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ABSTRACT 
Object-oriented approaches, DAE modelling, variable 
structure modelling, Modelica notation and other devel-
opments have pushed the development of simulation 
languages essentially. A key point in these develop-
ments are hybrid structures and their related topics as 
events, event handling, state charts, structural changes, 
etc. This contribution compares features for modelling 
and simulation of extended hybrid structures in grown 
and new simulation systems on basis of classical fea-
tures – model sorting, event description, event handling, 
DAE solver, index reduction, and on basis of structural 
features – physical modelling, Modelica modelling, 
state chart modelling, structural dynamic modelling, 
visualisation, environment. The comparison of these 
features is based on the ARGESIM Benchmarks for 
Modelling and Simulation Approaches, which investi-
gate different model approaches and different simula-
tion techniques by means of implementations in various 
simulators. 
 
Keywords: Simulation software, CSSL standard, Mode-
lica standard, hybrid structures, structural dynamic sys-
tems, feature comparison 
 
1.    ARGESIM BENCHMARKS ON MODELLING  
       AND SIMULATION APPROACHES 
In 1990, the journal SNE – Simulation News Europe – 
started a series on Comparison of Simulation Software, 
which has been developed to Benchmarks for Modelling 
and Simulation Techniques. Up to now, 20 comparisons 
and benchmarks have been defined, and about 250 solu-
tions have been published – being a very valuable 
source for discussing and documenting various aspects 
of modelling and simulation approaches.  

 
For the evaluation and comparing features and ap-

proaches solutions to these comparisons were used, 
mainly of the following comparisons: 

 
 C 1 - Lithium-Cluster Dynamics under Elec-

tron Bombardment 
 C 3 - Analysis of a Generalized Class-E Am-

plifier 
 C 5 - Two State Model 
 C 7 - Constrained Pendulum 
 C 9 - Fuzzy Control of a Two Tank System 
 CP1 - Parallel Comparison 
 C 11 - SCARA Robot 

 C 12 - Collision Processes in Rows of Spheres 
 C 13 - Crane Crab with Embedded Control 
 C 15 - Clearance Identification 
 C 17 - Spatial Dynamics of SIR-Type Epi-

demic 
 C 18 - Neural Networks versus Transfer Func-

tions - Identification of Nonlinear Systems 
 C 19 - Pollution in Groundwater Flow 
 
  

This contribution mainly concentrates on Bench-
mark C5 Constrained Pendulum, because is is a small 
model and comparison results can be documented in a 
concentrated manner. At present, further benchmarks 
are in preparation, among them an extended benchmark 
for hybrid systems. Detailed information about defini-
tions and solutions to these benchmarks can be found in 
SNE, www.argesim.org. 

 
2.     CLASSICAL FEATURES OF SIMULATORS 
 
2.1   CSSL Structure for Simulators 
In 1968, the CSSL standard set first challenges for fea-
tures of simulation systems, defining necessary basic 
features for simulators and a certain structure for simu-
lators (Figure 1).  

The CSSL standard suggests structures and fea-
tures for a model frame and for an experimental frame. 
This distinction is based on Zeigler’s concept of a strict 
separation of these two frames. Model frame and ex-
perimental frame are the user interfaces for the heart of 
the simulation system, for the simulator kernel or simu-
lation engine. A translator maps the model description 
of the model frame into state space notation, which is 
used by the simulation engine solving the system gov-
erning ODEs. This basic structure of a simulator is il-
lustrated in Figure 1; an extended structure with service 
of discrete elements is given in Figure 2. 

 

 
Figure 1: Basic Structure of a Simulator - CSSL  
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Between 1980 and 2000 developers put main em-
phasis on integration of discrete elements into continu-
ous simulation systems, from simple time events to 
complex state events, and on extending the model de-
scription to DAEs. Both extensions are related, because 
algebraic equations are mainly caused or causing state 
events by means of state constraints.  

Consequently, event description (ED), time event 
handling (TEH), state event handling (SEH) and DAE 
support by means of direct or iterative DAE solvers 
(DAE) with or without index reduction (IR) became de-
sirable Classical Features of simulators, supported di-
rectly or indirectly – features to be discussed in more 
details in the next subsections. 

 
2.2   Implicit Models – Differential-Algebraic  
        Equations – DAE Solvers 
For a long time the explicit state space description  

 

00 )(),,),(),(()( xtxpttutxftx 
     (1) 

 

played the dominant role; additional constraints and im-
plicit models had to be transformed ‘manually’. From 
the 1990s on, the simulators started to take care on these 
very natural phenomena of implicit structures. Conse-
quently, they started to deal with implicit state space de-
scriptions and constraints, in general with so-called 
DAE models (differential algebraic equations): 
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The so-called extended state vector )(ty  can be 
splitted into the differential state vectors )(tx  and into 
the algebraic state vector )(tz : 
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The above given DAEs can be solved by extended 

ODE solvers and by implicit DAE solvers. Three differ-
ent approaches may be used: 
 

1. Nested Approach, using classical ODE solver 
(a) given xn , solving first numerically 

)(ˆ)(0),( 1
nnnnnn xgxzzzxg  , 

e. g. by modified Newton iteration, and  
(b) applying ODE method, evolving 

)),(,(1 nnnnEn txzxx  . 
2. Simultaneous Approach, using an implicit 

DAE solver; given xn , solving 
0),( 11  nn zxg ,   0),,,( 111   nnnnI tzxx  

simultaneously. 
3. Symbolic Approach, determining in advance 

the explicit form solving  
)(ˆ)(0),( 1 xgxzzzxg    

by symbolic computations e.g. within the 
model translator, and using classical ODE 
solvers. 

The Symbolic Approach requires a symbolic inver-
sion of the algebraic equations, which in many cases is 
not possible or not adequate; furthermore the model 
translator must not only sort equations, it must be able 
to perform symbolic manipulations on the equations.  

The Nested Approach – up to now most commonly 
used – requires a numerical inversion of the algebraic 
equations: each evaluation of the vector of derivatives 
(called by the ODE solver) has to start an iterative pro-
cedure to solve the algebraic equation. This approach can 
be very expensive and time-consuming due to these inner 
iterations. Here classical ODE solvers can be used. 

The Simultaneous Approach requires an implicit 
ODE solver – usually an implicit stiff equation solver. Al-
though also working with iterations, these solvers show 
much more efficiency and provide more flexibility for 
modelling (DASSL, IDA-DASSL, and LSODE – solvers). 

However, hidden is another problem: the ‘DAE in-
dex’ problem. Roughly speaking, a DAE model is of in-
dex n, if n differentiations of the DAE result in an ODE 
system (with an increased state space). The implicit 
ODE solvers for the Simultaneous Approach guarantee 
convergence only in case of DAE index n = 1. Models 
with higher DAE index must / should be transformed to 
models with DAE index n = 1 . This transformation is 
based on symbolic differentiation and symbolic ma-
nipulation of the high index DAE system, and there is 
no unique solution to this index reduction.  

The perhaps most efficient procedure is the so-
called Pantelides Algorithm. Unfortunately, in case of 
mechanical systems modelling and in case of process 
technology modelling indeed DAE models with DAE 
index n = 3 may occur, so that index reduction may be 
necessary. Index reduction is a new challenge for the 
translator of simulators, and still point of discussion. 

In graphical model descriptions, implicit model 
structures are known since long time as algebraic loops: 
the directed graph of signals has one or more signal 
feedback loops without any memory operator (integra-
tor, delay, etc). Again, in evaluating the problem of 
sorting occurs, and the model translator cannot build up 
the sequence for calculating the derivative vector.  

Some simulators, e.g. SIMULINK, recognise alge-
braic loops and treat them as implicit models. When a 
graphical model contains an algebraic loop, SIMULINK 
calls a loop solving routine at each time step - SIMU-
LINK makes use of the Nested Approach described be-
fore. This procedure works well in case of models with 
DAE index n = 1, for higher index problems may occur. 

In object-oriented simulation systems, like in Dy-
mola, physical a-causal modelling plays an important 
role, which results in DAEs with sometimes higher in-
dex. These systems put emphasis on index reduction (in 
the translator) to DAEs with index n = 1 in order to ap-
ply implicit ODE solvers (Simultaneous Approach 
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2.3   Time Events and State Events 
The CSSL standard also defines segments for discrete 
actions, first mainly used for modelling discrete control. 
So-called DISCRETE regions or sections manage the 
communication between discrete and continuous world 
and compute the discrete model parts.  

For incorporating discrete actions, the simulation 
engine must interrupt the ODE solver and handle the 
event. For generality, efficient implementations set up 
and handle event lists, representing the time instants of 
discrete actions and the calculations associated with the 
action, where in-between consecutive discrete actions 
the ODE solver is to be called. 

In order to incorporate DAEs and discrete ele-
ments, the simulator’s translator must now extract from 
the model description the dynamic differential equations 
(derivative), the dynamic algebraic equations (alge-
braic), and the events (event i) with static algebraic 
equations and event time, as given in Figure 2 (extended 
structure of a simulation language due to CSSL stan-
dard). In principle, initial equations, parameter equa-
tions and terminal equations (initial, terminal) are special 
cases of events at time t = 0 and terminal time. Some 
simulators make use of a modified structure, which puts 
all discrete actions into one event module, where CASE 
- constructs distinguish between the different events. 
These so-called time events are known in advance, so 
that scheduling of the time events can be handled easily, 
e.g. in the same manner than simulators schedule output 
events. 

Much more complicated, but defined in CSSL, are 
the so-called state events. Here, a discrete action takes 
place at a time instant, which is not known in advance, 
it is only known as a function of the states.  

 
For state events, the classical state space descrip-

tion is extended by the so-called state event function 
)),(),(( ptutxh  , the zero of which determines the event: 
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Generally, state events (SE) can be classified in four 
types:  

Type 1 – parameters change discontinuously (SE-P), 
Type 2 - inputs change discontinuously (SE-I), 
Type 3 - states change discontinuously (SE-S), and 
Type 4 - state vector dimension changes (SE-D), 

           including total change of model equations. 
 

State events type 1 (SE-P) could also be formu-
lated by means of IF-THEN-ELSE constructs and by 
switches in graphical model descriptions, without syn-
chronisation with the ODE solver. The necessity of a 

state event formulation depends on the accuracy 
wanted. Big changes in parameters may cause problems 
for ODE solvers with stepsize control. 

State events of type 3 (SE-S) are essential state 
events. They must be located, transformed into a time 
event, and modelled in discrete model parts.  

State events of type 4 (SE-D) are also essential 
ones. In principle, they are associated with hybrid mod-
elling: models following each other in consecutive order 
build up a sequence of dynamic processes. And conse-
quently, the structure of the model itself is dynamic; 
these so-called structural dynamic systems are at pre-
sent (2008) discussion of extensions to Modelica, see 
next chapters. 

State events of type 2 (SE-I) are not really state 
events, they are time events. They are usually put in the 
list of state events, if a synchronisation of the ODE 
solver with an input jump should be forced. 

As example, we consider the pendulum with con-
straints (Constrained Pendulum). Let  define pendu-
lum angle, and l, m and d parameters for length, mass, 
and damping. If the pendulum is swinging, it may hit a 
pin positioned at angle  p  with distance lp from the 
point of suspension. In this case, the pendulum swings 
on with the position of the pin as new point of rotation. 
The shortened length is ls = l - lp.  and the angular veloc-
ity     is changed from      to   sll /  at position 
 p , etc. These discontinuous changes are state events, 
not known in advance.  
 

With event function notation, the model for Con-
strained Pendulum is given by 

0),(

,sin,
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The example involves two different events: change of 
length parameter (SE-P), and change of state (SE-S), 
i.e. angular velocity).  
The handling of a state event requires four steps:  

 
1. Detection of the event, usually by checking the 

change of the sign of h(x) within the solver 
step over [ti, ti+1]  

2. Localisation of the event by a proper algorithm 
determining the time t* when the event occurs  
and performing the last solver step over [ti, t*] 

3. Service of the event: calculating / setting new 
parameters, inputs and states; switching to new 
equations 

4. Restart of the ODE solver at time t* with 
solver step over [ t*= ti+1, ti+2] 
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State events are facing simulators with severe prob-
lems. Up to now, the simulation engine had to call inde-
pendent algorithms, now a root finder for the state event 
function h needs results from the ODE solver, and the 
ODE solver calls the root finder by checking the sign of 
h. For finding the root of the state event function h(x), 
either interpolative algorithms (MATLAB/Simulink) or 
iterative algorithms are used (ACSL, Dymola). 

Figure 2: Extended Structure of a Simulation System 
due to Extensions of  the CSSL Standard with Discrete 
Elements and with DAE Models. 

 
Figure 2 (extended structure of a simulation lan-

guage due to CSSL standard) also shows the necessary 
extensions for incorporating state events. The simula-
tor’s translator must extract from the model description 
additionally the state event functions (state event j) with 
the associated event action – only one state event shown 
in the figure). In the simulator kernel, the static event 
management must be made dynamically: state events 
are dynamically handled and transformed to time 
events. In principle, the kernel of the simulation engine 
has become an event handler, managing a complex 
event list with feedbacks. It is to be noted, that different 
state events may influence each other, if they are close in 
time – in worst case, the event finders run in a deadlock. 
Again, modified implementations are found. It makes 
sense to separate the module for state event function 
and the module for the associated event – which may be 
a single module, or which may be put into a common 
time event module. 

 
In case of a structural change of the system equa-

tions (state event of type 4 – SE-D), simulators usually 
can manage only fixed structures of the state space. The 
technique used is to ‘freeze’ the states that are bound by 
conditions causing the event. In case of a complete 
change of equations, both systems are calculated to-
gether, freezing one according to the event. One way 
around is to make use of the experimental frame: the 
simulation engine only detects and localises the event, 
and updates the system until the event time. Then con-
trol is given back to the experimental frame. The state 

event is now serviced in the experimental frame, using 
features of the environment. Then a new simulation run 
is restarted (modelling of the structural changes in the 
experimental frame).  

The Constrained Pendulum example involves a 
state event of type 1 (SE-P) and type 3 (SE-S). A clas-
sical ACSL model description works with two discrete 
sections hit and leave, representing the two different 
modes, both called from the dynamic equations in the 
derivative section (Table 1). 

Dymola defines events and their scheduling im-
plicitly by WHEN – or IF - constructs in the dynamic 
model description, in case of the discussed example e.g. 
by 
 

 

   WHEN phi-phip=0  
        AND phi>phip  
  THEN l = ls;  
       dphi = dphi*lf/ls 
 

 
In case of more complex event descriptions, the WHEN 
– or IF – clauses are put into an ALGORITHM section 
similar to ACSL’s DISCRETE section. 
 

 
Table 1: Constrained Pendulum: Continuous Model 
with State Events (ACSL) 

 
PROGRAM constrained pendulum 
CONSTANT m = 1.02, g = 9.81, d =0.2 
CONSTANT lf=1, lp=0.7 
DERIVATIVE dynamics 
  ddphi = -g*sin(phi)/l – d*dphi/m 
  dphi  = integ ( ddphi, dphi0) 
  phi   = integ ( dphi, phi0) 
  SCHEDULE hit   .XN. (phi-phip) 
  SCHEDULE leave .XP. (phi-phip) 
END ! of dynamics 
 
DISCRETE hit 
  l = ls; dphi = dphi*lf/ls 
END ! of hit 
 
DISCRETE leave 
  l = lf; dphi = dphi*ls/lf 
END ! of leave 
 
END ! of constrained pendulum 
 

 
In graphical model descriptions, we are faced with 

the problem that calculations at discrete time instants 
are difficult to formulate. For the detection of the event, 
SIMULINK provides the HIT CROSSING block (in 
new Simulink version implicitly defined). This block 
starts state event detection (interpolation method) de-
pending on the input, the state event function, and out-
puts a trigger signal, which may call a triggered subsys-
tem servicing the event. 
It is to be noted, that discrete elements with time events 
and state events and DAEs may also change the struc-
ture of the model.  
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2.4  Classical Features of Simulators 
Event description (ED), time event handling (THE), 
state event handling (SEH) and DAE support (DAE) 
with or without index reduction (IR) became desirable 
structural features of simulators, supported directly or 
indirectly. Table 2 compares the availability of these 
features in the MATLAB / Simulink System, in ACSL 
and in Dimple, based mainly on evaluations of the AR-
GESIM Benchmarks. 
 
Table 2: Comparison of Simulators’ Classical Features  
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MATLAB no no no (yes) (yes) no 

Simulink yes (yes) yes (yes) (yes) no 
MATLAB 
/ Simulink yes yes yes yes (yes) no 

ACSL yes yes yes yes yes no 

Dymola yes yes yes yes yes yes 
 

In Table 2, the availability of features is indicated by 
‘yes’ and ‘no’; a ‘yes’ in parenthesis ‘(yes)’ means, that 
the feature is complex to use. MS - ‘Model Sorting’, is a 
standard feature of a simulator – but missing in MAT-
LAB (in principle, MATLAB cannot be called a simula-
tor). On the other hand, MATLAB’s ODE solvers offer 
limited features for DAEs (systems with mass matrix) 
and an integration stop on event condition, so that SHE 
and DAE get a (‘yes’). In Simulink, event descriptions 
are possible by means of triggered subsystems, so that 
ED gets a ‘(yes)’ because of complexity. A combination 
of MATLAB and Simulink suggest putting the event de-
scription and handling at MATLAB level, so that ED and 
SHE get both a ‘yes’. DAE solving is based on modified 
ODE solvers, using the nested approach (see before), so 
DE gets only a ‘(yes)’ for all MATLAB/Simulink com-
binations. Time events are not supported in MATLAB, 
but they are basic feature in Simulink. 
 

ACSL is a classical simulator with sophisticated 
state event handling, and since version 10 (2001) DAEs 
can be modelled directly by the residuum construct, and 
they are solved by the DASSL algorithm (a well-known 
direct DAE solver, based on the simultaneous ap-
proach), or by modified ODE solvers (nested approach) 
– so ‘yes’ for ED, SHE, and DAE. In case of DAE in-
dex n = 1, the DASSL algorithm guarantees conver-
gence, in case of higher index integration may fail. 
ACSL does not perform index reduction (IR ‘no’). 
ACSL comes with a sophisticated state event handling, 
so that all kind of events can be modelled and handled 
in a comfortable manner. 

Dymola is a modern simulator, implemented in C, 
and based on physical modelling. Model description 
may be given by implicit laws, symbolic manipulations 
extract a proper ODE or DAE state space system, with 
index reduction for high index DAE systems – all clas-
sical features are available. Dymola started a new area 
in modelling and simulation of continuous and hybrid 
systems (see Section 3). 

 
3.    STRUCTURAL FEATURES IN SIMULATORS 
There are three basic developments to extend the struc-
ture of simulators. First, the extension from ODEs to 
DAE stimulated the evolvement of Physical Modelling – 
modelling based on laws and physical ‘modules’, textu-
ally und graphically – Dymola started the development. 
Second, influences from computer engineering suggest 
use of UML – Unified Modelling Language, especially 
UML the use of UML state charts for discrete events. 
And third, as consequence of the hybrid decomposition 
of models by state charts, and influenced by experiences 
from co-simulation, handling of Structural Dynamic Sys-
tems became important. 

 
3.1  Physical Modelling 
In the 1990s, many attempts have been made to improve 
and to extend the CSSL structure, especially for the task 
of mathematical modelling. The basic problem was the 
state space description, which limited the construction of 
modular and flexible modelling libraries. Two develop-
ments helped to overcome this problem. On modelling 
level, the idea of physical modelling gave new input, and 
on implementation level, the object-oriented view helped 
to leave the constraints of input/output relations. 

In physical modelling, a typical procedure for mod-
elling is to cut a system into subsystems and to account 
for the behaviour at the interfaces. Balances of mass, en-
ergy and momentum and material equations model each 
subsystem. The complete model is obtained by combin-
ing the descriptions of the subsystems and the interfaces. 
This approach requires a modelling paradigm different to 
classical input/output modelling. A model is considered 
as a constraint between system variables, which leads 
naturally to DAE descriptions. The approach is very con-
venient for building reusable model libraries. 

In 1996, the situation was thus similar to the mid 
1960s when CSSL was defined as a unification of the 
techniques and ideas of many different simulation pro-
grams. An international effort was initiated in Septem-
ber 1996 for bringing together expertise in object-
oriented physical modelling (port based modelling) and 
defining a modern uniform modelling language – 
mainly driven by the developers of Dymola. The new 
modelling language is called Modelica. Modelica is in-
tended for modelling within many application domains 
such as electrical circuits, multibody systems, drive 
trains, hydraulics, thermo-dynamical systems, and 
chemical processes etc. It supports several modelling 
formalisms: ordinary differential equations, differential-
algebraic equations, bond graphs, finite state automata, 
and Petri nets etc.  
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Modelica is intended to serve as a standard format 
so that models arising in different domains can be ex-
changed between tools and users. Modelica is a not a 
simulator, Modelica is a modelling language, support-
ing and generating mathematical models in physical 
domains.  

When the development of Modelica started, also a 
competitive development, the extension of VHDL to-
wards VHDL-AMS was initiated. Both modelling lan-
guages aimed for general-purpose use, but VHDL-AMS 
mainly addresses circuit design, and Modelica covers 
the broader area of physical modelling; modelling con-
structs such as Petri nets and finite automata could 
broaden the application area, as soon as suitable simula-
tors can read the model definitions.  

Modelica offers a textual and graphical modelling 
concept, where the connections of physical blocks are 
bidirectional physical couplings, and not directed flow. 
An example demonstrates how drive trains are mod-
elled. The drive train consists of four inertias and three 
clutches, where the clutches are controlled by input sig-
nals (Figure 3). The graphical model layout corresponds 
with a textual model representation, shown in Table 3 
(abbreviated, simplified). 
 

 
 

Figure 3: Graphical Modelica Model for Coupled 
Clutches 

 
Table 3: Textual Modelica Model for Coupled Clutches 
 
encapsulated model CoupledClutches; "Drive train" 
  parameter SI.Frequency freqHz=0.2; …. 
  Rotational.Inertia J1(J=1,phi(ic=0),w(ic=10)); 
  Rotational.Torque torque; 
  Rotational.Clutch clutch1(peak=1.1, fn_max=20); 
  Rotational.Inertia J3(J=1); …………………………………… 
equation  
  connect(sin1.outPort, torque.inPort); 
  connect(torque.flange_b, J1.flange_a); 
  connect(J1.flange_b, clutch1.flange_a); 
      …………………………………….. 
  connect(step2.outPort, clutch3.inPort); 
end CoupledClutches; 
 

 
The translator from Modelica into the target simu-

lator must not only be able to sort equations, it must be 
able to process the implicit equations symbolically and 
to perform DAE index reduction (or a way around).  
 

Up to now – similar to VHDL-AMS – some simu-
lation systems understand Modelica (2008; generic – 
new simulator with Modelica modelling, extension - 
Modelica modelling interface for existing simulator): 

 
 Dymola from Dynasim (generic),  
 MathModelica from MathCore  

Engineering (generic) 
 SimulationX from ISI (generic/extension) 
 Scilab/Scicos (extension) 

 MapleSim (extension, announced) 
 Open Modelica -  since 2004 the University of 

Lyngby develops an  provides an open Mode-
lica simulation environment (generic), 

 Mosilab - Fraunhofer Gesellschaft develops a  
generic Modelica simulator, which supports  
dynamic variable structures (generic) 

 Dymola / Modelica blocks in Simulink  
 

As Modelica also incorporates graphical model ele-
ments, the user may choose between textual modelling, 
graphical modelling, and modelling using elements from 
an application library. Furthermore, graphical and textual 
modelling may be mixed in various kinds. The minimal 
modelling environment is a text editor; a comfortable 
modelling environment offers a graphical modelling editor. 

The Constrained Pendulum example can be formu-
lated in Modelica textually as a physical law for angular 
acceleration. The event with parameter change is put 
into an algorithm section, defining and scheduling the 
parameter event SE-P (Table 4). As instead of angular 
velocity, the tangential velocity is used as state variable, 
the second state event SE-S ‘vanishes’.  
 
Table 4: Textual Modelica Model for Constrained  
Pendulum 
 

   equation /*pendulum*/ 
     v = length*der(phi); 
     vdot = der(v); 
     mass*vdot/length + mass*g*sin(phi) 
     +damping*v = 0; 
   algorithm 
    if (phi<=phipin) then length:=ls; end if; 
    if (phi>phipin) then length:=l1; end if; 
 

 
Modelica allows combining textual and graphical 

modelling. For the Constrained Pendulum example, the 
basic physical dynamics could be modelled graphically 
with joint and mass elements, and the event of length 
change is described in an algorithm section, with 
variables interfacing to the predefined variables in the 
graphical model part (Figure 4). 

 

 

 

algorithm 
if (revolute1.phi 
     <= phipin then 
    revolute1.length:=ls; 
end if;  
if (revolute1.phi 
     < phipin then 
    revolute1.length:=ll; 
end if; 
  

 

Figure 4: Mixed Graphical and Textual Dymola  
Model for Constrained Pendulum 

 
3.2  UML State Chart Modelling 
In the end of the 1990s, computer science initiated a 
new development for modelling discontinuous changes. 
The Unified Modelling Language (UML) is one of the 
most important standards for specification and design of 
object oriented systems. This standard was tuned for 
real time applications in the form of a new proposal, 
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UML Real-Time (UML-RT). By means of UML-RT, 
objects can hold the dynamic behaviour of an ODE.  

In 1999, a simulation research group at the Techni-
cal University of St. Petersburg used this approach in 
combination with a hybrid state machine for the devel-
opment of a hybrid simulator (MVS), from 2000 on 
available commercially as simulator AnyLogic. The 
modelling language of AnyLogic is an extension of 
UML-RT; the main building block is the Active Object. 
Active objects have internal structure and behaviour, 
and allow encapsulating of other objects to any desired 
depth. Active objects interact with their surroundings 
through boundary objects: ports for discrete communi-
cation, and variables for continuous communication. 
The activities within an object are usually defined by 
state charts (extended state machine). While discrete 
model parts are described state charts, events, timers 
and messages, the continuous models are described by 
ODEs and DAEs in CSSL-type notation and with state 
charts within an object. 
 

An AnyLogic implementation of the well-known 
Bouncing Ball example shows a simple use of state chart 
modelling (Figure 5). The model equations are defined in 
the active object ball, together with the state chart 
ball.main. This state chart describes the interruption of the 
state flight (without any equations) by the event bounce 
(SE-P and SE-S event) defined by condition and action. 
 

 
 

Figure 5: AnyLogic Model for the Bouncing Ball 
 

AnyLogic influenced further developments for hy-
brid and structural dynamic systems, and led to a dis-
cussion in the Modelica community with respect to a 
proper implementation of state charts in Modelica. State 
charts are to be seen as comfortable way to describe 
complex WHEN – and IF – constructs, being part of the 
model, but state charts may also control different mod-
els from a higher level. A minor problem is the fact, that 
the state chart notation is not really standardised; Any-
Logic makes use of the Harel state chart type. 
 
An AnyLogic implementation for the Constrained Pen-
dulum may follow the implementation for the bouncing 
ball (Figure 5). An primary active object (Constrained 
Pendulum)‘holds’ the equations for the pendulum, to-
gether with a state chart (main) switching between short 
and long pendulum. The state chart nodes are empty; 
the arcs define the events (Figure 6). Internally, Any-

Logic restarts at each hit the same pendulum model 
(trivial hybrid decomposition). 
 

 
Figure 6: AnyLogic model for Constrained  
Pendulum, Simple Implementation 
 
3.3  Structural Dynamic Systems 
Hybrid systems – systems with state events of essential 
types, often come together with a change of the dimen-
sion of the state space, then called Structural-dynamic 
Systems. The dynamic change of the state space is caused 
by a state event of type SE-D. In contrary to state events 
SE-P and SE-S, states and derivatives may change con-
tinuously and differentiable in case of structural change. 
In principle, structural-dynamic systems can be seen from 
two extreme viewpoints. The one says, in a maximal state 
space, state events switch on and off algebraic conditions, 
which freeze certain states for certain periods. The other 
one says that a global discrete state space controls local 
models with fixed state spaces, whereby the local models 
may be also discrete or static. 
 

These viewpoints derive two different approaches 
for structural dynamic systems modelling, the  

 
 maximal state space, and the  
 hybrid decomposition. 

 
Most implementations of physically based model 

descriptions support a big monolithic model description, 
derived from laws, ODEs, DAEs, state event functions 
and internal events. The state space is maximal and 
static, index reduction in combination with constraints 
keep a consistent state space. For instance, Dymola, 
OpenModelica, and VHDL-AMS follow this approach.  

The hybrid decomposition approach makes use of 
state events, which control the sequence and the serial 
coupling of one model or of more models. A convenient 
tool for switching between models is a state chart, 
driven by these events, which itself are generated by the 
models. Following e.g. the UML-RT notation, control 
for continuous models and for discrete actions can by 
modelled by state charts. This approach additionally al-
lows not only dynamically changing state spaces, but 
also different model types, like ODEs, linear ODEs (to 
be analysed by linear theory), PDEs, co-simulation, etc. 
to be processed in serial or also in parallel, so that also 
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co-simulation can be formulated based on external 
events.  

 
 

 
Figure 7: Simulator Structure for Structural-Dynamic  
Systems. 

 
Figure 7 shows a structure for a simulator support-

ing structural dynamic modelling and simulation. The 
figure summarises the outlined ideas by extending the 
CSSL structure by ‘connection’ models, model-
changing state events and multiple models. The main 
extension is that the translator generates not only one 
DAE model; he generates several DAE models from the 
(sub)model descriptions, and external events from the 
connection model, controlling the model execution se-
quence in the highest level of the dynamic event list. 
There, all (sub)models may be precompiled, or the new 
recent state space may be determined and translated to a 
DAE system in case of the external event (interpretative 
technique). 

Clearly, not only ODE solver can make use of the 
model descriptions (derivatives), but also eigenvalue 
analysis and steady state calculation may be used and 
other analysis algorithms. Furthermore, complex experi-
ments can be controlled by external events scheduling the 
same model in a loop. A simulator structure as proposed 
in Figure 7 is a very general one, because it allows as 
well external as ell as internal events, so that hybrid cou-
pling with variable state models of any kind is possible. 

Both approaches have advantages and disadvan-
tages. The classical Dymola approach generates a fast 
simulation, because of the monolithic program. How-
ever, the state space is static. A hybrid approach handles 
separate model parts and must control the external 
events. Consequently, two levels of programs have to be 
generated: dynamic models, and a control program – to-
day’s implementations are interpretative and not compil-
ing, so that simulation times increase - but the overall 
state space is indeed dynamic. 
 

A challenge for the future lies in the combination of 
both approaches. The main ideas are: 
 Moderate hybrid  

decomposition 
 Efficient implementation of models /control 
 

For instance, for parameter state events (SE-P) an 
implementation within a model may be sufficient, for an 
event of SE-S type implementation with a model change 
may be advantageous because of easier state re-ini-
tialisation, and for a structural model change (SE-D) an 
implementation with hybrid decomposition may be pre-
ferred, because of much easier handling of the dynamic 
state change – and less necessity for index reduction. An 
efficient control of the sequence of models can be made 
by state charts, but also by a well-defined definitions and 
distinction of IF - and WHEN - constructs, like discussed 
in extensions of Scilab/Scicos for Modelica models. 

 
3.4 Classification of Structural Features  
While the Classical Features address the CSSL-standard 
and its extensions, Structural Features characterise fea-
tures for physical modelling and for structural dynamic 
systems, the main development from the year 2000 on. 
The Structural Features may be classified as follows: 

 
 Support of a-causal physical modelling at tex-

tual (PM-T) or graphical level (PM-G), 
 Modelica standard (MOD) for physical model-

ling, 
 Decomposition of structural dynamic systems 

with dynamic features (SD) 
 Support of state chart modelling or of a similar 

construct, by means of textual (SC-T) or 
graphical (SC-G) constructs. 

 
Simulators with a-causal modelling may support 

hybrid decomposition or not, and state chart modelling 
may be available or not. Simulators with features for state 
chart modelling may support hybrid decomposition or 
not, and a-causal modelling may be offered or not. In 
general, interpreter-oriented simulators offer more struc-
tural flexibility, but modern software structures would al-
low also flexibility with precompiled models. 

In addition, of interest are also structural features as 
 
 simulation-driven visualisation (visualisation  

objects defined with model objects; VIS), 
 frequency domain analysis and linearization 

for steady state analysis (FA), and 
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 extended environment for complex experi-
ments and data processing (ENV). 

 
Appendix A summarises the availability of these 

Structural Features in some frequently used simulators, 
and especially in simulators understanding the MODE-
LICA modelling notation (Section 3.1), together with 
the classical features. Basis for the classification are so-
lutions to specific ARGESIM Benchmarks: Table 5 
documents the evaluation of the benchmarks wrt to 
classical – ‘C’ -and structural – ‘S’ - features.  

 

Table 5 also list features for further evaluation: 
 

 optimisation and identification (OPT/ID) 
 VHDL-AMS standard (V-AMS) 
 System Dynamics modelling (SYS-D) 
 Real-time Simulation (RT) 
 Co-Simulation (COS) 
 Spatial Dynamics (SPAT) 
 Parallel Simulation (PAR) 
 

4.    IMPLEMENTATION EXAMPLES  
As example, structural dynamic implementations of the 
Constrained Pendulum within the experimental simula-
tor Mosilab are shown. Since 2004, Fraunhofer Gesell-
schaft Dresden develops a generic simulator Mosilab, 
which also initiates an extension to Modelica: multiple 
models controlled by state automata, coupled in serial 
and in parallel. Furthermore, Mosilab puts emphasis on 
co-simulation and simulator coupling, whereby for inter-
facing the same constructs are used than for hybrid de-
composition.  
 
Table 5: Evaluation of Classical and Structural Features 
in specific Benchmarks 
Feature Type Benchmarks 

MS C C1, C3, C5, C7, C9, C11, C13 
ED C C3, C5, C7, C9, C11, C12, C13, C18 

TEH C C3, C9, C12, C13, C18 
SEH C C5, C7, C11, C12, C13 
DAE C C7, C11, C13 

IR C C11, C13 
PM-T S C1, C3, C5, C7, C9, C11, C13, C15, C19 
PM-G S C1, C3, C5, C7, C9, C11, C13, C15, C19 

VIS S C1, C3, C7, C9, C11, C12, C17 
MOD S C1, C3, C5, C7, C9, C11, C13, C15 
SC-T S C3, C5, C7, C9, C11, C12, C13 
SC-G S C3, C5, C7, C9, C11, C12, C13 

SD S C5, C7, C9, C11, C13, C15 
FA S C1, C3, C11, C13 

ENV S C1, C3, C5, C7, C9, C11, C12, C13, 
C15, C17, C18, C19 

OPT/ID (S) C7, C15, C17, C18 
V-AMS (S) C3, C5, C7, C9, C13 
SYS-D (C) C1, C7, C15, C17 

RT (C) C3, C9, C13, C18 
COS (C) C9, C11, C18 

SPAT (C) C17, C19 
PAR (S) CP-1, C19 

 

Mosilab is a generic Modelica simulator, so all 
classical features are met (ED, SEH, DAE, PM-T, and 
PM-G ‘yes’, and MOD ‘(yes)’ – because of subset im-
plementation at present, 2008). For DAE solving, vari-
ants of  IDA-DASSL solver are used. Mosilab imple-
ments extended state chart modelling, which may be 
translated directly due to Modelica standard into equiva-
lent IF – THEN constructs, or which can control different 
models and model executions (SC-T, SC-G, and SD 
‘yes’). At state chart level, state events of type SE-D con-
trol the switching between different models and service 
the events (E-SE-D). State events affecting a state vari-
able (SE-S type) can be modelled at this external level 
(E-SE-S type), or also as classic internal event (I-SE-S). 
Mosilab translates each model separately, and generates a 
main simulation program out of state charts, controlling 
the call of the precompiled models and passing data be-
tween the models, so that the software model of Mosilab 
follows the structure in Figure 7.  

Mosilab is in developing, so it supports only a sub-
set of Modelica, and index reduction has not been im-
plemented yet, so that MOD gets a ‘(yes)’ in parenthe-
sis, and IR gets a  ‘(no)’ – indicating that the feature is 
not available at present (2008), but is scheduled for the 
future. Index reduction at present not available in Mosi-
lab, but planned  (IR ‘(no)’) - has become topic of dis-
cussion: case studies show, that hybrid decomposition 
of structural dynamic systems results mainly in DAE 
systems of index n = 1, so that index reduction may be 
bypassed (except models with contact problems). 

Mosilab allows very different approaches for mod-
elling and simulation tasks, to be discussed with the 
Constrained Pendulum example.  
 
Table 6: Mosilab Model for Constrained Pendulum – 
State Chart Switching between Different Models 

 

model Long 
equation 
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
end Long; 
model Short 
equation 
 mass*vdot/ls + mass*g*sin(phi)+damping*v = 0; 
end Short; 
event discrete Boolean lengthen(start=true), 
 shorten(start = false); 
equation 
 lengthen = 
 (phi>phipin);shorten=(phi<=phipin); 
statechart 
state ChangePendulum extends State; 
 State Short,Long,startState(isInitial=true); 
transition Long->Short event shorten action 
end transition; 
transition Short -> Long event lengthen 
 action 
end transition; end ChangePendulum; 
 

 
In a Mosilab Standard Modelica Model the Con-

strained Pendulum is defined in the MOSILAB equa-
tion layer as implicit law or with graphical blocks as in 
Dymola (Table 4, Figure 4). In an Mosilab Model with 
State Charts,  state charts may be used instead of  IF - 
or WHEN - clauses, with much higher flexibility and 
readability in case of complex conditions. In a Struc-
tural Dynamic Mosilab Model state charts may switch 
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externally between two different pendulum models, 
controlled externally by a state chart. 

Clearly, in case of this simple model, different 
models would not be necessary. Here, the system is de-
composed into two different models, Short pendulum 
model, and Long pendulum model (Table 6), switched 
by external state charts. 
 
REFERENCES 
Breitenecker F., Troch I., 2004. Simulation Software – 

Development and Trends. In: Unbehauen H., Troch 
I., Breitenecker F., eds. Modelling and Simulation of 
Dynamic Systems / Control Systems, Robotics, and 
Automation. Oxford: Eolss Publishers, . 

Cellier, F.E., 1991. Continuous System Modeling. New 
York, Springer,  

Cellier, F.E., and E. Kofman. 2006, Continuous System  
Simulation. New York, Springer 

Fritzson, P, 2005. Principles of Object-Oriented Modeling 
and Simulation with Modelica. Wiley IEEE Press. 

Nytsch-Geusen C, Schwarz P, 2005. MOSILAB: Devel-
opment of a Modelica based generic simulation tool 
supporting model structural dynamics. Proc. 4th In-
tern. Modelica Conference, 527-535. March 2005, 
Hamburg. 

Strauss J. C. 1967. The SCi continuous system simulation 
language (CSSL). Simulation 9: 281-303. 

 
 

APPENDIX 
Appendix A 

 
Availability of Structural and Classical Features in Simulators and Simulation Systems 
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MATLAB no no no (yes) (yes) no no no (yes) no no no yes yes yes 

Simulink yes (yes) (yes) (yes) (yes) no no (no) (yes) no no no no yes (yes) 

MATLAB/Simulink yes yes yes yes (yes) no no (no) (yes) no no no yes yes yes 

Simulink/ Stateflow yes yes yes yes (yes) no no (no) (yes) no (yes) yes no yes (yes) 

ACSL yes yes yes yes yes no no (no) (yes) no no no no yes yes 

Dymola yes yes yes yes yes yes yes yes yes yes (yes) (yes) no (no) (yes) 

MathModelica yes yes yes yes yes yes yes yes (yes) yes (no) (yes) no (no) (no) 

MathModelica / 
Mathematica yes yes yes yes yes yes yes yes yes yes (no) (yes) yes yes yes 

Mosilab yes yes yes yes yes (no) yes yes (no) (yes) yes yes yes no (yes) 

Open Modelica yes yes yes yes yes yes yes (no) (no) yes (no) (yes) no no no 

SimulationX yes yes yes yes yes yes yes yes yes yes (no) (yes) no yes (yes) 

AnyLogic yes yes yes (yes) (yes) no no no yes no yes yes yes no no 

Model Vision yes yes yes yes yes yes yes no yes no yes yes yes yes no 

Scilab no no no (yes) (yes) no no no (yes) no no no yes yes yes 

Scicos yes (yes) (yes) yes yes (yes) yes yes (yes) (yes) yes (yes) no no no 

Scilab/ Scicos yes yes yes yes yes (yes) yes yes (yes) (yes) yes (yes) yes yes yes 

(MapleSim) yes (yes) (no) (yes) yes yes yes yes yes yes no no (yes) (yes) yes 
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