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ABSTRACT
The paper deals with Petri net based modelling and opti-
mization of scheduling problems. Timed Petri net models
are derived and used in conjunction with various optimiza-
tion strategies. Standard Petri net scheduling approaches
are applied, which include heuristic dispatching rules as
well as heuristic based search through the reachability
tree. As an alternative a simulation-based optimization
is implemented to optimize the input sequences. Various
conflict resolution strategies are used in order to compare
and evaluate possible operation schedules in the modelled
system. The strategies are based on predefined ordering
rules, i.e. sequences of transition firings, which are
changed during optimization procedure. The optimization
problem is then solved by heuristic algorithms, including
genetic algorithms, simulated annealing and threshold
accepting. All these methods are implemented in the so
called MATLAB PetriSimM toolbox which offers, among
others, an implementation of an automated model building
for the scheduling purposes. A number of benchmark tests
is performed in order to compare various optimization
strategies and to illustrate the suitability of the related
approaches for solving practical problems.
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1. INTRODUCTION
Recently, many research results related to planning and
scheduling systems are reported in the engineering liter-
ature. This is due to increased demands for maximizing
capacity utilization, minimizing throughput times, mini-
mizing delays and work in progress, as well as necessity
for meeting agreed delivery dates as close as possible.

Many reported results are based on formal, theoreti-
cally oriented approaches. The problems are often ideal-
ized in order to suit the constraints imposed by the chosen
optimization technique and they have to ignore many prac-
tical constraints in order to solve scheduling problems effi-
ciently. Classical mathematical programming approaches
are computationally demanding and often cannot achieve
feasible solutions to practical problems (Jain and Meeran
1999). This limits the applicability of classical scheduling

methods in real cases found in the industrial environment.
On the other hand, simulation based scheduling is not

restricted to idealized simple models. Underlying discrete-
event model allows the inclusion of many process spe-
cific details and constraints. Heuristic optimization algo-
rithms in connection with simulation systems are a suitable
alternative to usual analytical methods in practical cases
with high complexity (Weigert, Horn and Werner 2006).
Therefore, simulation-based scheduling has potential abil-
ities to deal with actual large-scale and complex problems
(Arakawa, Fuyuki and Inoue 2002).

Advantages of discrete-event simulation include,
among others, the ability to represent a system’s uncer-
tainty and dynamicity, and more generally to produce re-
alistic (valid) representations of the real system (Semini
and Fauske 2006). Nevertheless, derivation of an adequate
process model may be a complex and cumbersome task. A
suitable modelling framework should be chosen, allowing
for a systematic model development and possible software
support in model building.

Petri nets (PN) form a modelling framework that can
be used through several phases of the manufacturing sys-
tem life cycle (Silva and Teruel 1997). They represent a
powerful graphical and mathematical modelling tool. The
different abstraction levels of Petri-net models and their
different interpretations make them suitable to model many
aspects of manufacturing systems, including scheduling
problems (Lee and DiCesare 1994, Xiong and Zhou 1998,
Yu, Reyes, Cang and Lloyd 2003b). Attempts to automate
the model building with Petri nets for scheduling purposes
have been reported recently (Gradišar and Mǔsič 2007).

In the paper a Petri net modelling approach is used
that is tailored to model typical scheduling problems. Var-
ious optimization strategies are then implemented using
derived models. A recently proposed way of controlling
the Petri net model during optimization by imposing a set
of transition sequences and priorities is compared to other
Petri net based scheduling approaches.

2. PETRI NETS
In the paper, Petri nets (Murata 1989, Cassandras and
Lafortune 1999) are represented as Place/Transition (P/T)
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nets in a form of a five-tuple(P, T, I,O,M), where

– P = {p1, p2, . . . , pm},m > 0 is a finite set of places.

– T = {t1, t2, . . . , tn}, n > 0 is a finite set of transi-
tions (withP ∪ T 6= ∅ andP ∩ T = ∅).

– I : (P × T ) → N is the input arc function. If there
exists an arc with weightk connectingp to t, then
I(p, t) = k, otherwiseI(p, t) = 0.

– O : (P × T ) → N is the output arc function. If there
exists an arc with weightk connectingt to p, then
O(p, t) = k, otherwiseO(p, t) = 0.

– M : P → N is the marking,M0 is the initial marking.

Let •t ⊆ P denote the set of places which are in-
puts to transitiont ∈ T , i.e., there exists an arc from
every p ∈ •t to t. Transition t is enabled by a given
marking if, and only if,M(p) ≥ I(p, t),∀p ∈ •t. An
enabled transition can fire, and as a result removes to-
kens from input places and creates tokens in output places.
If transition t fires, then the new marking is given by
M ′(p) = M(p) + O(p, t) − I(p, t),∀p ∈ P .

In order to enable a timed analysis of the modelled
system behaviour, a P/T Petri net has to be extended with
time information. The concept of time is not explicitly
given in the original definition of Petri nets. As described
in Bowden (2000), there are three basic ways of represent-
ing time in Petri nets: firing durations, holding durations
and enabling durations. The firing-duration principle says
that when a transition becomes enabled it removes the to-
kens from input places immediately but does not create
output tokens until the firing duration has elapsed. In Zu-
berek (1991) a well-defined description of this principle
is given. When using holding-duration principle, a cre-
ated token is considered unavailable for the time assigned
to transition that created the token. The unavailable token
can not enable a transition and therefore causes a delay in
the subsequent transition firings. This principle is graph-
ically represented in Figure 1, where the available tokens
are schematized with the corresponding number of undis-
tinguishable (black) tokens and the unavailable tokens are
indicated by empty circles. The time duration of each tran-
sition is given beside the transition, e.g.,f(t1) = td. When
the time duration is 0 this denotation is omitted. In Figure
1, t denotes a model time represented by a global clock and
tf denotes the firing time of a transition.
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Figure 1: Timed Petri net with holding durations

With enabling durations the firing of the transitions
happens immediately and the time delays are represented
by forcing transitions that are enabled to stay so for a spec-
ified period of time before they can fire. When enabling
duration policy is used, the firing of one transition can in-
terrupt the enabling of other transitions, as the marking,
which has enabled previous situation, has changed (Bow-
den 2000). It is natural to use holding durations when

modelling most scheduling processes as transitions repre-
sent starting of operations, and generally once an operation
starts it does not stop to allow another operation to start in
between.

By using holding durations the formal representation
of the timed Petri net is extended with the information of
time, represented by the multiple:

TPN = (P, T, I,O, s0, f), where:

• P, T, I,O are the same as above,

• s0 is the initial state of a timed Petri net.

• f : T → IR+

0 is the function that assigns a non-
negative deterministic time-delay to everytj ∈ T .

The state of a timed Petri net is a combination of three
functionss = (m,n, r), where,

• m : P → IN is a marking function of available to-
kens.

• n : P → IN is a marking function of unavailable
tokens.

• r is a remaining-holding-time function that assigns
values to a number of local clocks that measure the
remaining time for each unavailable token (if any) in
a place.

A transitiontj is enabled by a given marking if, and
only if, m(pi) > I(pi, tj), ∀pi ∈ •tj . The firing of transi-
tions is considered to be instantaneous. A new local clock
is created for every newly created token and the initial
value of the clock is determined by the delay of the transi-
tion that created the token. When no transition is enabled,
the time of the global clock is incremented by the value of
the smallest local clock. An unavailable token in a place
where a local clock becomes available and the clock is de-
stroyed. The enabling condition is then checked again.

3. PETRI NETS AND SCHEDULING
In the following, a holding durations principle of time rep-
resentation in the Petri net model is assumed.

3.1. Petri net modelling of scheduling problems
An important concept in PNs is that of conflict. Two events
are in conflict if either one of them can occur, but not both
of them. Conflict occurs between transitions that are en-
abled by the same marking, where the firing of one transi-
tion disables the other transition.

The conflicts and the related conflict resolution strat-
egy play a central role when modelling scheduling prob-
lems. This may be illustrated by a simple example,
shown in Figure 2. The example involves two machines
M = {M1,M2}, which should process two jobsJ =
{J1, J2}, and whereJ1 = {o1(M1) ≺ o2(M2)} and
J2 = {o3(M1)}. JobJ1 therefore consist of two opera-
tions, the first one using machineM1 and the second one
machineM2, while jobJ2 involves a single operation us-
ing machineM1. Obviously, the two jobs compete for ma-
chineM1. This is modelled as a conflict between transi-
tions starting corresponding operations.
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Figure 2: A PN model of a simple scheduling problem

Placep9 is a resource place. It models the machine
M1 and is linked tot1 andt5, which start two distinct op-
erations. Clearly, the conflict betweent1 andt5 models a
decision, whether machineM1 should be allocated to job
J1 or J2 first.

Similarly, other decisions are modelled as conflicts
linked to resource places. The solution of the scheduling
problem therefore maps to a conflict resolution in the given
Petri net model.

3.2. Derivation of optimal or sub-optimal schedules
A derived Petri-net model can be simulated by an appro-
priate simulation algorithm. During the simulation, the oc-
curring conflicts are resolved ’on the fly’, e.g. by randomly
choosing a transition in conflict that should fire. Instead,
heuristic dispatching rules, such as Shortest Processing
Time (SPT) or Longest Processing Time (LPT), can be in-
troduced when solving the conflicting situations. In this
way different evolutions of the Petri net can be simulated.
When the marking of the places that represent resources
is being considered, the schedule of process operations
can be observed, i.e., when, and using which resource,
a job has to be processed. Usually, different rules are
needed to improve different predefined production objec-
tives (makespan, throughput, production rates, and other
temporal quantities).

To show the practical applicability of the Petri net
models for the purposes of scheduling, an option for us-
ing various conflict resolution rules has been implemented
within the PetriSimM tool for Matlab. With the simulation
a marking trace of a timed Petri net can be achieved. The
unavailable token marking trace of places that represent re-
sources is then characterized as a schedule. In situations in
which a conflict occurs, the simulator acts as a decision
maker that solves the conflict. By introducing different
heuristic dispatching rules (priority rules) decisions can be
made easily. In this way, only one path from the reacha-
bility graph is calculated, which means that the algorithm
does not require a lot of computational effort. Depending
on the given scheduling problem a convenient rule should
be chosen.

A more extensive exploration of the reachability tree
is possible byPN-based heuristic search methodpro-
posed by Lee and DiCesare (1994). It is based on gen-
erating parts of the Petri net reachability tree, where the
branches are weighted by the time of the corresponding
operations. Sum of the weights on the path from the initial
to a terminal node gives a required processing time by the
chosen transition firing sequence. Such a sequence corre-
sponds to a schedule, and by evaluating a number of se-
quences a (sub)optimal schedule can be determined. The

method is further investigated in Yu et al. (2003), where
a modified heuristic function is proposed and tested on a
number of benchmark tests.

A complementary approach to the above mentioned
reachability tree exploration methods is thesimulation-
optimization approach. Such a method is proposed in
Löscher, Mǔsič and Breitenecker (2007), and is based
on parametrized conflict resolution through sequences and
priorities.

The main input parameters of a simulation run within
the simulation-optimization approach are represented by
the sequences of transition firings. A change of the input
parameters leads to a different task ordering and to differ-
ent schedule. Disjoint groups of transitions can be selected
and to each group a firing rule can be assigned. The transi-
tions are numbered within the group and a firing list is de-
fined this way. All transitions of the group are deactivated
except of the transition represented by the first number in
the firing list. After the firing of the selected transition the
next value of the list is taken.

If a priority is needed for sequence transitions a se-
quence priority can be defined. This sequence priority con-
trols the behaviour of conflicts between transitions of dif-
ferent sequence groups. Priorities are necessary if conflicts
between transitions should be solved in a special way.

When solving a scheduling problem, all possible per-
mutations of transition sequences build the problem solu-
tion space. A fitness function is defined which assigns a
value to each solution of the solution space and defines the
quality of the selected solution. The evaluation of the fit-
ness value is performed by Petri net simulation resulting in
the overall cycle time of the system. The search through
the solution space is driven by heuristics, like genetic al-
gorithms, simulated annealing or threshold accepting (Vi-
dal 1993, Dueck and Scheuer 1990, Goldberg 1989). All
these methods are implemented in the so called MATLAB
PetriSimM toolbox, which offers the capability of mod-
elling, simulation, and optimisation of Timed, Coloured,
and Stochastic Petri nets (Mušič, Löscher and Gradišar
2006).

4. EXAMPLES
A set of scheduling examples was chosen from the liter-
ature and tested in conjunction with the described Petri
net based scheduling approaches. The examples are based
on Lee and DiCesare (1994), Xiong and Zhou (1998), Yu,
Reyes, Cang and Lloyd (2003b). Also two examples based
on case studies were examined. These are a furniture fit-
tings production example (Gradišar and Mǔsič 2007) and a
production cell example (L̈oscher, Mǔsič and Breitenecker
2007).

The first example is based on semiconductor test fa-
cility studied in Xiong and Zhou (1998). The facility con-
sists of three types of integrated circuit testers, two types of
handlers and two types of hardware, which are combined
into three workcenters that represent three machines in the
scheduling context. There are four jobs to be scheduled,
and job requirements and corresponding times are defined.

Based on the problem description, a Petri net model
in Figure 3 is generated. The modelling approach follows
the one suggested in Yu, Reyes, Cang and Lloyd (2003a).
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Figure 3: PN model of the first scheduling example

Places that explicitly model operation execution are omit-
ted. Operation execution can be observed by looking for
unavailable tokens in the places that follow operation trig-
gering transitions. Time delays adjoined with these tran-
sitions model operation duration. Unavailable tokens also
appear in resource places, modelling the allocation of re-
sources.

The model has been used in conjunction with the three
previously described scheduling strategies, all attempting
to minimize makespan for the given lot sizes, indicated
by the initial marking in the model. With the dispatching
rules strategy, a so called SPT rule has been used, meaning
that among any set of transitions in conflict, the one with
the shortest time assignment is chosen. In case of several
transitions with the same shortest time, one is randomly
selected. This explains the interval 134-138 in the results
presented in Table 1. Because of the occasional random se-
lection the results of several subsequent optimization runs
differ. The table also shows results of PN-heuristic search
and simulations based optimization run employing simu-
lated annealing (SA), which both result in makespan of
134. This matches the result reported in Xiong and Zhou
(1998) and indicates that the given example is too simple
to show any significant difference among strategies.

Next, examples from Lee and DiCesare (1994) are
adopted, that have also been studied in Yu, Reyes, Cang
and Lloyd (2003b). The second example (example 3 in Lee
and DiCesare (1994)) deals with five jobs, each consisting
of four operations in a sequence, and sharing three ma-
chines, i.e, resources (Figure 4). Lot size of 10 is assigned
to each job. The main difference comparing to previous
example is the flexibility of operation execution. Namely,
the same operation can be executed on different machines,
which also results in different execution times. This signif-
icantly increases the complexity of the optimization prob-
lem.

In order to be able to apply simulation-optimization
technique, transition sequence must be defined, which will
be manipulated during optimization. In the presented case
this is not trivial, since the set of transitions participating
in the schedule is not fixed. E.g. the first operation of
job J1 can be performed either using resourceM1 or M3,
which implies firing eithert111 or t112. The optimization
should therefore not only permute the transition order in
the given sequence but also change the elements of the se-
quence. Since this is difficult to achieve in a systematic
way, the model is changed in a way which permits to apply
standard combinatorial optimization techniques and a part
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Figure 4: PN model of the second scheduling example

Table 1: Comparison of results - Examples 1-3
Example Dispatching Heuristic Simulation-

rules search optimization
example 1 134-138 134 134 (SA)
example 2 370-410 392 420 (SA)
example 3 254-281 258 313 (SA)

of it is shown in Figure 5.
A transition-place pair is inserted before every oper-

ation triggering transition set. This newly inserted tran-
sitions always participate in the operation sequence, no
matter which resource is chosen to perform the operation.
A sequence of these transitions may be optimized in or-
der to determine the best operation sequence. It must be
noted, however, that such a sequence does not fully deter-
mine a possible operation schedule and therefore a certain
amount of randomness must be permitted in order to cover
all possible schedules. The optimization results are there-
fore not as good as with the other techniques, which can
be observed from Table 1. The results shown in the table
were obtained by simulated annealing optimization strat-
egy, while results of threshold accepting and genetic algo-
rithms were similar and are not shown in the table.

The third example (example 4 in Lee and DiCesare
(1994)) deals with ten jobs, each with varied number of
operations in a sequence, and sharing five machines and
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Figure 5: Part of the modified PN model of the second scheduling example
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Figure 6: PN model of the furniture fittings production

three robots as resources. The example is similar to the
previous one with the main difference in the varying length
of jobs and corresponding lot sizes. The corresponding
results are also shown in Table 1.

Finally, two case studies based examples are pre-
sented. Example 4 originates from the furniture fittings
production case study presented in Gradišar and Mǔsič
(2007). The case study deals with the production of fur-
niture fittings described by work orders and product rout-
ing tables, and sharing resources such as assembly desks,
paint and galvanization facilities etc. A model building al-
gorithm was derived, which builds a Petri net model for a
specific set of work orders. In Gradišar and Mǔsič (2007)

such a work order set is defined and an example of the
generated model is presented. An improved version of the
model building algorithm is applied here, which removes
redundant places and transitions and results in the simpli-
fied model shown in Figure 6.

Example 5 deals with scheduling of operations in a
special type of Production cell. A number of different
products is processed in the cell using special fixtures and
moving platforms. The process flow in the cell consists of
several steps such as setup of fixtures, setup of products,
processing, dismounting of products and dismounting of
fixtures. The number of platforms is limited and there is a
single resource for mounting and dismounting and another
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Table 2: Comparison of results - Examples 4 and 5
Example Dispatching Heuristic Simulation-

rules search optimization
example 4 220-230 220 220 (SA)
example 5 10160 9943 9976 (SA)

9949 (GA)

one for processing. The main scheduling problem is to de-
termine the optimal processing order given the number of
products, platforms and fixtures. The cell is described in
detail in Löscher, Mǔsič and Breitenecker (2007).

Results of comparison for the last two examples are
shown in Table 2. Again only the results obtained by sim-
ulated annealing are shown in the last column. Example
4 is rather simple from the scheduling point of view and
so all techniques result in the same makespan of 220 time
units. Nevertheless, the example is based on the real pro-
duction in a furniture fittings production company and in-
dicates that many real-life production problems may be
adequately solved by simple dispatching rules. In such
cases, the main issue is how to build appropriate model for
scheduling while the quality of the optimization algorithm
is of less importance.

The production cell example, on the other hand,
shows the advantage of more elaborate optimization tech-
niques. It must be noted that only the best results obtained
in a number of optimization runs are shown in the table.
E.g., the actual makespan interval obtained by the SPT rule
was 10160-10678, while the results of the other two tech-
niques strongly depend on parameter settings, but still gave
better results in most cases.

5. CONCLUSIONS
The used methodology enables a straightforward Petri net
modelling of typical scheduling problems and derivation
of related schedules. It turns out, however, that not all de-
scribed approaches are suitable for every type of schedul-
ing problems. A simulation-optimization based approach,
for example, is very flexible and enables incorporation of
specific details in the model, but the solution of all the con-
flicts in the model must be parametrized in order to achieve
a deterministic solution of a simulation run. This involves
an extra modelling effort and is even not feasible for spe-
cific types of problems. Heuristic search based methods
are easier to implement but the results are strongly depen-
dent on the chosen heuristic function. In some cases, rather
poor results are obtained if search initially starts in a non-
optimal direction. The dispatching rules based methods are
the easiest to implement and attractive for practice, but the
results may be far from the optimum.
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