a vast 
array of topics on the subject; however the 
demonstration of design of experiments is done using 
simpler problems that do not stimulate the mental 
abstraction of readers about the deepness and 
application possibilities.  

Therefore, it may be affirmed that practitioners of 
simulation must be attentive to the use of experiment 
projects as a necessary part of the analysis of complex 
simulations. 

 
5. METHODOLOGY 
According to Silva and Menezes (2005), a research is 
experimental when an object of study is determined, 
variables that would be capable of influencing it are 
selected, and ways of controlling and observing the 
effects that the variable produces on the object are 
defined. On this experimental research, the experiments 
will be carried out through a discrete events simulation. 

Using an analysis of the simulation methodology 
proposed by Chwif (1999) and the steps proposed by 
Montgomery (2001) for design of experiments, a flow-
chart that tries to explain the logic of the simulation 
process was constructed, in which the experimentation 
phase is conducted by DOE. This research was 
conducted according to the methodology shown in 
figure 1. In this methodology, there are three models 
that must be made: the conceptual model, the computer 
model and the operational model. In the same manner, 

these models must be validated or verified. According 
to Law (1991), the creation phase of the conceptual 
model is the most important aspect in a study of 
simulation. Chwif and Medina (2006) dedicate special 
attention to this model, since, according to them, many 
simulation researches do not demonstrate this stage. 
According to Shannon (1975), an effective conceptual 
modeling can lead to the identification of an adequate 
solution, avoiding the necessity of a complete 
simulation study. Works such as Greasley’s (2006) use 
process mapping as a means of describing the logic and 
determining decision points, even before the computer 
model, created in the software Arena®. 

1.1 Objectives and
system definition

1.2 Construction of
a conceptual model

1.3 Validation of the
conceptual model

Validated?
N

1.4 Modeling of the
input data

Real world
data

conceptual
model

Y

CONCEPTION

2.1 Construction of
the computer model

2.2 Verification of
the computer model

Validated?
N Computer

model
Y

2.3 Validation of the
operational model

Validated?
N

3.1 Definition of
experimental design

IMPLEMENTATION

Y

3.2 Execution of
experiments

3.3 Statistical analysis

3.4 Conclusions and
recommendations

ANALYSIS

 
Figure 1: Methodology of Conduct of this Research 
Montevechi, Pinho, Leal and Marins (2007) 

 
In this paper, the conceptual model will be the 

starting point, supplying information to the computer 
model. The representation of the conceptual model will 
be made in the form of a process mapping, executed 
using a selected technique. According to Leal (2003) 
and Pinho, Leal and Almeida (2006), these techniques 
must be selected according to the characteristics of the 
process and the objectives of the work. Besides, the 
generated maps must not be characterized as an end, but 
as a feasible means for visualizing improvements.  
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In this research, the process map will be used, 
which, according to Barnes (1982), is a technique to 
register a process in a compact way, through some 
standardized symbols like operations, transports, 
inspections, delays and warehousing. The level of detail 
achieved by this technique is compatible with the 
objective of this research. Moreover, it is a well-known 
tool, which facilitates the validation process of the 
conceptual model, along with process specialists (real 
system). 

The computer model is obtained through 
conversion of the conceptual model using some 
simulation language or a commercial simulator. 

The simulator selected for this work is Promodel®. 
Hlupic and Paul (1996) present a methodological 
approach to select the simulation software, according to 
some criterion, as cost and processing time. The reasons 
for choosing this software for this research are due to, 
above all, the use of graphic animation, an important 
ally in the verification and validation of the model. In 
the same manner, works from authors such as Verma, 
Gibbs and Gilgan (2000) justify the use of Promodel® 
due to the possibility to analyze the simulation through 
the accompaniment of the animation, being easy to 
apply and interpret. 

After the elaboration of the computer model, it 
must be verified whether its behavior is according to the 
conceptual model. This process is called model 
verification. The verification also consists of 
eliminating bugs from the model.  

After obtaining and verifying the computer model, 
it must be submitted to various runs obtaining, this way, 
results in different scenarios. These results must be 
compared with the results of a real system, in order to 
verify the size of the error. Once the error is inside the 
acceptable limits, the model is apt to execute 
experiments, called operational model. 

 
6. APPLICATION OF THE PROPOSED 

METHODOLOGY 
The way the steps of the proposed methodology of the 
above item were conducted during this research will be 
described as follows. 

 
Step 1.1: Objectives and system definition  

The objective of this work is determining which 
variables, among the selected, have more influence over 
the total daily production of the system. The three 
analyzed variables were: number of ungrease machine, 
number of shifts and numbers of works. These variables 
were selected because they were pointed out by the 
specialists of the real system as strategic. 

First it was chosen a case from an automotive 
industry. The final product of this company is a ring 
which is used in the automobile engines. The model that 
will be elaborated is classified as a discrete event 
simulation. 

The study case is related to a manufacturing cell 
disposed at the beginning of the production process. 
This cell is responsible for the manufacture of the first 

part of the production process. Eight machines and two 
workers are used in the manufacturing cell which works 
along three shifts. Each worker is able to operate two 
machines which are used to feed other two machines 
and also to transport components inside and outside the 
cell. The workers involved in that job are also 
responsible for the inspection of the products and to set 
up each machine. 

The simulation time was 18 days (three weeks), 
with three shifts (8 hours each). 

 
Step 1.2: Construction of a conceptual model 

In this phase, the real model under investigation is 
summarized using the conceptual model, which is 
simply a series of logical relationships relative to the 
components and structure of the system.  

This conceptual model won't be demonstrated in 
this article, for solicitation of the company. 

 
Step 1.3: Validation of the conceptual model 

The validation was realized through comparison 
between the process mapping and the real situation. The 
mapping, realized by the researchers, was presented to 
the process specialists and to people from the company 
not directly related to the real system. This way, once 
verified that the system is correctly represented, the 
conceptual model is registered.  

 
Step 1.4: Modeling of the input data 

For the realization of this work, the software 
Promodel® from Promodel Corporation was used. It is 
one of the most used softwares on the market (Doloi 
and Jafari, 2003). This package incorporates three main 
programs: Promodel® (for simulation of discrete 
events), SimRunner® (for the optimization of 
optimization models), and Stat::Fit® (for probability 
distribution studies).  

The processing times were measured in the object 
of study and inserted in the software Stat::Fit® with the 
objective of obtaining the candidate probability 
distributions and the adherence test.  

 
Step 2.1: Construction of a computer model 

For the construction of a model, ProModel® 
presents the following elements: places, entities, 
resources, processing and arrivals. The definitions and 
the functionality of the main elements are shown as 
follows: 

Places: Represent the fixed places of the system, 
where the processes are carried out. These elements are 
used for the representation of workstations, buffers, 
conveyors and waiting lines. In this element, capacity, 
units (simple or multiple), setups, maintenance, 
statistical detail level and rules for the arrival and 
departure of materials can be defined.  

Entities: The entities are items to be processed by 
the system, and they can be: raw material, pallets, 
people, or documents. The entities have defined speed, 
besides having statistical level like the places. They can 
be grouped or divided along the productive process, 
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being moved from one place to another using a defined 
route or a work network.  

Variables: Can be global or local. The global 
variables are used to represent mutable numeric values. 
The local variables only establish functions in the part 
of logic in which they are declared, and both can 
contain either numerical or real values. A global 
variable can be referred to in any place of the model. On 
the other hand, the local variable can only be referred to 
inside a determined block where it has been declared.  

Attributes: Similar to the variables, the attributes 
are attached together with entities and specific places 
and usually contain information about them. They can 
contain real or whole numbers. From its usage only one 
entity referring to one type of part can be created and 
seven attributes to differentiate the seven types of parts 
to be modeled, as occurs in this paper. 

Arrivals: Defines the input of the entities inside the 
model. The quantities, frequency, arrival periods as well 
as the arrival logic can be defined. Also, the arrivals 
through an external arrival file of parts referred to in the 
file editor can be defined.  

Processing: Consists of a table where the 
operations of each entity in each place as well as the 
necessary resource for this operation, and a table of 
routes that determines the destiny and movement of 
each entity as well as the way in which this movement 
happens and the necessary resources are defined.  

Resources: Are the elements used to transport 
entities, execute operations, and make place 
maintenance. They can be either people or equipment. 
A system can have one or more resources, endowed 
with movement or not. However, for each mobile 
resource a path network must be designated, that is, a 
route in which movement will happen.  

Figure 2 illustrates the construction environment of 
the computer model from ProModel®. 

 

 
Figure 2: Environment of the Computer Model from 
ProModel® 

 
Step 2.2: Verification of the computer model  

This model was verified by the following 
procedure: the model was built in stages; twenty 
versions were constructed; only when the model of each 
stage was working correctly the new stage could be 
initialized. 

Furthermore, at the beginning only deterministic 
data was used to simulate the model. This kind of data 
makes easier for the user to check if the logic is 
corrected in the model. Also, the debugger of 
ProModel®, the software used to perform the 
simulation, pointed out to the researches some mistakes. 
The tests runs were performed with the animation 
function working. This function allows the user to 
verify the inconsistencies in the parts flow. 

After that, stochastic values were used in the 
computer model.   

 
Step 2.3: Validation of the operational model. 

Before using statistical techniques, a face to face 
verification was applied. In this verification the model 
was introduced to the company specialists. Using 
animation these specialists could evaluate the model 
working. In this verification the model was accepted. 

In the analyzed case, the variable used for 
comparison represents the number of parts 
manufactured in one day. The statistical distribution that 
best fits this variable behavior is a Poisson distribution. 

Bisgaard and Fuller (1994) said that in works with 
design of experiment the response is typically measured 
in a continuous scale. However, in many cases the 
unique economic useful measure is to count the 
numbers of defects or defected parts. Almost every 
statistical method, particularly the methods applied on 
the factorial experiment analysis, is based under the 
assumption that the response is measured in a 
continuous scale and has constant variance. According 
to the authors, derivations show that it is possible to 
obtain a constant variance to defects counting using 
square root over the collected data, in the case of a 
Poisson distribution. 

Applying the square root function in the real and 
simulated data, it is possible to verify if the new data 
can be represented by a normal distribution. 

Figures 3 and 4 show the normality test performed 
using the Minitab Software in the real and simulated 
data. 

 
Figure 3: Anderson-Darling Normality Test for 
Simulation Data 
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Figure 4: Anderson-Darling Normality Test for Real 
Data 

 
In this test, the p-values found were 0.460 and 

0.565. Both are greater than 0.05 then it is possible to 
consider as a normal distribution. 

After the real and simulated data were considered 
as a normal distribution, it is possible to perform the F-
test. The F-test is done comparing the variance between 
the system and the model data. The null hypothesis is 
the one which the variances of both data (from the real 
system and the model) are equal. The alternative 
hypothesis is the one which the variances of both data 
are not equal. 

Figure 5 shows that the null hypothesis should be 
rejected. This test was done using Minitab. 

 
Figure 5: Variance Similar Test 

 
Once the variances are not equal the option 

highlighted in the figure 6 should not be selected. 

 
Figure 6: t-test for Dissimilar Variance 

Following with the test using Minitab, the t-test is 
accepted since the p-value is 0.079 greater then α = 
0.05. Thus the model is a good representation of the real 
system according to the statistical techniques. 

 
Step 3.1: Definition of Experimental design 

The factors selected for the work correspond to 
those the team defined as most probable of having 
contribution in the total amount of parts produced by 
the system.  

Factor A: Number of ungrease machine: This 
factor expresses the amount of ungrease machines. 

Factor B: Number of shifts: This factor expresses 
the amount of shifts.  

Factor C: Number of workers: This factor 
expresses the amount of workers.  

 
In summary, the experiment planning is as follows: 
• Number of Factors: 3; 
• Number of Levels: 2; 
• Number of Experiments: 8; 
• Number of Replicates: 3. 
 
Table 1 shows the experimental conditions for the 

described experiment. 
 

Table 1: Experimental Conditions 
Factors Level - Level + 
A:  1 2 
B:  2 3 
C: 2 4 

 
Step 3.2: Execution of the Experiments 

Table 2 shows the experimental matrix for the 
experiment planning described on step 3.1. In this table, 
r1, r2 and r3 mean replication 1, replication 2 and 
replication 3. The replications values mean total amount 
of parts produced by the system. 

 
Table 2: Experimental Matrix 

 A B C r1 r2 r3 
1 - - - 104000 91000 104000 
2 + - - 104000 104000 104000 
3 - + - 104000 104000 65000 
4 + + - 91000 78000 78000 
5 - - + 104000 78000 117000 
6 + - + 91000 78000 78000 
7 - + + 104000 104000 117000 
8 + + + 104000 104000 104000 

 
Step 3.3: Statistical Analysis 

The analysis of the main effects of each factor, 
presented in figure 7, shows that factor C (number of 
workers) has a strong positive effect over the final 
response, that is, the daily amount produced. This 
means that the alteration of level (-) to level (+) 
increases the final result. That factor A (number of 
ungrease machine) has a strong negative effect over the 
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final response. MiniTab® was the software used for the 
developed calculations. 

The weight of the effects can be visualized in 
figure 8. On this graph, it can be verified that just BC 
factors interaction effect (number of shifts * number of 
workers) are significant for a degree of confidence of 
95%, as shown by cutoff line for statistical significance.  
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Step 3.4: Conclusions and Recommendations 
The factors B and C isolated do not have a 

significant effect on the response variable. However, as 
showed in the previous item, the interaction between 
these factors has a significant effect on the response 
variable. This effect could be hardly verified by 
specialists without the use of design of experiment. 

 
7. CONCLUSION 
The use of Design of Experiments conjointly with 
Computer Simulation allowed a more efficient analysis 
of the results of the simulated model. Moreover, the 
significance of the effects of the interactions were 
confirmed, aiding the managerial decision making 
process.  

It is also important to emphasize that the process 
mapping technique made possible the creation of the 
conceptual model in the conception phase of the used 
methodology, as shown in figure 1. The same way, the 

Design of Experiments technique made possible a more 
meticulous analysis in the analysis phase. 

It is good to emphasize that the experimentation 
phase on the simulation should be preceded by the 
verification and validation phases. In this current case 
the statistical validation guarantee that the output data 
from the simulated model might represent the behavior 
of the real system. 

For the company, the recognition of the individual 
and combined effects of the factors favors the 
elaboration of an improvement plan for the increase of 
the daily production rate. Since the productive process 
is dynamic, that is, it is altered according to market 
demand, knowing the most relevant factors of this 
process facilitates the decision making, about the factor 
levels, by the managers. 
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