
STRUCTURAL FEATURES IN SIMULATION SYSTEMS
– EVOLUTION AND COMPARISON

Felix Breitenecker (a), Nikolas Popper(b), Günther Zauner(a,b)

 (a) Vienna Univ. of Technology, Austria

(b) ”die Drahtwarenhandlung” Simulation Services, Vienna, Austria

(a) Felix.Breitenecker@tuwien.ac.at, (b) Niki.Popper@drahtwarenhandlung.at

ABSTRACT
Object-oriented approaches, DAE modelling, variable
structure modelling, Modelica notation and other devel-
opments have pushed the development of simulation
languages essentially. A key point in these develop-
ments are hybrid structures and their related topics as
events, event handling, state charts, structural changes,
etc. This contribution compares features for modelling
and simulation of extended hybrid structures in grown
and new simulation systems on basis of classical fea-
tures – model sorting, event description, event handling,
DAE solver, index reduction, and on basis of structural
features – physical modelling, Modelica modelling,
state chart modelling, structural dynamic modelling,
visualisation, environment. The comparison of these
features is based on the ARGESIM Benchmarks for
Modelling and Simulation Approaches, which investi-
gate different model approaches and different simula-
tion techniques by means of implementations in various
simulators.

Keywords: Simulation software, CSSL standard, Mode-
lica standard, hybrid structures, structural dynamic sys-
tems, feature comparison

1. ARGESIM BENCHMARKS ON MODELLING
 AND SIMULATION APPROACHES
In 1990, the journal SNE – Simulation News Europe –
started a series on Comparison of Simulation Software,
which has been developed to Benchmarks for Modelling
and Simulation Techniques. Up to now, 20 comparisons
and benchmarks have been defined, and about 250 solu-
tions have been published – being a very valuable
source for discussing and documenting various aspects
of modelling and simulation approaches.

For the evaluation and comparing features and ap-

proaches solutions to these comparisons were used,
mainly of the following comparisons:

 C 1 - Lithium-Cluster Dynamics under Elec-

tron Bombardment
 C 3 - Analysis of a Generalized Class-E Am-

plifier
 C 5 - Two State Model
 C 7 - Constrained Pendulum
 C 9 - Fuzzy Control of a Two Tank System
 CP1 - Parallel Comparison
 C 11 - SCARA Robot

 C 12 - Collision Processes in Rows of Spheres
 C 13 - Crane Crab with Embedded Control
 C 15 - Clearance Identification
 C 17 - Spatial Dynamics of SIR-Type Epi-

demic
 C 18 - Neural Networks versus Transfer Func-

tions - Identification of Nonlinear Systems
 C 19 - Pollution in Groundwater Flow

This contribution mainly concentrates on Bench-
mark C5 Constrained Pendulum, because is is a small
model and comparison results can be documented in a
concentrated manner. At present, further benchmarks
are in preparation, among them an extended benchmark
for hybrid systems. Detailed information about defini-
tions and solutions to these benchmarks can be found in
SNE, www.argesim.org.

2. CLASSICAL FEATURES OF SIMULATORS

2.1 CSSL Structure for Simulators
In 1968, the CSSL standard set first challenges for fea-
tures of simulation systems, defining necessary basic
features for simulators and a certain structure for simu-
lators (Figure 1).

The CSSL standard suggests structures and fea-
tures for a model frame and for an experimental frame.
This distinction is based on Zeigler’s concept of a strict
separation of these two frames. Model frame and ex-
perimental frame are the user interfaces for the heart of
the simulation system, for the simulator kernel or simu-
lation engine. A translator maps the model description
of the model frame into state space notation, which is
used by the simulation engine solving the system gov-
erning ODEs. This basic structure of a simulator is il-
lustrated in Figure 1; an extended structure with service
of discrete elements is given in Figure 2.

Figure 1: Basic Structure of a Simulator - CSSL

398

Between 1980 and 2000 developers put main em-
phasis on integration of discrete elements into continu-
ous simulation systems, from simple time events to
complex state events, and on extending the model de-
scription to DAEs. Both extensions are related, because
algebraic equations are mainly caused or causing state
events by means of state constraints.

Consequently, event description (ED), time event
handling (TEH), state event handling (SEH) and DAE
support by means of direct or iterative DAE solvers
(DAE) with or without index reduction (IR) became de-
sirable Classical Features of simulators, supported di-
rectly or indirectly – features to be discussed in more
details in the next subsections.

2.2 Implicit Models – Differential-Algebraic
 Equations – DAE Solvers
For a long time the explicit state space description

00)(),,),(),(()(xtxpttutxftx
 (1)

played the dominant role; additional constraints and im-
plicit models had to be transformed ‘manually’. From
the 1990s on, the simulators started to take care on these
very natural phenomena of implicit structures. Conse-
quently, they started to deal with implicit state space de-
scriptions and constraints, in general with so-called
DAE models (differential algebraic equations):

00)(0),),(),(),((ytypttutytyF (2)

The so-called extended state vector)(ty can be
splitted into the differential state vectors)(tx and into
the algebraic state vector)(tz :

0),),(),(),((
,)(,0),),(),(),(()(00

pttutztxg
xtxpttutztxftx

(3)

The above given DAEs can be solved by extended

ODE solvers and by implicit DAE solvers. Three differ-
ent approaches may be used:

1. Nested Approach, using classical ODE solver
(a) given xn , solving first numerically

)(ˆ)(0),(1
nnnnnn xgxzzzxg ,

e. g. by modified Newton iteration, and
(b) applying ODE method, evolving

)),(,(1 nnnnEn txzxx .
2. Simultaneous Approach, using an implicit

DAE solver; given xn , solving
0),(11 nn zxg , 0),,,(111 nnnnI tzxx

simultaneously.
3. Symbolic Approach, determining in advance

the explicit form solving
)(ˆ)(0),(1 xgxzzzxg

by symbolic computations e.g. within the
model translator, and using classical ODE
solvers.

The Symbolic Approach requires a symbolic inver-
sion of the algebraic equations, which in many cases is
not possible or not adequate; furthermore the model
translator must not only sort equations, it must be able
to perform symbolic manipulations on the equations.

The Nested Approach – up to now most commonly
used – requires a numerical inversion of the algebraic
equations: each evaluation of the vector of derivatives
(called by the ODE solver) has to start an iterative pro-
cedure to solve the algebraic equation. This approach can
be very expensive and time-consuming due to these inner
iterations. Here classical ODE solvers can be used.

The Simultaneous Approach requires an implicit
ODE solver – usually an implicit stiff equation solver. Al-
though also working with iterations, these solvers show
much more efficiency and provide more flexibility for
modelling (DASSL, IDA-DASSL, and LSODE – solvers).

However, hidden is another problem: the ‘DAE in-
dex’ problem. Roughly speaking, a DAE model is of in-
dex n, if n differentiations of the DAE result in an ODE
system (with an increased state space). The implicit
ODE solvers for the Simultaneous Approach guarantee
convergence only in case of DAE index n = 1. Models
with higher DAE index must / should be transformed to
models with DAE index n = 1 . This transformation is
based on symbolic differentiation and symbolic ma-
nipulation of the high index DAE system, and there is
no unique solution to this index reduction.

The perhaps most efficient procedure is the so-
called Pantelides Algorithm. Unfortunately, in case of
mechanical systems modelling and in case of process
technology modelling indeed DAE models with DAE
index n = 3 may occur, so that index reduction may be
necessary. Index reduction is a new challenge for the
translator of simulators, and still point of discussion.

In graphical model descriptions, implicit model
structures are known since long time as algebraic loops:
the directed graph of signals has one or more signal
feedback loops without any memory operator (integra-
tor, delay, etc). Again, in evaluating the problem of
sorting occurs, and the model translator cannot build up
the sequence for calculating the derivative vector.

Some simulators, e.g. SIMULINK, recognise alge-
braic loops and treat them as implicit models. When a
graphical model contains an algebraic loop, SIMULINK
calls a loop solving routine at each time step - SIMU-
LINK makes use of the Nested Approach described be-
fore. This procedure works well in case of models with
DAE index n = 1, for higher index problems may occur.

In object-oriented simulation systems, like in Dy-
mola, physical a-causal modelling plays an important
role, which results in DAEs with sometimes higher in-
dex. These systems put emphasis on index reduction (in
the translator) to DAEs with index n = 1 in order to ap-
ply implicit ODE solvers (Simultaneous Approach

399

2.3 Time Events and State Events
The CSSL standard also defines segments for discrete
actions, first mainly used for modelling discrete control.
So-called DISCRETE regions or sections manage the
communication between discrete and continuous world
and compute the discrete model parts.

For incorporating discrete actions, the simulation
engine must interrupt the ODE solver and handle the
event. For generality, efficient implementations set up
and handle event lists, representing the time instants of
discrete actions and the calculations associated with the
action, where in-between consecutive discrete actions
the ODE solver is to be called.

In order to incorporate DAEs and discrete ele-
ments, the simulator’s translator must now extract from
the model description the dynamic differential equations
(derivative), the dynamic algebraic equations (alge-
braic), and the events (event i) with static algebraic
equations and event time, as given in Figure 2 (extended
structure of a simulation language due to CSSL stan-
dard). In principle, initial equations, parameter equa-
tions and terminal equations (initial, terminal) are special
cases of events at time t = 0 and terminal time. Some
simulators make use of a modified structure, which puts
all discrete actions into one event module, where CASE
- constructs distinguish between the different events.
These so-called time events are known in advance, so
that scheduling of the time events can be handled easily,
e.g. in the same manner than simulators schedule output
events.

Much more complicated, but defined in CSSL, are
the so-called state events. Here, a discrete action takes
place at a time instant, which is not known in advance,
it is only known as a function of the states.

For state events, the classical state space descrip-

tion is extended by the so-called state event function
)),(),((ptutxh , the zero of which determines the event:

0),),(),((
),,),(),(()(

tptutxh
tptutxftx

 (4)

Generally, state events (SE) can be classified in four
types:

Type 1 – parameters change discontinuously (SE-P),
Type 2 - inputs change discontinuously (SE-I),
Type 3 - states change discontinuously (SE-S), and
Type 4 - state vector dimension changes (SE-D),

 including total change of model equations.

State events type 1 (SE-P) could also be formu-
lated by means of IF-THEN-ELSE constructs and by
switches in graphical model descriptions, without syn-
chronisation with the ODE solver. The necessity of a

state event formulation depends on the accuracy
wanted. Big changes in parameters may cause problems
for ODE solvers with stepsize control.

State events of type 3 (SE-S) are essential state
events. They must be located, transformed into a time
event, and modelled in discrete model parts.

State events of type 4 (SE-D) are also essential
ones. In principle, they are associated with hybrid mod-
elling: models following each other in consecutive order
build up a sequence of dynamic processes. And conse-
quently, the structure of the model itself is dynamic;
these so-called structural dynamic systems are at pre-
sent (2008) discussion of extensions to Modelica, see
next chapters.

State events of type 2 (SE-I) are not really state
events, they are time events. They are usually put in the
list of state events, if a synchronisation of the ODE
solver with an input jump should be forced.

As example, we consider the pendulum with con-
straints (Constrained Pendulum). Let define pendu-
lum angle, and l, m and d parameters for length, mass,
and damping. If the pendulum is swinging, it may hit a
pin positioned at angle p with distance lp from the
point of suspension. In this case, the pendulum swings
on with the position of the pin as new point of rotation.
The shortened length is ls = l - lp. and the angular veloc-
ity is changed from to sll / at position
 p , etc. These discontinuous changes are state events,
not known in advance.

With event function notation, the model for Con-
strained Pendulum is given by

0),(

,sin,

121

21221

ph
m
d

l
g

 (5)

The example involves two different events: change of
length parameter (SE-P), and change of state (SE-S),
i.e. angular velocity).
The handling of a state event requires four steps:

1. Detection of the event, usually by checking the

change of the sign of h(x) within the solver
step over [ti, ti+1]

2. Localisation of the event by a proper algorithm
determining the time t* when the event occurs
and performing the last solver step over [ti, t*]

3. Service of the event: calculating / setting new
parameters, inputs and states; switching to new
equations

4. Restart of the ODE solver at time t* with
solver step over [t*= ti+1, ti+2]

400

State events are facing simulators with severe prob-
lems. Up to now, the simulation engine had to call inde-
pendent algorithms, now a root finder for the state event
function h needs results from the ODE solver, and the
ODE solver calls the root finder by checking the sign of
h. For finding the root of the state event function h(x),
either interpolative algorithms (MATLAB/Simulink) or
iterative algorithms are used (ACSL, Dymola).

Figure 2: Extended Structure of a Simulation System
due to Extensions of the CSSL Standard with Discrete
Elements and with DAE Models.

Figure 2 (extended structure of a simulation lan-

guage due to CSSL standard) also shows the necessary
extensions for incorporating state events. The simula-
tor’s translator must extract from the model description
additionally the state event functions (state event j) with
the associated event action – only one state event shown
in the figure). In the simulator kernel, the static event
management must be made dynamically: state events
are dynamically handled and transformed to time
events. In principle, the kernel of the simulation engine
has become an event handler, managing a complex
event list with feedbacks. It is to be noted, that different
state events may influence each other, if they are close in
time – in worst case, the event finders run in a deadlock.
Again, modified implementations are found. It makes
sense to separate the module for state event function
and the module for the associated event – which may be
a single module, or which may be put into a common
time event module.

In case of a structural change of the system equa-

tions (state event of type 4 – SE-D), simulators usually
can manage only fixed structures of the state space. The
technique used is to ‘freeze’ the states that are bound by
conditions causing the event. In case of a complete
change of equations, both systems are calculated to-
gether, freezing one according to the event. One way
around is to make use of the experimental frame: the
simulation engine only detects and localises the event,
and updates the system until the event time. Then con-
trol is given back to the experimental frame. The state

event is now serviced in the experimental frame, using
features of the environment. Then a new simulation run
is restarted (modelling of the structural changes in the
experimental frame).

The Constrained Pendulum example involves a
state event of type 1 (SE-P) and type 3 (SE-S). A clas-
sical ACSL model description works with two discrete
sections hit and leave, representing the two different
modes, both called from the dynamic equations in the
derivative section (Table 1).

Dymola defines events and their scheduling im-
plicitly by WHEN – or IF - constructs in the dynamic
model description, in case of the discussed example e.g.
by

 WHEN phi-phip=0
 AND phi>phip
 THEN l = ls;
 dphi = dphi*lf/ls

In case of more complex event descriptions, the WHEN
– or IF – clauses are put into an ALGORITHM section
similar to ACSL’s DISCRETE section.

Table 1: Constrained Pendulum: Continuous Model
with State Events (ACSL)

PROGRAM constrained pendulum
CONSTANT m = 1.02, g = 9.81, d =0.2
CONSTANT lf=1, lp=0.7
DERIVATIVE dynamics
 ddphi = -g*sin(phi)/l – d*dphi/m
 dphi = integ (ddphi, dphi0)
 phi = integ (dphi, phi0)
 SCHEDULE hit .XN. (phi-phip)
 SCHEDULE leave .XP. (phi-phip)
END ! of dynamics

DISCRETE hit
 l = ls; dphi = dphi*lf/ls
END ! of hit

DISCRETE leave
 l = lf; dphi = dphi*ls/lf
END ! of leave

END ! of constrained pendulum

In graphical model descriptions, we are faced with

the problem that calculations at discrete time instants
are difficult to formulate. For the detection of the event,
SIMULINK provides the HIT CROSSING block (in
new Simulink version implicitly defined). This block
starts state event detection (interpolation method) de-
pending on the input, the state event function, and out-
puts a trigger signal, which may call a triggered subsys-
tem servicing the event.
It is to be noted, that discrete elements with time events
and state events and DAEs may also change the struc-
ture of the model.

401

2.4 Classical Features of Simulators
Event description (ED), time event handling (THE),
state event handling (SEH) and DAE support (DAE)
with or without index reduction (IR) became desirable
structural features of simulators, supported directly or
indirectly. Table 2 compares the availability of these
features in the MATLAB / Simulink System, in ACSL
and in Dimple, based mainly on evaluations of the AR-
GESIM Benchmarks.

Table 2: Comparison of Simulators’ Classical Features

M
S

- M
od

el

So
rti

ng

ED
 -E

ve
nt

D

es
cr

ip
tio

n

TE
H

 –
 T

im
e

Ev
en

t h
an

dl
in

g

SH
E

- S
ta

te

Ev
en

t H
an

dl
in

g

D
A

E
- D

A
E

So

lv
er

IR
 -

In
de

x

R
ed

uc
tio

n
MATLAB no no no (yes) (yes) no

Simulink yes (yes) yes (yes) (yes) no
MATLAB
/ Simulink yes yes yes yes (yes) no

ACSL yes yes yes yes yes no

Dymola yes yes yes yes yes yes

In Table 2, the availability of features is indicated by
‘yes’ and ‘no’; a ‘yes’ in parenthesis ‘(yes)’ means, that
the feature is complex to use. MS - ‘Model Sorting’, is a
standard feature of a simulator – but missing in MAT-
LAB (in principle, MATLAB cannot be called a simula-
tor). On the other hand, MATLAB’s ODE solvers offer
limited features for DAEs (systems with mass matrix)
and an integration stop on event condition, so that SHE
and DAE get a (‘yes’). In Simulink, event descriptions
are possible by means of triggered subsystems, so that
ED gets a ‘(yes)’ because of complexity. A combination
of MATLAB and Simulink suggest putting the event de-
scription and handling at MATLAB level, so that ED and
SHE get both a ‘yes’. DAE solving is based on modified
ODE solvers, using the nested approach (see before), so
DE gets only a ‘(yes)’ for all MATLAB/Simulink com-
binations. Time events are not supported in MATLAB,
but they are basic feature in Simulink.

ACSL is a classical simulator with sophisticated
state event handling, and since version 10 (2001) DAEs
can be modelled directly by the residuum construct, and
they are solved by the DASSL algorithm (a well-known
direct DAE solver, based on the simultaneous ap-
proach), or by modified ODE solvers (nested approach)
– so ‘yes’ for ED, SHE, and DAE. In case of DAE in-
dex n = 1, the DASSL algorithm guarantees conver-
gence, in case of higher index integration may fail.
ACSL does not perform index reduction (IR ‘no’).
ACSL comes with a sophisticated state event handling,
so that all kind of events can be modelled and handled
in a comfortable manner.

Dymola is a modern simulator, implemented in C,
and based on physical modelling. Model description
may be given by implicit laws, symbolic manipulations
extract a proper ODE or DAE state space system, with
index reduction for high index DAE systems – all clas-
sical features are available. Dymola started a new area
in modelling and simulation of continuous and hybrid
systems (see Section 3).

3. STRUCTURAL FEATURES IN SIMULATORS
There are three basic developments to extend the struc-
ture of simulators. First, the extension from ODEs to
DAE stimulated the evolvement of Physical Modelling –
modelling based on laws and physical ‘modules’, textu-
ally und graphically – Dymola started the development.
Second, influences from computer engineering suggest
use of UML – Unified Modelling Language, especially
UML the use of UML state charts for discrete events.
And third, as consequence of the hybrid decomposition
of models by state charts, and influenced by experiences
from co-simulation, handling of Structural Dynamic Sys-
tems became important.

3.1 Physical Modelling
In the 1990s, many attempts have been made to improve
and to extend the CSSL structure, especially for the task
of mathematical modelling. The basic problem was the
state space description, which limited the construction of
modular and flexible modelling libraries. Two develop-
ments helped to overcome this problem. On modelling
level, the idea of physical modelling gave new input, and
on implementation level, the object-oriented view helped
to leave the constraints of input/output relations.

In physical modelling, a typical procedure for mod-
elling is to cut a system into subsystems and to account
for the behaviour at the interfaces. Balances of mass, en-
ergy and momentum and material equations model each
subsystem. The complete model is obtained by combin-
ing the descriptions of the subsystems and the interfaces.
This approach requires a modelling paradigm different to
classical input/output modelling. A model is considered
as a constraint between system variables, which leads
naturally to DAE descriptions. The approach is very con-
venient for building reusable model libraries.

In 1996, the situation was thus similar to the mid
1960s when CSSL was defined as a unification of the
techniques and ideas of many different simulation pro-
grams. An international effort was initiated in Septem-
ber 1996 for bringing together expertise in object-
oriented physical modelling (port based modelling) and
defining a modern uniform modelling language –
mainly driven by the developers of Dymola. The new
modelling language is called Modelica. Modelica is in-
tended for modelling within many application domains
such as electrical circuits, multibody systems, drive
trains, hydraulics, thermo-dynamical systems, and
chemical processes etc. It supports several modelling
formalisms: ordinary differential equations, differential-
algebraic equations, bond graphs, finite state automata,
and Petri nets etc.

402

Modelica is intended to serve as a standard format
so that models arising in different domains can be ex-
changed between tools and users. Modelica is a not a
simulator, Modelica is a modelling language, support-
ing and generating mathematical models in physical
domains.

When the development of Modelica started, also a
competitive development, the extension of VHDL to-
wards VHDL-AMS was initiated. Both modelling lan-
guages aimed for general-purpose use, but VHDL-AMS
mainly addresses circuit design, and Modelica covers
the broader area of physical modelling; modelling con-
structs such as Petri nets and finite automata could
broaden the application area, as soon as suitable simula-
tors can read the model definitions.

Modelica offers a textual and graphical modelling
concept, where the connections of physical blocks are
bidirectional physical couplings, and not directed flow.
An example demonstrates how drive trains are mod-
elled. The drive train consists of four inertias and three
clutches, where the clutches are controlled by input sig-
nals (Figure 3). The graphical model layout corresponds
with a textual model representation, shown in Table 3
(abbreviated, simplified).

Figure 3: Graphical Modelica Model for Coupled
Clutches

Table 3: Textual Modelica Model for Coupled Clutches

encapsulated model CoupledClutches; "Drive train"
 parameter SI.Frequency freqHz=0.2; ….
 Rotational.Inertia J1(J=1,phi(ic=0),w(ic=10));
 Rotational.Torque torque;
 Rotational.Clutch clutch1(peak=1.1, fn_max=20);
 Rotational.Inertia J3(J=1); ……………………………………
equation
 connect(sin1.outPort, torque.inPort);
 connect(torque.flange_b, J1.flange_a);
 connect(J1.flange_b, clutch1.flange_a);
 ……………………………………..
 connect(step2.outPort, clutch3.inPort);
end CoupledClutches;

The translator from Modelica into the target simu-

lator must not only be able to sort equations, it must be
able to process the implicit equations symbolically and
to perform DAE index reduction (or a way around).

Up to now – similar to VHDL-AMS – some simu-
lation systems understand Modelica (2008; generic –
new simulator with Modelica modelling, extension -
Modelica modelling interface for existing simulator):

 Dymola from Dynasim (generic),
 MathModelica from MathCore

Engineering (generic)
 SimulationX from ISI (generic/extension)
 Scilab/Scicos (extension)

 MapleSim (extension, announced)
 Open Modelica - since 2004 the University of

Lyngby develops an provides an open Mode-
lica simulation environment (generic),

 Mosilab - Fraunhofer Gesellschaft develops a
generic Modelica simulator, which supports
dynamic variable structures (generic)

 Dymola / Modelica blocks in Simulink

As Modelica also incorporates graphical model ele-
ments, the user may choose between textual modelling,
graphical modelling, and modelling using elements from
an application library. Furthermore, graphical and textual
modelling may be mixed in various kinds. The minimal
modelling environment is a text editor; a comfortable
modelling environment offers a graphical modelling editor.

The Constrained Pendulum example can be formu-
lated in Modelica textually as a physical law for angular
acceleration. The event with parameter change is put
into an algorithm section, defining and scheduling the
parameter event SE-P (Table 4). As instead of angular
velocity, the tangential velocity is used as state variable,
the second state event SE-S ‘vanishes’.

Table 4: Textual Modelica Model for Constrained
Pendulum

 equation /*pendulum*/
 v = length*der(phi);
 vdot = der(v);
 mass*vdot/length + mass*g*sin(phi)
 +damping*v = 0;
 algorithm
 if (phi<=phipin) then length:=ls; end if;
 if (phi>phipin) then length:=l1; end if;

Modelica allows combining textual and graphical

modelling. For the Constrained Pendulum example, the
basic physical dynamics could be modelled graphically
with joint and mass elements, and the event of length
change is described in an algorithm section, with
variables interfacing to the predefined variables in the
graphical model part (Figure 4).

algorithm
if (revolute1.phi
 <= phipin then
 revolute1.length:=ls;
end if;
if (revolute1.phi
 < phipin then
 revolute1.length:=ll;
end if;

Figure 4: Mixed Graphical and Textual Dymola
Model for Constrained Pendulum

3.2 UML State Chart Modelling
In the end of the 1990s, computer science initiated a
new development for modelling discontinuous changes.
The Unified Modelling Language (UML) is one of the
most important standards for specification and design of
object oriented systems. This standard was tuned for
real time applications in the form of a new proposal,

403

UML Real-Time (UML-RT). By means of UML-RT,
objects can hold the dynamic behaviour of an ODE.

In 1999, a simulation research group at the Techni-
cal University of St. Petersburg used this approach in
combination with a hybrid state machine for the devel-
opment of a hybrid simulator (MVS), from 2000 on
available commercially as simulator AnyLogic. The
modelling language of AnyLogic is an extension of
UML-RT; the main building block is the Active Object.
Active objects have internal structure and behaviour,
and allow encapsulating of other objects to any desired
depth. Active objects interact with their surroundings
through boundary objects: ports for discrete communi-
cation, and variables for continuous communication.
The activities within an object are usually defined by
state charts (extended state machine). While discrete
model parts are described state charts, events, timers
and messages, the continuous models are described by
ODEs and DAEs in CSSL-type notation and with state
charts within an object.

An AnyLogic implementation of the well-known
Bouncing Ball example shows a simple use of state chart
modelling (Figure 5). The model equations are defined in
the active object ball, together with the state chart
ball.main. This state chart describes the interruption of the
state flight (without any equations) by the event bounce
(SE-P and SE-S event) defined by condition and action.

Figure 5: AnyLogic Model for the Bouncing Ball

AnyLogic influenced further developments for hy-
brid and structural dynamic systems, and led to a dis-
cussion in the Modelica community with respect to a
proper implementation of state charts in Modelica. State
charts are to be seen as comfortable way to describe
complex WHEN – and IF – constructs, being part of the
model, but state charts may also control different mod-
els from a higher level. A minor problem is the fact, that
the state chart notation is not really standardised; Any-
Logic makes use of the Harel state chart type.

An AnyLogic implementation for the Constrained Pen-
dulum may follow the implementation for the bouncing
ball (Figure 5). An primary active object (Constrained
Pendulum)‘holds’ the equations for the pendulum, to-
gether with a state chart (main) switching between short
and long pendulum. The state chart nodes are empty;
the arcs define the events (Figure 6). Internally, Any-

Logic restarts at each hit the same pendulum model
(trivial hybrid decomposition).

Figure 6: AnyLogic model for Constrained
Pendulum, Simple Implementation

3.3 Structural Dynamic Systems
Hybrid systems – systems with state events of essential
types, often come together with a change of the dimen-
sion of the state space, then called Structural-dynamic
Systems. The dynamic change of the state space is caused
by a state event of type SE-D. In contrary to state events
SE-P and SE-S, states and derivatives may change con-
tinuously and differentiable in case of structural change.
In principle, structural-dynamic systems can be seen from
two extreme viewpoints. The one says, in a maximal state
space, state events switch on and off algebraic conditions,
which freeze certain states for certain periods. The other
one says that a global discrete state space controls local
models with fixed state spaces, whereby the local models
may be also discrete or static.

These viewpoints derive two different approaches
for structural dynamic systems modelling, the

 maximal state space, and the
 hybrid decomposition.

Most implementations of physically based model

descriptions support a big monolithic model description,
derived from laws, ODEs, DAEs, state event functions
and internal events. The state space is maximal and
static, index reduction in combination with constraints
keep a consistent state space. For instance, Dymola,
OpenModelica, and VHDL-AMS follow this approach.

The hybrid decomposition approach makes use of
state events, which control the sequence and the serial
coupling of one model or of more models. A convenient
tool for switching between models is a state chart,
driven by these events, which itself are generated by the
models. Following e.g. the UML-RT notation, control
for continuous models and for discrete actions can by
modelled by state charts. This approach additionally al-
lows not only dynamically changing state spaces, but
also different model types, like ODEs, linear ODEs (to
be analysed by linear theory), PDEs, co-simulation, etc.
to be processed in serial or also in parallel, so that also

404

co-simulation can be formulated based on external
events.

Figure 7: Simulator Structure for Structural-Dynamic
Systems.

Figure 7 shows a structure for a simulator support-

ing structural dynamic modelling and simulation. The
figure summarises the outlined ideas by extending the
CSSL structure by ‘connection’ models, model-
changing state events and multiple models. The main
extension is that the translator generates not only one
DAE model; he generates several DAE models from the
(sub)model descriptions, and external events from the
connection model, controlling the model execution se-
quence in the highest level of the dynamic event list.
There, all (sub)models may be precompiled, or the new
recent state space may be determined and translated to a
DAE system in case of the external event (interpretative
technique).

Clearly, not only ODE solver can make use of the
model descriptions (derivatives), but also eigenvalue
analysis and steady state calculation may be used and
other analysis algorithms. Furthermore, complex experi-
ments can be controlled by external events scheduling the
same model in a loop. A simulator structure as proposed
in Figure 7 is a very general one, because it allows as
well external as ell as internal events, so that hybrid cou-
pling with variable state models of any kind is possible.

Both approaches have advantages and disadvan-
tages. The classical Dymola approach generates a fast
simulation, because of the monolithic program. How-
ever, the state space is static. A hybrid approach handles
separate model parts and must control the external
events. Consequently, two levels of programs have to be
generated: dynamic models, and a control program – to-
day’s implementations are interpretative and not compil-
ing, so that simulation times increase - but the overall
state space is indeed dynamic.

A challenge for the future lies in the combination of
both approaches. The main ideas are:
 Moderate hybrid

decomposition
 Efficient implementation of models /control

For instance, for parameter state events (SE-P) an
implementation within a model may be sufficient, for an
event of SE-S type implementation with a model change
may be advantageous because of easier state re-ini-
tialisation, and for a structural model change (SE-D) an
implementation with hybrid decomposition may be pre-
ferred, because of much easier handling of the dynamic
state change – and less necessity for index reduction. An
efficient control of the sequence of models can be made
by state charts, but also by a well-defined definitions and
distinction of IF - and WHEN - constructs, like discussed
in extensions of Scilab/Scicos for Modelica models.

3.4 Classification of Structural Features
While the Classical Features address the CSSL-standard
and its extensions, Structural Features characterise fea-
tures for physical modelling and for structural dynamic
systems, the main development from the year 2000 on.
The Structural Features may be classified as follows:

 Support of a-causal physical modelling at tex-

tual (PM-T) or graphical level (PM-G),
 Modelica standard (MOD) for physical model-

ling,
 Decomposition of structural dynamic systems

with dynamic features (SD)
 Support of state chart modelling or of a similar

construct, by means of textual (SC-T) or
graphical (SC-G) constructs.

Simulators with a-causal modelling may support

hybrid decomposition or not, and state chart modelling
may be available or not. Simulators with features for state
chart modelling may support hybrid decomposition or
not, and a-causal modelling may be offered or not. In
general, interpreter-oriented simulators offer more struc-
tural flexibility, but modern software structures would al-
low also flexibility with precompiled models.

In addition, of interest are also structural features as

 simulation-driven visualisation (visualisation

objects defined with model objects; VIS),
 frequency domain analysis and linearization

for steady state analysis (FA), and

405

 extended environment for complex experi-
ments and data processing (ENV).

Appendix A summarises the availability of these

Structural Features in some frequently used simulators,
and especially in simulators understanding the MODE-
LICA modelling notation (Section 3.1), together with
the classical features. Basis for the classification are so-
lutions to specific ARGESIM Benchmarks: Table 5
documents the evaluation of the benchmarks wrt to
classical – ‘C’ -and structural – ‘S’ - features.

Table 5 also list features for further evaluation:

 optimisation and identification (OPT/ID)
 VHDL-AMS standard (V-AMS)
 System Dynamics modelling (SYS-D)
 Real-time Simulation (RT)
 Co-Simulation (COS)
 Spatial Dynamics (SPAT)
 Parallel Simulation (PAR)

4. IMPLEMENTATION EXAMPLES
As example, structural dynamic implementations of the
Constrained Pendulum within the experimental simula-
tor Mosilab are shown. Since 2004, Fraunhofer Gesell-
schaft Dresden develops a generic simulator Mosilab,
which also initiates an extension to Modelica: multiple
models controlled by state automata, coupled in serial
and in parallel. Furthermore, Mosilab puts emphasis on
co-simulation and simulator coupling, whereby for inter-
facing the same constructs are used than for hybrid de-
composition.

Table 5: Evaluation of Classical and Structural Features
in specific Benchmarks
Feature Type Benchmarks

MS C C1, C3, C5, C7, C9, C11, C13
ED C C3, C5, C7, C9, C11, C12, C13, C18

TEH C C3, C9, C12, C13, C18
SEH C C5, C7, C11, C12, C13
DAE C C7, C11, C13

IR C C11, C13
PM-T S C1, C3, C5, C7, C9, C11, C13, C15, C19
PM-G S C1, C3, C5, C7, C9, C11, C13, C15, C19

VIS S C1, C3, C7, C9, C11, C12, C17
MOD S C1, C3, C5, C7, C9, C11, C13, C15
SC-T S C3, C5, C7, C9, C11, C12, C13
SC-G S C3, C5, C7, C9, C11, C12, C13

SD S C5, C7, C9, C11, C13, C15
FA S C1, C3, C11, C13

ENV S C1, C3, C5, C7, C9, C11, C12, C13,
C15, C17, C18, C19

OPT/ID (S) C7, C15, C17, C18
V-AMS (S) C3, C5, C7, C9, C13
SYS-D (C) C1, C7, C15, C17

RT (C) C3, C9, C13, C18
COS (C) C9, C11, C18

SPAT (C) C17, C19
PAR (S) CP-1, C19

Mosilab is a generic Modelica simulator, so all
classical features are met (ED, SEH, DAE, PM-T, and
PM-G ‘yes’, and MOD ‘(yes)’ – because of subset im-
plementation at present, 2008). For DAE solving, vari-
ants of IDA-DASSL solver are used. Mosilab imple-
ments extended state chart modelling, which may be
translated directly due to Modelica standard into equiva-
lent IF – THEN constructs, or which can control different
models and model executions (SC-T, SC-G, and SD
‘yes’). At state chart level, state events of type SE-D con-
trol the switching between different models and service
the events (E-SE-D). State events affecting a state vari-
able (SE-S type) can be modelled at this external level
(E-SE-S type), or also as classic internal event (I-SE-S).
Mosilab translates each model separately, and generates a
main simulation program out of state charts, controlling
the call of the precompiled models and passing data be-
tween the models, so that the software model of Mosilab
follows the structure in Figure 7.

Mosilab is in developing, so it supports only a sub-
set of Modelica, and index reduction has not been im-
plemented yet, so that MOD gets a ‘(yes)’ in parenthe-
sis, and IR gets a ‘(no)’ – indicating that the feature is
not available at present (2008), but is scheduled for the
future. Index reduction at present not available in Mosi-
lab, but planned (IR ‘(no)’) - has become topic of dis-
cussion: case studies show, that hybrid decomposition
of structural dynamic systems results mainly in DAE
systems of index n = 1, so that index reduction may be
bypassed (except models with contact problems).

Mosilab allows very different approaches for mod-
elling and simulation tasks, to be discussed with the
Constrained Pendulum example.

Table 6: Mosilab Model for Constrained Pendulum –
State Chart Switching between Different Models

model Long
equation
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0;
end Long;
model Short
equation
 mass*vdot/ls + mass*g*sin(phi)+damping*v = 0;
end Short;
event discrete Boolean lengthen(start=true),
 shorten(start = false);
equation
 lengthen =
 (phi>phipin);shorten=(phi<=phipin);
statechart
state ChangePendulum extends State;
 State Short,Long,startState(isInitial=true);
transition Long->Short event shorten action
end transition;
transition Short -> Long event lengthen
 action
end transition; end ChangePendulum;

In a Mosilab Standard Modelica Model the Con-

strained Pendulum is defined in the MOSILAB equa-
tion layer as implicit law or with graphical blocks as in
Dymola (Table 4, Figure 4). In an Mosilab Model with
State Charts, state charts may be used instead of IF -
or WHEN - clauses, with much higher flexibility and
readability in case of complex conditions. In a Struc-
tural Dynamic Mosilab Model state charts may switch

406

externally between two different pendulum models,
controlled externally by a state chart.

Clearly, in case of this simple model, different
models would not be necessary. Here, the system is de-
composed into two different models, Short pendulum
model, and Long pendulum model (Table 6), switched
by external state charts.

REFERENCES
Breitenecker F., Troch I., 2004. Simulation Software –

Development and Trends. In: Unbehauen H., Troch
I., Breitenecker F., eds. Modelling and Simulation of
Dynamic Systems / Control Systems, Robotics, and
Automation. Oxford: Eolss Publishers, .

Cellier, F.E., 1991. Continuous System Modeling. New
York, Springer,

Cellier, F.E., and E. Kofman. 2006, Continuous System
Simulation. New York, Springer

Fritzson, P, 2005. Principles of Object-Oriented Modeling
and Simulation with Modelica. Wiley IEEE Press.

Nytsch-Geusen C, Schwarz P, 2005. MOSILAB: Devel-
opment of a Modelica based generic simulation tool
supporting model structural dynamics. Proc. 4th In-
tern. Modelica Conference, 527-535. March 2005,
Hamburg.

Strauss J. C. 1967. The SCi continuous system simulation
language (CSSL). Simulation 9: 281-303.

APPENDIX
Appendix A

Availability of Structural and Classical Features in Simulators and Simulation Systems

M
S

- M
od

el

So
rti

ng

ED
 -E

ve
nt

D

es
cr

ip
tio

n

TH
E

–
Ti

m
e

Ev
en

t
H

an
dl

in
g

SE
H

 -S
ta

te
 E

ve
nt

H

an
dl

in
g

D
A

E
- D

A
E

So

lv
er

IR
 -

In
de

x

R
ed

uc
tio

n

PM
-T

 -
Ph

ys
ic

al
 M

od
-

el
lin

g
-T

ex
t

PM
-G

 -
Ph

ys
ic

al

M
od

el
lin

g
-G

ra
ph

ic
s

V
IS

 –
 ‘O

nl
ie

’ -

V
is

ua
lis

at
io

n

M
O

D
 –

 M
od

el
ic

a
M

od
el

lin
g

SC
-T

 –
 S

ta
te

 C
ha

rt
–

M
od

el
lin

g
- T

ex
t

SC
-G

 –
 S

ta
te

 C
ha

rt

M
od

el
lin

g
- G

ra
ph

ic
s

SD
 –

 S
tru

ct
ur

al
 D

y-
na

m
ic

 S
ys

te
m

s

FA
 –

 F
re

qu
en

cy

A
na

ly
si

s

EN
V

 –
 E

xt
en

de
d

En
-

vi
ro

nm
en

t

MATLAB no no no (yes) (yes) no no no (yes) no no no yes yes yes

Simulink yes (yes) (yes) (yes) (yes) no no (no) (yes) no no no no yes (yes)

MATLAB/Simulink yes yes yes yes (yes) no no (no) (yes) no no no yes yes yes

Simulink/ Stateflow yes yes yes yes (yes) no no (no) (yes) no (yes) yes no yes (yes)

ACSL yes yes yes yes yes no no (no) (yes) no no no no yes yes

Dymola yes yes yes yes yes yes yes yes yes yes (yes) (yes) no (no) (yes)

MathModelica yes yes yes yes yes yes yes yes (yes) yes (no) (yes) no (no) (no)

MathModelica /
Mathematica yes yes yes yes yes yes yes yes yes yes (no) (yes) yes yes yes

Mosilab yes yes yes yes yes (no) yes yes (no) (yes) yes yes yes no (yes)

Open Modelica yes yes yes yes yes yes yes (no) (no) yes (no) (yes) no no no

SimulationX yes yes yes yes yes yes yes yes yes yes (no) (yes) no yes (yes)

AnyLogic yes yes yes (yes) (yes) no no no yes no yes yes yes no no

Model Vision yes yes yes yes yes yes yes no yes no yes yes yes yes no

Scilab no no no (yes) (yes) no no no (yes) no no no yes yes yes

Scicos yes (yes) (yes) yes yes (yes) yes yes (yes) (yes) yes (yes) no no no

Scilab/ Scicos yes yes yes yes yes (yes) yes yes (yes) (yes) yes (yes) yes yes yes

(MapleSim) yes (yes) (no) (yes) yes yes yes yes yes yes no no (yes) (yes) yes

407

