
FAILURE PROCESS SIMULATION OF A COMPONENT-BASED SOFTWARE

Florentina Suter

University of Bucharest

Department of Mathematics and Computer Science

and Centre of Mathematical Statistics of the Romanian Academy

florentina.suter@g.unibuc.ro

ABSTRACT

In order to characterize as realistically as possible the

evolution of software in time, the software reliability

models should take into account the structure of the

software. Such models are component-based models in

which the software is not a black-box, but has several

interconnected components. For this kind of software

reliability models, due to their complexity,

mathematical tractability becomes difficult to obtain.

Therefore, thanks to its flexibility, simulation is a

natural choice for analyzing the failure process and for

estimating software reliability. Recently some software

reliability models which take into consideration the

modular structure of the software were described. In

this paper we take as starting point a component based

software reliability model, we describe a generalization

of it and we use discrete-event simulation to analyze the

software failure process.

Keywords: software reliability, component-based

software model, discrete event simulation

1. INTRODUCTION

The main steps in the development of a software

product are: requirements identification and analysis,

project development, code writing and product testing.

At the testing step the software is executed and at each

failure one or more faults are discovered and corrected.

It is not possible to correct all the faults from a

software, and an important decision to be made in the

testing phase is when to stop testing and release the

software on the market.

An element to support this decision can be the

software reliability, that is, the probability of failure free

software functioning for a certain period of time, in

certain environment conditions. For this reason many

software reliability models were developed. These

models are based mainly on two principles: the software

product is a black-box and the software reliability is

estimated from the probability assumptions on the

software failure process. For example several software

reliability models are based on the hypothesis that the

counting process {N(t), t≥0}, where N(t) is the number

of the failures experienced in the time interval (0,t], is a

nonhomogeneous Poisson process. In (Chen and

Singpurwalla 1997) a large number of software

reliability models are unified by the observation that the

failure times of the software are the jump times of a

self-exciting process which is a generalization of the

Poisson process and of the pure birth process.

An example of software reliability model based on

a self-exciting point process of memory 1 can be found

in (Al-Mutairi, Chen and Singpurwalla, 1998). More

precisely the counting process {N(t), t≥0} has the

intensity functions:

)/1()/(

1
)(0

bct
t

+
=η (1)

,...2,1 ,
)/(]/)[(

1
);(=

+−
= i

ibtctt
tt

ii
iiη (2)

with b and c two positive parameters.

Recently a new approach of software reliability

models is gaining importance. This approach takes into

account the modular structure of a software. Some of

the advantages of this approach are that it relates system

reliability to its structure and the components

reliabilities and it allows the analysis of the sensitivity

of system reliability to the reliabilities of its

components (Gokhale and Lyu 2005). The disadvantage

is that, due to their complexity, mathematical

tractability for this type of models becomes difficult to

obtain. Therefore, thanks to its flexibility, simulation is

a natural choice for analyzing the failure process and for

estimating software reliability. Software reliability

models which take into consideration the modular

structure of the software are described in (Gokhale and

Lyu 2005; Yacoub, Cukic and Ammar 2004). We take

as starting point a model introduced in (Gokhale and

Lyu 2005), we describe a generalization of it and we

use discrete-event simulation to analyze the software

failure process.

2. A COMPONENT-BASED SOFTWARE

RELIABILITY MODEL

In (Gokhale and Lyu 2005) some component-based

software reliability models are introduced in order to

339

analyze the software failure process. We will focus on

the model for which some assumptions from classical

software reliability models are maintained considering

that at each failure corresponds only a fault and that a

fault is instantaneously corrected. There are also

assumptions that take into account the structure of the

software, thus the black-box hypothesis being relaxed.

These assumptions are:

1. The software product has k components.

2. The components are executed sequentially

beginning with component 1 and terminating

with component k.

3. The component j is executed upon the

completion of component i with the probability

pij .

4. The failures of a component are independent

from the failures of others components.

5. The time spent in each component is a random

variable.

Moreover, one supposes that the behaviour of each

component from the failure process point of view is

modelled using a well-known software reliability model

based on the nonhomogeneous Poisson process, the

Goel-Okumoto model.

Taking into account all these assumptions it results

a model which is complex and difficult to handle from

computational point of view. Therefore in (Gokhale and

Lyu 2005) the discrete-event simulation is used to study

the failure process of a software whose structure and

behaviour are described by the above hypothesis. As

events they consider the transfer of control among

components and the failure of the components. It is a

rate-based simulation which has as input: the length of

testing time duration, the time step and the failure rate

of the component. The simulation procedure returns the

total number of the failures observed in the time interval

(0,t].

3. SIMULATION OF A SOFTWARE TESTING

PROCEDURE

We consider the previous described model and we

generalize it in the following way:

• instead of generating possible failures for some

constant time intervals, we generate failure

times using a generalization of inverse method;

• instead of considering the Goel-Okumoto

model as a software reliability model for each

component we consider a more general model

in which the failure process is a self-exciting

process.

In this way we avoid the possible problems that the

choice of the length of time step could create. Moreover

using the self-exciting point process we obtain a more

general simulation model, such that we can associate to

software components any software reliability model that

is generalized by self-exciting process model. We

analyze the application of our model in the case in

which the failure process of the components has the

characteristics described in (Al-Mutairi, Chen and

Singpurwalla, 1998).

Our application is:

Figure 1: A software failure process simulation model

As in (Gokhale and Lyu 2005) our application

simulates the execution of a software with k

components and returns the total faults detected in the

time interval [0,t). The input parameters for our

application are

• t the length of the testing time interval;

• *Times[k] an array in which each element is a

list of failure times of a component

• *phi[k] an array containing information

regarding execution time spent in each

component

• P[k][k] a matrix whose elements are

intercomponent transition probabilities.

We suppose that the software execution begins

with the component number 1. The testing time of each

component is randomly generated. If an error occurs,

i.e. there is a failure time whose value is in the testing

time interval of that component, then the error is

counted and the test restarts with the execution of the

first component. If any error occurs, next component to

be tested is chosen using the transition matrix P[k][k].

The main difference between our model and the

model introduced in (Gokhale and Lyu 2005) is that we

generate failure times of different components. More

340

precisely we generate random vectors whose elements

represent failure times in time interval [0,t) of one

component of the software. For the generation of these

random vectors we can use the generalized inverse

method (Văduva, 1994). We can apply the generalized

inverse method for generating jump times of a self-

exciting point process for which the intensity function is

known (Suter, 2004). For example if we apply the

generalized inverse method to the point process

considered in (Al-Mutairi, Chen and Singpurwalla,

1998) we obtain the following relationships for

generating jump times of the point process:

−= −

1ˆ
1

11 cU
b

c
T (3)

niUT
b

c
T ciii ,...,3,2 ,1ˆˆ

1

1 =

−= −

− (4)

where U1, U2,…,Un are independent uniform random

variables.

REFERENCES

Al-Mutairi, D., Chen, Y., and Singpurwalla, N. D.,

1998. An adaptive concatenated failure rate model

for software reliability. Journal of the American

Statistical Association, 93 (443), 1150–1163.

Chen, Y., and Singpurwalla, N. D., 1997. Unification of

software reliability models by self-exciting point

processes. Advances in Applied Probability, 29

(2), 337–352.

Gokhale, S., and Lyu, M., 2005. A simulation approach

to structure-based software reliability analysis.

IEEE Transactions on Software Engineering, 31

(8), 643–657.

Snyder, D. L., 1975. Random point processes. John

Wiley & Sons.

Suter, F., 2004. Models and Algorithms in Systems

Reliability. Thesis (PhD), University of Bucharest.

Văduva, I. (1994) Fast algorithms for computer

generation of random vectors used in reliability

and applications. Tech. Rep. 1603, Technische

Hochschule Darmstadt, Zentrum für Praktische

Mathematik.

Yacoub, S., Cukic, B., Ammar, H., 2004 A Scenario-

Based Reliability Analysis Approach for

Component-Base Software. IEEE Transactions on

Reliability, 53 (4), 465–480.

341

